Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
Remove the router specific transaction and shard management, and
replace it with the new placement connection API. This mostly leaves
behaviour alone, except that it is now, inside a transaction, legal to
select from a shard to which no pre-existing connection exists.
To simplify code the code handling task executions for select and
modify has been split into two - the previous coding was starting to
get confusing due to the amount of only conditionally applicable code.
Modification connections & transactions are now always established in
parallel, not just for reference tables.
One less place managing remote transactions. It also makes it fairly
easy to use 2PC for certain modifications (e.g. reference tables). Just
issue a CoordinatedTransactionUse2PC(). If every placement failure
should cause the whole transaction to abort, additionally mark the
relevant transactions as critical.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
Not entirely sure why we went with the shared memory hook approach, but
it causes problems (multiple registration) during crashes. Changing to
a simple direct registration call from PG_init.
Allows the use of modification commands (INSERT/UPDATE/DELETE) within
transaction blocks (delimited by BEGIN and ROLLBACK/COMMIT), so long as
all modifications hit a subset of nodes involved in the first such com-
mand in the transaction. This does not circumvent the requirement that
each individual modification command must still target a single shard.
For instance, after sending BEGIN, a user might INSERT some rows to a
shard replicated on two nodes. Subsequent modifications can hit other
shards, so long as they are on one or both of these nodes.
SAVEPOINTs are supported, though if the user actually attempts to send
a ROLLBACK command that specifies a SAVEPOINT they will receive an
ERROR at the end of the topmost transaction.
Placements are only marked inactive if at least one replica succeeds
in a transaction where others fail. Non-atomic behavior is possible if
the shard targeted by the initial modification within a transaction has
a higher replication factor than another shard within the same block
and a node with the latter shard has a failure during the COMMIT phase.
Other methods of denoting transaction blocks (multi-statement commands
sent all at once and functions written in e.g. PL/pgSQL or other such
languages) are not presently supported; their treatment remains the
same as before.
- Enables using VOLATILE functions (like nextval()) in INSERT queries
- Enables using STABLE functions (like now()) targetLists and joinTrees
UPDATE and INSERT can now contain non-immutable functions. INSERT can contain any kind of
expression, while UPDATE can contain any STABLE function, so long as a Var is not passed
into the STABLE function, even indirectly. UPDATE TagetEntry's can now also include Vars.
There's an exception, CASE/COALESCE statements may not contain mutable functions.
Functions calls in master_modify_multiple_shards are also evaluated.
The upcoming RETURNING support would otherwise require too much
duplication. This contains most of the pieces required for RETURNING
support, except removing the planner checks and adjusting regression
test output.