Added create_distributed_table_concurrently which is nonblocking variant of create_distributed_table.
It bases on the split API which takes advantage of logical replication to support nonblocking split operations.
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: aykutbozkurt <aykut.bozkurt1995@gmail.com>
It is often useful to be able to sync the metadata in parallel
across nodes.
Also citus_finalize_upgrade_to_citus11() uses
start_metadata_sync_to_primary_nodes() after this commit.
Note that this commit does not parallelize all pieces of node
activation or metadata syncing. Instead, it tries to parallelize
potenially large parts of metadata, which is the objects and
distributed tables (in general Citus tables).
In the future, it would be nice to sync the reference tables
in parallel across nodes.
Create ~720 distributed tables / ~23450 shards
```SQL
-- declaratively partitioned table
CREATE TABLE github_events_looooooooooooooong_name (
event_id bigint,
event_type text,
event_public boolean,
repo_id bigint,
payload jsonb,
repo jsonb,
actor jsonb,
org jsonb,
created_at timestamp
) PARTITION BY RANGE (created_at);
SELECT create_time_partitions(
table_name := 'github_events_looooooooooooooong_name',
partition_interval := '1 day',
end_at := now() + '24 months'
);
CREATE INDEX ON github_events_looooooooooooooong_name USING btree (event_id, event_type, event_public, repo_id);
SELECT create_distributed_table('github_events_looooooooooooooong_name', 'repo_id');
SET client_min_messages TO ERROR;
```
across 1 node: almost same as expected
```SQL
SELECT start_metadata_sync_to_primary_nodes();
Time: 15664.418 ms (00:15.664)
select start_metadata_sync_to_node(nodename,nodeport) from pg_dist_node;
Time: 14284.069 ms (00:14.284)
```
across 7 nodes: ~3.5x improvement
```SQL
SELECT start_metadata_sync_to_primary_nodes();
┌──────────────────────────────────────┐
│ start_metadata_sync_to_primary_nodes │
├──────────────────────────────────────┤
│ t │
└──────────────────────────────────────┘
(1 row)
Time: 25711.192 ms (00:25.711)
-- across 7 nodes
select start_metadata_sync_to_node(nodename,nodeport) from pg_dist_node;
Time: 82126.075 ms (01:22.126)
```
CitusInitiatedBackend was a pre-mature implemenation of the whole
GlobalPID infrastructure. We used it to track whether any individual
query is triggered by Citus or not.
As of now, after GlobalPID is already in place, we don't need
CitusInitiatedBackend, in fact it could even be wrong.
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
* Synchronize hasmetadata flag on mx workers
* Switch to sequential execution
* Add test
* Use SetWorkerColumn
* Add test for stop_sync
* Remove usage of UpdateHasmetadataOnWorkersWithMetadata
* Remove MarkNodeMetadataSynced
* Fix test for metadatasynced
* Remove MarkNodeMetadataSynced
* Style
* Remove MarkNodeHasMetadata
* Remove UpdateDistNodeBoolAttr
* Refactor SetWorkerColumn
* Use SetWorkerColumnLocalOnly when setting up dependencies
* Use SetWorkerColumnLocalOnly in TriggerSyncMetadataToPrimaryNodes
* Style
* Make update command generator functions static
* Set metadatasynced before syncing
* Call SetWorkerColumn only if the sync is successful
* Try to sync all nodes
* Fix indexno
* Update metadatasynced locally first
* Break if a node fails to sync metadata
* Send worker commands optional
* Style & Rebase
* Add raiseOnError param to SetWorkerColumn
* Style
* Set metadatasynced for all metadata nodes
* Style
* Introduce SetWorkerColumnOptional
* Polish
* Style
* Dont send set command to not synced metadata nodes
* Style
* Polish
* Add test for stop_sync
* Add test for shouldhaveshards
* Add test for isactive flag
* Sort by placementid in the function verify_metadata
* Cover edge cases for failing nodes
* Add comments
* Add nodeport to isactive test
* Add warning if metadata out of sync
* Update warning message
With #4338, the executor is smart enough to failover to
local node if there is not enough space in max_connections
for remote connections.
For COPY, the logic is different. With #4034, we made COPY
work with the adaptive connection management slightly
differently. The cause of the difference is that COPY doesn't
know which placements are going to be accessed hence requires
to get connections up-front.
Similarly, COPY decides to use local execution up-front.
With this commit, we change the logic for COPY on local nodes:
Try to reserve a connection to local host. This logic follows
the same logic (e.g., citus.local_shared_pool_size) as the
executor because COPY also relies on TryToIncrementSharedConnectionCounter().
If reservation to local node fails, switch to local execution
Apart from this, if local execution is disabled, we follow the
exact same logic for multi-node Citus. It means that if we are
out of the connection, we'd give an error.
* Not allow removing a single node with ref tables
We should not allow removing a node if it is the only node in the
cluster and there is a data on it. We have this check for distributed
tables but we didn't have it for reference tables.
* Update src/test/regress/expected/single_node.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* Update src/test/regress/sql/single_node.sql
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
The executor relies on WorkerPool, and many other places rely on WorkerNode.
With this commit, we make sure that they are sorted via the same function/logic.
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
- master_activate_node and master_disable_node correctly toggle
isActive, without crashing
- master_add_node rejects duplicate nodes, even if they're in different
clusters
- master_remove_node allows removing nodes in different clusters
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node