This change adds a script to programatically group all includes in a
specific order. The script was used as a one time invocation to group
and sort all includes throught our formatted code. The grouping is as
follows:
- System includes (eg. `#include<...>`)
- Postgres.h (eg. `#include "postgres.h"`)
- Toplevel imports from postgres, not contained in a directory (eg.
`#include "miscadmin.h"`)
- General postgres includes (eg . `#include "nodes/..."`)
- Toplevel citus includes, not contained in a directory (eg. `#include
"citus_verion.h"`)
- Columnar includes (eg. `#include "columnar/..."`)
- Distributed includes (eg. `#include "distributed/..."`)
Because it is quite hard to understand the difference between toplevel
citus includes and toplevel postgres includes it hardcodes the list of
toplevel citus includes. In the same manner it assumes anything not
prefixed with `columnar/` or `distributed/` as a postgres include.
The sorting/grouping is enforced by CI. Since we do so with our own
script there are not changes required in our uncrustify configuration.
For a database that does not create the citus extension by running
` CREATE EXTENSION citus;`
`CitusHasBeenLoaded ` function ends up querying the `pg_extension` table
every time it is invoked. This is not an ideal situation for a such a
database.
The idea in this PR is as follows:
### A new field in MetadataCache.
Add a new variable `extensionCreatedState `of the following type:
```
typedef enum ExtensionCreatedState
{
UNKNOWN = 0,
CREATED = 1,
NOTCREATED = 2,
} ExtensionCreatedState;
```
When the MetadataCache is invalidated, `ExtensionCreatedState` will be
set to UNKNOWN.
### Invalidate MetadataCache when CREATE/DROP/ALTER EXTENSION citus
commands are run.
- Register a callback function, named
`InvalidateDistRelationCacheCallback`, for relcache invalidation during
the shared library initialization for `citus.so`. This callback function
is invoked in all the backends whenever the relcache is invalidated in
one of the backends. (This could be caused many DDLs operations).
- In the cache invalidation callback,`
InvalidateDistRelationCacheCallback`, invalidate `MetadataCache` zeroing
it out.
- In `CitusHasBeenLoaded`, perform the costly citus is loaded check only
if the `MetadataCache` is not valid.
### Downsides
Any relcache invalidation (caused by various DDL operations) will case
Citus MetadataCache to get invalidated. Most of the time it will be
unnecessary. But we rely on that DDL operations on relations will not be
too frequent.
Previously, we only checked whether the relations are colocated, but we
ignore the shard indexes. That causes certain queries still to be
accidentally router. We should enforce colocation checks for both shard
index and table colocation id to make the check restrictive enough.
For example, the following query should not be router, and after this
patch, it won't:
```SQL
SELECT
user_id
FROM
((SELECT user_id FROM raw_events_first WHERE user_id = 15) EXCEPT
(SELECT user_id FROM raw_events_second where user_id = 17)) as foo;
```
DESCRIPTION: Enforce shard level colocation with
citus.enable_non_colocated_router_query_pushdown
Index scans in PG16 return empty sets because of extra compatibility
enforcement for `ScanKeyInit` arguments.
Could be one of the relevant PG commits:
c8b2ef05f4
This PR fixes all incompatible `RegProcedure` and `Datum` arguments in
all `ScanKeyInit` functions used throughout the codebase.
Helpful for https://github.com/citusdata/citus/pull/6952
Verify Citus UDFs work well with single shard tables
SUPPORTED
* citus_table_size
* citus_total_relation_size
* citus_relation_size
* citus_shard_sizes
* truncate_local_data_after_distributing_table
* create_distributed_function // test function colocated with a single
shard table
* undistribute_table
* alter_table_set_access_method
UNSUPPORTED - error out for single shard tables
* master_create_empty_shard
* create_distributed_table_concurrently
* create_distributed_table
* create_reference_table
* citus_add_local_table_to_metadata
* citus_split_shard_by_split_points
* alter_distributed_table
DESCRIPTION: Adds citus.enable_schema_based_sharding GUC that allows
sharding the database based on schemas when enabled.
* Refactor the logic that automatically creates Citus managed tables
* Refactor CreateSingleShardTable() to allow specifying colocation id
instead
* Add support for schema-based-sharding via a GUC
### What this PR is about:
Add **citus.enable_schema_based_sharding GUC** to enable schema-based
sharding. Each schema created while this GUC is ON will be considered
as a tenant schema. Later on, regardless of whether the GUC is ON or
OFF, any table created in a tenant schema will be converted to a
single shard distributed table (without a shard key). All the tenant
tables that belong to a particular schema will be co-located with each
other and will have a shard count of 1.
We introduce a new metadata table --pg_dist_tenant_schema-- to do the
bookkeeping for tenant schemas:
```sql
psql> \d pg_dist_tenant_schema
Table "pg_catalog.pg_dist_tenant_schema"
┌───────────────┬─────────┬───────────┬──────────┬─────────┐
│ Column │ Type │ Collation │ Nullable │ Default │
├───────────────┼─────────┼───────────┼──────────┼─────────┤
│ schemaid │ oid │ │ not null │ │
│ colocationid │ integer │ │ not null │ │
└───────────────┴─────────┴───────────┴──────────┴─────────┘
Indexes:
"pg_dist_tenant_schema_pkey" PRIMARY KEY, btree (schemaid)
"pg_dist_tenant_schema_unique_colocationid_index" UNIQUE, btree (colocationid)
psql> table pg_dist_tenant_schema;
┌───────────┬───────────────┐
│ schemaid │ colocationid │
├───────────┼───────────────┤
│ 41963 │ 91 │
│ 41962 │ 90 │
└───────────┴───────────────┘
(2 rows)
```
Colocation id column of pg_dist_tenant_schema can never be NULL even
for the tenant schemas that don't have a tenant table yet. This is
because, we assign colocation ids to tenant schemas as soon as they
are created. That way, we can keep associating tenant schemas with
particular colocation groups even if all the tenant tables of a tenant
schema are dropped and recreated later on.
When a tenant schema is dropped, we delete the corresponding row from
pg_dist_tenant_schema. In that case, we delete the corresponding
colocation group from pg_dist_colocation as well.
### Future work for 12.0 release:
We're building schema-based sharding on top of the infrastructure that
adds support for creating distributed tables without a shard key
(https://github.com/citusdata/citus/pull/6867).
However, not all the operations that can be done on distributed tables
without a shard key necessarily make sense (in the same way) in the
context of schema-based sharding. For example, we need to think about
what happens if user attempts altering schema of a tenant table. We
will tackle such scenarios in a future PR.
We will also add a new UDF --citus.schema_tenant_set() or such-- to
allow users to use an existing schema as a tenant schema, and another
one --citus.schema_tenant_unset() or such-- to stop using a schema as
a tenant schema in future PRs.
With this PR, we allow creating distributed tables with without
specifying a shard key via create_distributed_table(). Here are the
the important details about those tables:
* Specifying `shard_count` is not allowed because it is assumed to be 1.
* We mostly call such tables as "null shard-key" table in code /
comments.
* To avoid doing a breaking layout change in create_distributed_table();
instead of throwing an error, it will inform the user that
`distribution_type`
param is ignored unless it's explicitly set to NULL or 'h'.
* `colocate_with` param allows colocating such null shard-key tables to
each other.
* We define this table type, i.e., NULL_SHARD_KEY_TABLE, as a subclass
of
DISTRIBUTED_TABLE because we mostly want to treat them as distributed
tables in terms of SQL / DDL / operation support.
* Metadata for such tables look like:
- distribution method => DISTRIBUTE_BY_NONE
- replication model => REPLICATION_MODEL_STREAMING
- colocation id => **!=** INVALID_COLOCATION_ID (distinguishes from
Citus local tables)
* We assign colocation groups for such tables to different nodes in a
round-robin fashion based on the modulo of "colocation id".
Note that this PR doesn't care about DDL (except CREATE TABLE) / SQL /
operation (i.e., Citus UDFs) support for such tables but adds a
preliminary
API.
Now that we will soon add another table type having DISTRIBUTE_BY_NONE
as distribution method and that we want the code to interpret such
tables mostly as distributed tables, let's make the definition of those
other two table types more strict by removing
CITUS_TABLE_WITH_NO_DIST_KEY
macro.
And instead, use HasDistributionKey() check in the places where the
logic applies to all table types that have / don't have a distribution
key. In future PRs, we might want to convert some of those
HasDistributionKey() checks if logic only applies to Citus local /
reference tables, not the others.
And adding HasDistributionKey() also allows us to consider having
DISTRIBUTE_BY_NONE as the distribution method as a "table attribute"
that can apply to distributed tables too, rather something that
determines the table type.
DESCRIPTION: Drop `SHARD_STATE_TO_DELETE` and use the cleanup records
instead
Drops the shard state that is used to mark shards as orphaned. Now we
insert cleanup records into `pg_dist_cleanup` so "orphaned" shards will
be dropped either by maintenance daemon or internal cleanup calls. With
this PR, we make the "cleanup orphaned shards" functions to be no-op, as
they would not be needed anymore.
This PR includes some naming changes about placement functions. We don't
need functions that filter orphaned shards, as there will be no orphaned
shards anymore.
We will also be introducing a small script with this PR, for users with
orphaned shards. We'll basically delete the orphaned shard entries from
`pg_dist_placement` and insert cleanup records into `pg_dist_cleanup`
for each one of them, during Citus upgrade.
We also have a lot of flakiness fixes in this PR.
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
increasing logical clock. Clock guarantees to never go back in value after restarts,
and makes best attempt to keep the value close to unix epoch time in milliseconds.
Also, introduces a new GUC "citus.enable_cluster_clock", when true, every
distributed transaction is stamped with logical causal clock and persisted
in a catalog pg_dist_commit_transaction.
DESCRIPTION: Add infrastructure to run long running management operations in background
This infrastructure introduces the primitives of jobs and tasks.
A task consists of a sql statement and an owner. Tasks belong to a
Job and can depend on other tasks from the same job.
When there are either runnable or running tasks we would like to
make sure a bacgrkound task queue monitor process is running. A Task
could be in running state while there is actually no monitor present
due to a database restart or failover. Once the monitor starts it
will reset any running task to its runnable state.
To make sure only one background task queue monitor is ever running
at once it will acquire an advisory lock that self conflicts.
Once a task is done it will find all tasks depending on this task.
After checking that the task doesn't have unmet dependencies it will
transition the task from blocked to runnable state for the task to
be picked up on a subsequent task start.
Currently only one task can be running at a time. This can be
improved upon in later releases without changes to the higher level
API.
The initial goal for this background tasks is to allow a rebalance
to run in the background. This will be implemented in a subsequent PR.
DESCRIPTION:
This PR adds support for 'Deferred Drop' and robust 'Shard Cleanup' for Splits.
Common Infrastructure
This PR introduces new common infrastructure so as any operation that wants robust cleanup of resources can register with the cleaner and have the resources cleaned appropriately based on a specified policy. 'Shard Split' is the first consumer using this new infrastructure.
Note : We only support adding 'shards' as resources to be cleaned-up right now but the framework will be extended to support other resources in future.
Deferred Drop for Split
Deferred Drop Support ensures that shards undergoing split are not dropped inline as part of operation but dropped later when no active read queries are running on shard. This helps with :
Avoids any potential deadlock scenarios that can cause long running Split operation to rollback.
Avoids Split operation blocking writes and then getting blocked (due to running queries on the shard) when trying to drop shards.
Deferred drop is the new default behavior going forward.
Shard Cleaner Extension
Shard Cleaner is a background task responsible for deferred drops in case of 'Move' operations.
The cleaner has been extended to ensure robust cleanup of shards (dummy shards and split children) in case of a failure based on the new infrastructure mentioned above. The cleaner also handles deferred drop for 'Splits'.
TESTING:
New test ''citus_split_shard_by_split_points_deferred_drop' to test deferred drop support.
New test 'failure_split_cleanup' to test shard cleanup with failures in different stages.
Update 'isolation_blocking_shard_split and isolation_non_blocking_shard_split' for deferred drop.
Added non-deferred drop version of existing tests : 'citus_split_shard_no_deferred_drop' and 'citus_non_blocking_splits_no_deferred_drop'
Added create_distributed_table_concurrently which is nonblocking variant of create_distributed_table.
It bases on the split API which takes advantage of logical replication to support nonblocking split operations.
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: aykutbozkurt <aykut.bozkurt1995@gmail.com>
use RecurseObjectDependencies api to find if an object is citus depended
make vanilla tests runnable to see if citus_depended function is working correctly
This PR makes all of the features open source that were previously only
available in Citus Enterprise.
Features that this adds:
1. Non blocking shard moves/shard rebalancer
(`citus.logical_replication_timeout`)
2. Propagation of CREATE/DROP/ALTER ROLE statements
3. Propagation of GRANT statements
4. Propagation of CLUSTER statements
5. Propagation of ALTER DATABASE ... OWNER TO ...
6. Optimization for COPY when loading JSON to avoid double parsing of
the JSON object (`citus.skip_jsonb_validation_in_copy`)
7. Support for row level security
8. Support for `pg_dist_authinfo`, which allows storing different
authentication options for different users, e.g. you can store
passwords or certificates here.
9. Support for `pg_dist_poolinfo`, which allows using connection poolers
in between coordinator and workers
10. Tracking distributed query execution times using
citus_stat_statements (`citus.stat_statements_max`,
`citus.stat_statements_purge_interval`,
`citus.stat_statements_track`). This is disabled by default.
11. Blocking tenant_isolation
12. Support for `sslkey` and `sslcert` in `citus.node_conninfo`
* Bug fix for bug #5876. Memset MetadataCacheSystem every time there is an abort
* Created an ObjectAccessHook that saves the transactionlevel of when citus was created and will clear metadatacache if that transaction level is rolled back. Added additional tests to make sure metadatacache is cleared
We have a mechanism which ensures that newly distributed
objects are recorded during `alter extension citus update`.
However, the logic was lacking "view"s. With this commit, we make
sure that existing views are also marked as distributed during
upgrade.
If a worker node is being added, a command is sent to get the server_id of the worker from the pg_dist_node_metadata table. If the worker's id is the same as the node executing the code, we will know the node is trying to add itself. If the node tries to add itself without specifying `groupid:=0` the operation will result in an error.
BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
With Citus 9.0, we introduced `citus.single_shard_commit_protocol` which
defaults to 2PC.
With this commit, we prevent any user to set it to 1PC and drop support
for `citus.single_shard_commit_protocol`.
Although this might add some overhead for users, it is already the default
behaviour (so less likely) and marking placements as INVALID is much
worse.
Before this commit, we always synced the metadata with superuser.
However, that creates various edge cases such as visibility errors
or self distributed deadlocks or complicates user access checks.
Instead, with this commit, we use the current user to sync the metadata.
Note that, `start_metadata_sync_to_node` still requires super user
because accessing certain metadata (like pg_dist_node) always require
superuser (e.g., the current user should be a superuser).
However, metadata syncing operations regarding the distributed
tables can now be done with regular users, as long as the user
is the owner of the table. A table owner can still insert non-sense
metadata, however it'd only affect its own table. So, we cannot do
anything about that.
Ignore orphaned shards in more places
Only use active shard placements in RouterInsertTaskList
Use IncludingOrphanedPlacements in some more places
Fix comment
Add tests
With citus shard helper view, we can easily see:
- where each shard is, which node, which port
- what kind of table it belongs to
- its size
With such a view, we can see shards that have a size bigger than some
value, which could be useful. Also debugging can be easier in production
as well with this view.
Fetch shards in one go per node
The previous implementation was slow because it would do a lot of round
trips, one per shard to be exact. Hence it is improved so that we fetch
all the shard_name, shard-size pairs per node in one go.
Construct shards_names, sizes query on coordinator
We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
* Not allow removing a single node with ref tables
We should not allow removing a node if it is the only node in the
cluster and there is a data on it. We have this check for distributed
tables but we didn't have it for reference tables.
* Update src/test/regress/expected/single_node.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* Update src/test/regress/sql/single_node.sql
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
This commit brings following features:
Foreign key support from citus local tables to reference tables
* Foreign key support from reference tables to citus local tables
(only with RESTRICT & NO ACTION behavior)
* ALTER TABLE ENABLE/DISABLE trigger command support
* CREATE/DROP/ALTER trigger command support
and disallows:
* ALTER TABLE ATTACH/DETACH PARTITION commands
* CREATE TABLE <postgres table> ATTACH PARTITION <citus local table>
commands
* Foreign keys from postgres tables to citus local tables
(the other way was already disallowed)
for citus local tables.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks