DESCRIPTION: Remove a few small memory leaks
In #7440 one instance of a strdup was removed. But there were a few
more. This removes the ones that are left over, or adds a comment why
strdup is on purpose.
This change adds a script to programatically group all includes in a
specific order. The script was used as a one time invocation to group
and sort all includes throught our formatted code. The grouping is as
follows:
- System includes (eg. `#include<...>`)
- Postgres.h (eg. `#include "postgres.h"`)
- Toplevel imports from postgres, not contained in a directory (eg.
`#include "miscadmin.h"`)
- General postgres includes (eg . `#include "nodes/..."`)
- Toplevel citus includes, not contained in a directory (eg. `#include
"citus_verion.h"`)
- Columnar includes (eg. `#include "columnar/..."`)
- Distributed includes (eg. `#include "distributed/..."`)
Because it is quite hard to understand the difference between toplevel
citus includes and toplevel postgres includes it hardcodes the list of
toplevel citus includes. In the same manner it assumes anything not
prefixed with `columnar/` or `distributed/` as a postgres include.
The sorting/grouping is enforced by CI. Since we do so with our own
script there are not changes required in our uncrustify configuration.
PG16 compatibility - Part 6
Check out part 1 42d956888d
part 2 0d503dd5ac
part 3 907d72e60d
part 4 7c6b4ce103
part 5 6056cb2c29
This commit is in the series of PG16 compatibility commits.
It handles the Permission Info changes in PG16. See below:
The main issue lies in the following entries of PlannedStmt: {
rtable
permInfos
}
Each rtable has an int perminfoindex, and its actual permission info is
obtained through the following:
permInfos[perminfoindex]
We had crashes because perminfoindexes were not updated in the finalized
planned statement after distributed planner hook.
So, basically, everywhere we set a query's or planned statement's rtable
entry, we need to set the rteperminfos/permInfos accordingly.
Relevant PG commits:
a61b1f7482
a61b1f74823c9c4f79c95226a461f1e7a367764b
b803b7d132
b803b7d132e3505ab77c29acf91f3d1caa298f95
More PG16 compatibility commits are coming soon ...
This PR provides successful compilation against PG16Beta2. It does some
necessary refactoring to prepare for full support of version 16, in
https://github.com/citusdata/citus/pull/6952 .
Change RelFileNode to RelFileNumber or RelFileLocator
Relevant PG commit
b0a55e43299c4ea2a9a8c757f9c26352407d0ccc
new header for varatt.h
Relevant PG commit:
d952373a987bad331c0e499463159dd142ced1ef
drop support for Abs, use fabs
Relevant PG commit
357cfefb09115292cfb98d504199e6df8201c957
tuplesort PGcommit: d37aa3d35832afde94e100c4d2a9618b3eb76472
Relevant PG commit:
d37aa3d35832afde94e100c4d2a9618b3eb76472
Fix vacuum in columnar
Relevant PG commit:
4ce3afb82ecfbf64d4f6247e725004e1da30f47c
older one:
b6074846cebc33d752f1d9a66e5a9932f21ad177
Add alloc_flags to pg_clean_ascii
Relevant PG commit:
45b1a67a0fcb3f1588df596431871de4c93cb76f
Merge GetNumConfigOptions() into get_guc_variables()
Relevant PG commit:
3057465acfbea2f3dd7a914a1478064022c6eecd
Minor PG refactor PG_FUNCNAME_MACRO __func__
Relevant PG commit
320f92b744b44f961e5d56f5f21de003e8027a7f
Pass NULL context to stringToQualifiedNameList, typeStringToTypeName
The pre-PG16 error behaviour for the following
stringToQualifiedNameList & typeStringToTypeName
was ereport(ERROR, ...)
Now with PG16 we have this context input. We preserve the same behaviour
by passing a NULL context, because of the following:
(copy paste comment from PG16)
If "context" isn't an ErrorSaveContext node, this behaves as
errstart(ERROR, domain), and the errsave() macro ends up acting
exactly like ereport(ERROR, ...).
Relevant PG commit
858e776c84f48841e7e16fba7b690b76e54f3675
Use RangeVarCallbackMaintainsTable instead of RangeVarCallbackOwnsTable
Relevant PG commit:
60684dd834a222fefedd49b19d1f0a6189c1632e
FIX THIS: Not implemented grant-level control of role inheritance
see PG commit
e3ce2de09d814f8770b2e3b3c152b7671bcdb83f
Make Scan node abstract
PG commit:
8c73c11a0d39049de2c1f400d8765a0eb21f5228
Change in Var representations, get_relids_in_jointree
PG commit
2489d76c4906f4461a364ca8ad7e0751ead8aa0d
Deadlock detection changes because SHM_QUEUE is removed
Relevant PG Commit:
d137cb52cb7fd44a3f24f3c750fbf7924a4e9532
TU_UpdateIndexes
Relevant PG commit
19d8e2308bc51ec4ab993ce90077342c915dd116
Use object_ownercheck and object_aclcheck functions
Relevant PG commits:
afbfc02983f86c4d71825efa6befd547fe81a926
c727f511bd7bf3c58063737bcf7a8f331346f253
Rework Permission Info for successful compilation
Relevant PG commits:
postgres/postgres@a61b1f7postgres/postgres@b803b7d
---------
Co-authored-by: onderkalaci <onderkalaci@gmail.com>
Now that we will soon add another table type having DISTRIBUTE_BY_NONE
as distribution method and that we want the code to interpret such
tables mostly as distributed tables, let's make the definition of those
other two table types more strict by removing
CITUS_TABLE_WITH_NO_DIST_KEY
macro.
And instead, use HasDistributionKey() check in the places where the
logic applies to all table types that have / don't have a distribution
key. In future PRs, we might want to convert some of those
HasDistributionKey() checks if logic only applies to Citus local /
reference tables, not the others.
And adding HasDistributionKey() also allows us to consider having
DISTRIBUTE_BY_NONE as the distribution method as a "table attribute"
that can apply to distributed tables too, rather something that
determines the table type.
Attribute number in a subquery RTE and relation RTE means different
things. In a relation attribute number will point to the column number
in the table definition including the dropped columns as well however in
subquery, it means the index in the target list. When we convert a
relation RTE to subquery RTE we should either correct all the relevant
attribute numbers or we can just add a dummy column for the dropped
columns. We choose the latter in this commit because it is practically
too vulnerable to update all the vars in a query.
Another thing this commit fixes is that in case a join restriction
clause list contains a false clause, we should just returns a false
clause instead of the whole list, because the whole list will contain
restrictions from other RTEs as well and this breaks the query, which
can be seen from the output changes, now it is much simpler.
Also instead of adding single tests for dropped columns, we choose to
run the whole mixed queries with tables with dropped columns, this
revealed some bugs already, which are fixed in this commit.
Instead of sending NULL's over a network, we now convert the subqueries
in the form of:
SELECT t.a, NULL, NULL FROM (SELECT a FROM table)t;
And we recursively plan the inner part so that we don't send the NULL's
over network. We still need the NULLs in the outer subquery because we
currently don't have an easy way of updating all the necessary places in
the query.
Add some documentation for how the conversion is done
The logical planner cannot handle joins between local and distributed table.
Instead, we can recursively plan one side of the join and let the logical
planner handle the rest.
Our algorithm is a little smart, trying not to recursively plan distributed
tables, but favors local tables.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
FindNodeCheck is not clear about what the function is doing. They are
renamed to FindNodeMatchingCheckFunctionXXX. Also for choosing elements in these
functions, CheckNodeFunc type is introduced.
In the code, we had the assumption that if restriction information
is NULL, it means that we cannot have any disributetd tables in
the subquery.
However, for subqueries in WHERE clause, that is not the case when
the subquery is ANDed with FALSE. In that case, Citus operates
on the originalQuery (which doesn't go through the standard_planner()),
and rely on the restriction information generated by standard_plannner().
As Postgres is smart enough to no generate restriction information for
subqueries ANDed with FALSE, we hit the assertion.
The rule for infinite recursion is the following:
- If the query contains a subquery which is recursively planned, and
no other subqueries can be recursively planned due to correlation
(e.g., LATERAL joins), the planner keeps recursing again and again.
One interesting thing here is that even if a subquery contains only intermediate
result(s), we re-recursively plan that. In the end, the logic in the code does the following:
- Try recursive planning any of the subqueries in the query tree
- If any subquery is recursively planned, call the planner again
where the subquery is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
......
With #1804 (and related PRs), Citus gained the ability to
plan subqueries that are not safe to pushdown.
There are two high-level requirements for pushing down subqueries:
* Individual subqueries that require a merge step (i.e., GROUP BY
on non-distribution key, or LIMIT in the subquery etc). We've
handled such subqueries via #1876.
* Combination of subqueries that are not joined on distribution keys.
This commit aims to recursively plan some of such subqueries to make
the whole query safe to pushdown.
The main logic behind non colocated subquery joins is that we pick
an anchor range table entry and check for distribution key equality
of any other subqueries in the given query. If for a given subquery,
we cannot find distribution key equality with the anchor rte, we
recursively plan that subquery.
We also used a hacky solution for picking relations as the anchor range
table entries. The hack is that we wrap them into a subquery. This is only
necessary since some of the attribute equivalance checks are based on
queries rather than range table entries.