DESCRIPTION: Fix PG upgrades when invalid rebalance strategies exist
Without this change an upgrade of a cluster with an invalid rebalance
strategy would fail with an error like this:
```
cache lookup failed for shard_cost_function with oid 6077337
CONTEXT: SQL statement "SELECT citus_validate_rebalance_strategy_functions(
NEW.shard_cost_function,
NEW.node_capacity_function,
NEW.shard_allowed_on_node_function)"
PL/pgSQL function citus_internal.pg_dist_rebalance_strategy_trigger_func() line 5 at PERFORM
SQL statement "INSERT INTO pg_catalog.pg_dist_rebalance_strategy SELECT
name,
default_strategy,
shard_cost_function::regprocedure::regproc,
node_capacity_function::regprocedure::regproc,
shard_allowed_on_node_function::regprocedure::regproc,
default_threshold,
minimum_threshold,
improvement_threshold
FROM public.pg_dist_rebalance_strategy"
PL/pgSQL function citus_finish_pg_upgrade() line 115 at SQL statement
```
This fixes that by disabling the trigger and simply re-inserting the
invalid rebalance strategy without checking. We could also silently
remove it, but this seems nicer.
DESCRIPTION: Adds support for distributed `ALTER/DROP ROLE` commands
from the databases where Citus is not installed
---------
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
Moves the following functions to the Citus internal schema:
citus_internal_local_blocked_processes
citus_internal_global_blocked_processes
citus_internal_mark_node_not_synced
citus_internal_unregister_tenant_schema_globally
citus_internal_update_none_dist_table_metadata
citus_internal_update_placement_metadata
citus_internal_update_relation_colocation
citus_internal_start_replication_origin_tracking
citus_internal_stop_replication_origin_tracking
citus_internal_is_replication_origin_tracking_active
#7405
---------
Co-authored-by: Jelte Fennema-Nio <jelte.fennema@microsoft.com>
Moves the following functions:
citus_internal_delete_colocation_metadata
citus_internal_delete_partition_metadata
citus_internal_delete_placement_metadata
citus_internal_delete_shard_metadata
citus_internal_delete_tenant_schema
Move more functions to citus_internal schema, the list:
citus_internal_add_placement_metadata
citus_internal_add_shard_metadata
citus_internal_add_tenant_schema
citus_internal_adjust_local_clock_to_remote
citus_internal_database_command
#7405
Move citus_internal_acquire_citus_advisory_object_class_lock and
citus_internal_add_colocation_metadata functions from pg_catalog to
citus_internal.
#7405
This PR makes the connections to other nodes for
`mark_object_distributed` use the same user as
`execute_command_on_remote_nodes_as_user` so they'll use the same
connection.
DESCRIPTION: Adds support for issuing `CREATE`/`DROP` DATABASE commands
from worker nodes
With this commit, we allow issuing CREATE / DROP DATABASE commands from
worker nodes too.
As in #7278, this is not allowed when the coordinator is not added to
metadata because we don't ever sync metadata changes to coordinator
when adding coordinator to the metadata via
`SELECT citus_set_coordinator_host('<hostname>')`, or equivalently, via
`SELECT citus_add_node(<coordinator_node_name>, <coordinator_node_port>, 0)`.
We serialize database management commands by acquiring a Citus specific
advisory lock on the first primary worker node if there are any workers in the
cluster. As opposed to what we've done in https://github.com/citusdata/citus/pull/7278
for role management commands, we try to avoid from running into distributed deadlocks
as much as possible. This is because, while distributed deadlocks that can happen around
role management commands can be detected by Citus, this is not the case for database
management commands because most of them cannot be run inside in a transaction block.
In that case, Citus cannot even detect the distributed deadlock because the command is not
part of a distributed transaction at all, then the command execution might not return the
control back to the user for an indefinite amount of time.
DESCRIPTION: Adds support for 2PC from non-Citus main databases
This PR only adds support for `CREATE USER` queries, other queries need
to be added. But it should be simple because this PR creates the
underlying structure.
Citus main database is the database where the Citus extension is
created. A non-main database is all the other databases that are in the
same node with a Citus main database.
When a `CREATE USER` query is run on a non-main database we:
1. Run `start_management_transaction` on the main database. This
function saves the outer transaction's xid (the non-main database
query's transaction id) and marks the current query as main db command.
2. Run `execute_command_on_remote_nodes_as_user("CREATE USER
<username>", <username to run the command>)` on the main database. This
function creates the users in the rest of the cluster by running the
query on the other nodes. The user on the current node is created by the
query on the outer, non-main db, query to make sure consequent commands
in the same transaction can see this user.
3. Run `mark_object_distributed` on the main database. This function
adds the user to `pg_dist_object` in all of the nodes, including the
current one.
This PR also implements transaction recovery for the queries from
non-main databases.
DESCRIPTION: Adds support for propagating `CREATE`/`DROP` database
In this PR, create and drop database support is added.
For CREATE DATABASE:
* "oid" option is not supported
* specifying "strategy" to be different than "wal_log" is not supported
* specifying "template" to be different than "template1" is not
supported
The last two are because those are not saved in `pg_database` and when
activating a node, we cannot assume what parameters were provided when
creating the database.
And "oid" is not supported because whether user specified an arbitrary
oid when creating the database is not saved in pg_database and we want
to avoid from oid collisions that might arise from attempting to use an
auto-assigned oid on workers.
Finally, in case of node activation, GRANTs for the database are also
propagated.
---------
Co-authored-by: Jelte Fennema-Nio <github-tech@jeltef.nl>
Co-authored-by: Jelte Fennema-Nio <jelte.fennema@microsoft.com>
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
Add citus_schema_move() that can be used to move tenant tables within a distributed
schema to another node. The function has two variations as simple wrappers around
citus_move_shard_placement() and citus_move_shard_placement_with_nodeid() respectively.
They pick a shard that belongs to the given tenant schema and resolve the source node
that contain the shards under given tenant schema. Hence their signatures are quite
similar to underlying functions:
```sql
-- citus_schema_move(), using target node name and node port
CREATE OR REPLACE FUNCTION pg_catalog.citus_schema_move(
schema_id regnamespace,
target_node_name text,
target_node_port integer,
shard_transfer_mode citus.shard_transfer_mode default 'auto')
RETURNS void
LANGUAGE C STRICT
AS 'MODULE_PATHNAME', $$citus_schema_move$$;
-- citus_schema_move(), using target node id
CREATE OR REPLACE FUNCTION pg_catalog.citus_schema_move(
schema_id regnamespace,
target_node_id integer,
shard_transfer_mode citus.shard_transfer_mode default 'auto')
RETURNS void
LANGUAGE C STRICT
AS 'MODULE_PATHNAME', $$citus_schema_move_with_nodeid$$;
```
DESCRIPTION: Presenting citus_pause_node UDF enabling pausing by
node_id.
citus_pause_node takes a node_id parameter and fetches all the shards in
that node and puts AccessExclusiveLock on all the shards inside that
node. With this lock, insert is disabled, until citus_pause_node
transaction is closed.
---------
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
PG16 compatibility - part 7
Check out part 1 42d956888d
part 2 0d503dd5ac
part 3 907d72e60d
part 4 7c6b4ce103
part 5 6056cb2c29
part 6 b36c431abb
part 7 ee3153fe50
This commit is in the series of PG16 compatibility commits. PG16 introduced a new entry
varnnullingrels to Var, which represents our partkey in pg_dist_partition.
This commit does the necessary changes in Citus to support this.
Relevant PG commit:
2489d76c49
2489d76c4906f4461a364ca8ad7e0751ead8aa0d
More PG16 compatibility commits are coming soon ...
PG16 compatibility - Part 2
Part 1 provided successful compilation against pg16beta2.
42d956888d
This PR provides ruleutils changes with pg16beta2 and successful CREATE EXTENSION command.
Note that more changes are needed in order to have successful regression tests.
More commits are coming soon ...
For any_value changes, I referred to this commit
8ef94dc1f5
where we did something similar for PG14 support.
DESCRIPTION: Change default rebalance strategy to by_disk_size
When introducing rebalancing by disk size we didn't make it the default
initially. The main reason was, because we expected some problems with
it. We have indeed had some problems/bugs with it over the years, and
have fixed all of them. By now we're quite confident in its stability,
and that it pretty much always gives better results than by_shard_count.
So this PR makes by_disk_size the new default. We don't change the
default when some other strategy than by_shard_count is the current
default. This is in case someone defined their own rebalance strategy
and marked this as the default themselves.
Note: It explicitly does nothing during a downgrade, because there's no
way of knowing if the rebalance strategy before the upgrade was
by_disk_size or by_shard_count. And even in previous versions
by_disk_size is considered superior for quite some time.
This is to implement custom cast of table partition column
type from / to `timestamptz` in time partition management UDFs, as
proposed in ticket #6454
The general idea is for a time partition column with type other than
`date`, `timestamp`, or `timestamptz`, users can provide custom
bidirectional cast between the column type and `timestamptz`, the UDFs
then will be able to create and drop time partitions for such tables.
Fixes#6454
---------
Signed-off-by: Xin Li <xin@swirldslabs.com>
Co-authored-by: Marco Slot <marco.slot@microsoft.com>
Co-authored-by: Ahmet Gedemenli <afgedemenli@gmail.com>
DESCRIPTION: Adds citus_schemas view
The citus_schemas view will be created in public schema if it exists, if
not the view will be created in pg_catalog.
Need to:
- [x] Add tests
- [x] Fix tests
citus_shard_sizes view had a shard name column we use to extract shard
id. This PR changes the column to shard id so we don't do unnecessary
string operation.
DESCRIPTION: Enabling citus_stat_tenants to support schema-based
tenants.
This pull request modifies the existing logic to enable tenant
monitoring with schema-based tenants. The changes made are as follows:
- If a query has a partitionKeyValue (which serves as a tenant
key/identifier for distributed tables), Citus annotates the query with
both the partitionKeyValue and colocationId. This allows for accurate
tracking of the query.
- If a query does not have a partitionKeyValue, but its colocationId
belongs to a distributed schema, Citus annotates the query with only the
colocationId. The tenant monitor can then easily look up the schema to
determine if it's a distributed schema and make a decision on whether to
track the query.
---------
Co-authored-by: Jelte Fennema <jelte.fennema@microsoft.com>
* Currently we do not allow any Citus tables other than Citus local
tables inside a regular schema before executing
`citus_schema_distribute`.
* `citus_schema_undistribute` expects only single shard distributed
tables inside a tenant schema.
DESCRIPTION: Adds the udf `citus_schema_distribute` to convert a regular
schema into a tenant schema.
DESCRIPTION: Adds the udf `citus_schema_undistribute` to convert a
tenant schema back to a regular schema.
---------
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
`citus_table_type` column of `citus_tables` and `citus_shards` will show
"schema" for tenants schema tables and "distributed" for single shard
tables that are not in a tenant schema.
DESCRIPTION: Adds citus.enable_schema_based_sharding GUC that allows
sharding the database based on schemas when enabled.
* Refactor the logic that automatically creates Citus managed tables
* Refactor CreateSingleShardTable() to allow specifying colocation id
instead
* Add support for schema-based-sharding via a GUC
### What this PR is about:
Add **citus.enable_schema_based_sharding GUC** to enable schema-based
sharding. Each schema created while this GUC is ON will be considered
as a tenant schema. Later on, regardless of whether the GUC is ON or
OFF, any table created in a tenant schema will be converted to a
single shard distributed table (without a shard key). All the tenant
tables that belong to a particular schema will be co-located with each
other and will have a shard count of 1.
We introduce a new metadata table --pg_dist_tenant_schema-- to do the
bookkeeping for tenant schemas:
```sql
psql> \d pg_dist_tenant_schema
Table "pg_catalog.pg_dist_tenant_schema"
┌───────────────┬─────────┬───────────┬──────────┬─────────┐
│ Column │ Type │ Collation │ Nullable │ Default │
├───────────────┼─────────┼───────────┼──────────┼─────────┤
│ schemaid │ oid │ │ not null │ │
│ colocationid │ integer │ │ not null │ │
└───────────────┴─────────┴───────────┴──────────┴─────────┘
Indexes:
"pg_dist_tenant_schema_pkey" PRIMARY KEY, btree (schemaid)
"pg_dist_tenant_schema_unique_colocationid_index" UNIQUE, btree (colocationid)
psql> table pg_dist_tenant_schema;
┌───────────┬───────────────┐
│ schemaid │ colocationid │
├───────────┼───────────────┤
│ 41963 │ 91 │
│ 41962 │ 90 │
└───────────┴───────────────┘
(2 rows)
```
Colocation id column of pg_dist_tenant_schema can never be NULL even
for the tenant schemas that don't have a tenant table yet. This is
because, we assign colocation ids to tenant schemas as soon as they
are created. That way, we can keep associating tenant schemas with
particular colocation groups even if all the tenant tables of a tenant
schema are dropped and recreated later on.
When a tenant schema is dropped, we delete the corresponding row from
pg_dist_tenant_schema. In that case, we delete the corresponding
colocation group from pg_dist_colocation as well.
### Future work for 12.0 release:
We're building schema-based sharding on top of the infrastructure that
adds support for creating distributed tables without a shard key
(https://github.com/citusdata/citus/pull/6867).
However, not all the operations that can be done on distributed tables
without a shard key necessarily make sense (in the same way) in the
context of schema-based sharding. For example, we need to think about
what happens if user attempts altering schema of a tenant table. We
will tackle such scenarios in a future PR.
We will also add a new UDF --citus.schema_tenant_set() or such-- to
allow users to use an existing schema as a tenant schema, and another
one --citus.schema_tenant_unset() or such-- to stop using a schema as
a tenant schema in future PRs.
DESCRIPTION: Adds control for background task executors involving a node
### Background and motivation
Nonblocking concurrent task execution via background workers was
introduced in [#6459](https://github.com/citusdata/citus/pull/6459), and
concurrent shard moves in the background rebalancer were introduced in
[#6756](https://github.com/citusdata/citus/pull/6756) - with a hard
dependency that limits to 1 shard move per node. As we know, a shard
move consists of a shard moving from a source node to a target node. The
hard dependency was used because the background task runner didn't have
an option to limit the parallel shard moves per node.
With the motivation of controlling the number of concurrent shard
moves that involve a particular node, either as source or target, this
PR introduces a general new GUC
citus.max_background_task_executors_per_node to be used in the
background task runner infrastructure. So, why do we even want to
control and limit the concurrency? Well, it's all about resource
availability: because the moves involve the same nodes, extra
parallelism won’t make the rebalance complete faster if some resource is
already maxed out (usually cpu or disk). Or, if the cluster is being
used in a production setting, the moves might compete for resources with
production queries much more than if they had been executed
sequentially.
### How does it work?
A new column named nodes_involved is added to the catalog table that
keeps track of the scheduled background tasks,
pg_dist_background_task. It is of type integer[] - to store a list
of node ids. It is NULL by default - the column will be filled by the
rebalancer, but we may not care about the nodes involved in other uses
of the background task runner.
Table "pg_catalog.pg_dist_background_task"
Column | Type
============================================
job_id | bigint
task_id | bigint
owner | regrole
pid | integer
status | citus_task_status
command | text
retry_count | integer
not_before | timestamp with time zone
message | text
+nodes_involved | integer[]
A hashtable named ParallelTasksPerNode keeps track of the number of
parallel running background tasks per node. An entry in the hashtable is
as follows:
ParallelTasksPerNodeEntry
{
node_id // The node is used as the hash table key
counter // Number of concurrent background tasks that involve node node_id
// The counter limit is citus.max_background_task_executors_per_node
}
When the background task runner assigns a runnable task to a new
executor, it increments the counter for each of the nodes involved with
that runnable task. The limit of each counter is
citus.max_background_task_executors_per_node. If the limit is reached
for any of the nodes involved, this runnable task is skipped. And then,
later, when the running task finishes, the background task runner
decrements the counter for each of the nodes involved with the done
task. The following functions take care of these increment-decrement
steps:
IncrementParallelTaskCountForNodesInvolved(task)
DecrementParallelTaskCountForNodesInvolved(task)
citus.max_background_task_executors_per_node can be changed in the
fly. In the background rebalancer, we simply give {source_node,
target_node} as the nodesInvolved input to the
ScheduleBackgroundTask function. The rest is taken care of by the
general background task runner infrastructure explained above. Check
background_task_queue_monitor.sql and
background_rebalance_parallel.sql tests for detailed examples.
#### Note
This PR also adds a hard node dependency if a node is first being used
as a source for a move, and then later as a target. The reason this
should be a hard dependency is that the first move might make space for
the second move. So, we could run out of disk space (or at least
overload the node) if we move the second shard to it before the first
one is moved away.
Fixes https://github.com/citusdata/citus/issues/6716
DESCRIPTION: PR description that will go into the change log, up to 78
characters
---------
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
DESCRIPTION: Adds views that monitor statistics on tenant usages
This PR adds `citus_stats_tenants` view that monitors the tenants on the
cluster.
`citus_stats_tenants` shows the node id, colocation id, tenant
attribute, read count in this period and last period, and query count in
this period and last period of the tenant.
Tenant attribute currently is the tenant's distribution column value,
later when schema based sharding is introduced, this meaning might
change.
A period is a time bucket the queries are counted by. Read and query
counts for this period can increase until the current period ends. After
that those counts are moved to last period's counts, which cannot
change. The period length can be set using 'citus.stats_tenants_period'.
`SELECT` queries are counted as _read_ queries, `INSERT`, `UPDATE` and
`DELETE` queries are counted as _write_ queries. So in the view read
counts are `SELECT` counts and query counts are `SELECT`, `INSERT`,
`UPDATE` and `DELETE` count.
The data is stored in shared memory, in a struct named
`MultiTenantMonitor`.
`citus_stats_tenants` shows the data from local tenants.
`citus_stats_tenants` show up to `citus.stats_tenant_limit` number of
tenants.
The tenants are scored based on the number of queries they run and the
recency of those queries. Every query ran increases the score of tenant
by `ONE_QUERY_SCORE`, and after every period ends the scores are halved.
Halving is done lazily.
To retain information a longer the monitor keeps up to 3 times
`citus.stats_tenant_limit` tenants. When the tenant count hits `3 *
citus.stats_tenant_limit`, last `citus.stats_tenant_limit` tenants are
removed. To see all stored tenants you can use
`citus_stats_tenants(return_all_tenants := true)`
- [x] Create collector view that gets data from all nodes. #6761
- [x] Add monitoring log #6762
- [x] Create enable/disable GUC #6769
- [x] Parse the annotation string correctly #6796
- [x] Add local queries and prepared statements #6797
- [x] Rename to citus_stat_statements #6821
- [x] Run pgbench
- [x] Fix role permissions #6812
---------
Co-authored-by: Gokhan Gulbiz <ggulbiz@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
This pull request proposes a change to the logic used for propagating
identity columns to worker nodes in citus. Instead of creating a
dependent sequence for each identity column and changing its default
value to `nextval(seq)/worker_nextval(seq)`, this update will pass the
identity columns as-is to the worker nodes.
Please note that there are a few limitations to this change.
1. Only bigint identity columns will be allowed in distributed tables to
ensure compatibility with the DDL from any node functionality. Our
current distributed sequence implementation only allows insert
statements from all nodes for bigint sequences.
2. `alter_distributed_table` and `undistribute_table` operations will
not be allowed for tables with identity columns. This is because we do
not have a proper way of keeping sequence states consistent across the
cluster.
DESCRIPTION: Prevents using identity columns on data types other than
`bigint` on distributed tables
DESCRIPTION: Prevents using `alter_distributed_table` and
`undistribute_table` UDFs when a table has identity columns
DESCRIPTION: Fixes a bug that prevents enforcing identity column
restrictions on worker nodes
Depends on #6740Fixes#6694
Description:
Implementing CDC changes using Logical Replication to avoid
re-publishing events multiple times by setting up replication origin
session, which will add "DoNotReplicateId" to every WAL entry.
- shard splits
- shard moves
- create distributed table
- undistribute table
- alter distributed tables (for some cases)
- reference table operations
The citus decoder which will be decoding WAL events for CDC clients,
ignores any WAL entry with replication origin that is not zero.
It also maps the shard names to distributed table names.
If there is a problem with an ongoing rebalance, we did not show details
on background tasks that are stuck in runnable state. Similar to how we
show details for errored tasks, we now show details on tasks that are
being retried.
Earlier we showed the following output when a task was stuck:
```
┌────────────────────────────┐
│ { ↵│
│ "tasks": [ ↵│
│ ], ↵│
│ "task_state_counts": {↵│
│ "done": 13, ↵│
│ "blocked": 2, ↵│
│ "runnable": 1 ↵│
│ } ↵│
│ } │
└────────────────────────────┘
```
Now we show details like the following:
```
+-----------------------------------------------------------------------
| {
| "tasks": [
| {
| "state": "runnable",
| "command": "SELECT pg_catalog.citus_move_shard_placement(1
| "message": "ERROR: Moving shards to a node that shouldn't
| "retried": 2,
| "task_id": 3
| }
| ],
| "task_state_counts": {
| "blocked": 1,
| "runnable": 1
| }
| }
+-----------------------------------------------------------------------
```
citus_job_list() lists all background jobs by simply showing the records
in pg_dist_background_job.
citus_job_status(job_id bigint, raw boolean default false) shows the
status of a single background job by appending a jsonb details column to
the associated row from pg_dist_background_job. If the raw argument is
set, machine readable sizes are used instead of human readable
alternatives.
citus_rebalance_status(raw boolean default false) shows the status of
the last rebalance operation. If the raw argument is set, machine
readable sizes are used instead of human readable alternatives.
DESCRIPTION: Drop `SHARD_STATE_TO_DELETE` and use the cleanup records
instead
Drops the shard state that is used to mark shards as orphaned. Now we
insert cleanup records into `pg_dist_cleanup` so "orphaned" shards will
be dropped either by maintenance daemon or internal cleanup calls. With
this PR, we make the "cleanup orphaned shards" functions to be no-op, as
they would not be needed anymore.
This PR includes some naming changes about placement functions. We don't
need functions that filter orphaned shards, as there will be no orphaned
shards anymore.
We will also be introducing a small script with this PR, for users with
orphaned shards. We'll basically delete the orphaned shard entries from
`pg_dist_placement` and insert cleanup records into `pg_dist_cleanup`
for each one of them, during Citus upgrade.
We also have a lot of flakiness fixes in this PR.
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
Fixes a missed include in #6315.
While adding the cluster clock we have added some extra steps to
`citus_prepare_pg_upgrade` and `citus_finish_pg_upgrade`. These changes
were not added to the citus upgrade and downgrade scripts, this allowed
for a syntax error to slip in.
This PR adds the new versions of both UDF's to the upgrade script while
adding the old version to the downgrade script. This exposed the syntax
error which is also solved.