DESCRIPTION: Force aliases in deparsing for queries with anonymous column references
Fixes: #3985
The root cause has todo with discrepancies in the query tree we create. I think in the future we should spend some time on categorising all changes we made to ruleutils and see if we can change the data structure `query` we pass to the deparser to have an actual valid postgres query for the deparser to render.
For now the fix is to keep track, besides changing the names of the entries in the target list, also if we have a reference to an anonymous columns. If there are anonymous columns we set the `printaliases` flag to true which forces the deparser to add the aliases.
(cherry picked from commit 449d1f0e91)
Static analysis found some issues where we used the result from
ExtractResultRelationRTE, without checking that it wasn't NULL. It seems
like in all these cases it can never actually be NULL, since we have checked
before that it isn't a SELECT query. So, this PR is mostly to make static
analysis happy (and protect a bit against future changes of the code).
(cherry picked from commit 759e628dd5)
Static analysis found an issue where we could dereference `NULL`, because
`CreateDummyPlacement` could return `NULL` when there were no workers. This
PR changes it so that it never returns `NULL`, which was intended by
@marcocitus when doing this change: https://github.com/citusdata/citus/pull/3887/files#r438136433
While adding tests for citus on a single node I also added some more basic
tests and it turns out we error out on repartition joins. This has been
present since `shouldhaveshards` was introduced and is not trivial to fix.
So I created a separate issue for this: https://github.com/citusdata/citus/issues/3996
(cherry picked from commit ab01571c9e)
Some GUCs support a list of values which is indicated by GUC_LIST_INPUT flag.
When an ALTER ROLE .. SET statement is executed, the new configuration
default for affected users and databases are stored in the
setconfig(text[]) column in a pg_db_role_setting record.
If a GUC that supports a list of values is used in an ALTER ROLE .. SET
statement, we need to split the text into items delimited by commas.
(cherry picked from commit e534dbae4a)
Here are the updated make targets:
- install: install everything except downgrade scripts.
- install-downgrades: build and install only the downgrade migration scripts.
- install-all: install everything along with the downgrade migration scripts.
Conflicts:
src/backend/distributed/Makefile
src/backend/distributed/sql/downgrades/citus--9.5-1--9.4-1.sql
- file does not exist on release branch yet, only on master
(cherry picked from commit 315b323d47)
#3866 removed the shard ID hash in metadata_cache.c to simplify cache management,
but we observed a significant performance regression that was being masked by the
performance improvement provided by #3654 in our benchmarks, but #3654 only
applies to specific workloads.
This PR brings back the shard ID cache as it existed before #3866 with some extra
measures to handle invalidation. When we load a table entry, we overwrite
ShardIdCacheEntry->tableEntry pointers for all the shards in that table, though
it's possible that the table no longer contains the old shard ID or the table
entry is never reloaded, which would leave a dangling pointer once the table
entry is freed. To handle that case, we remove all shard ID cache entries that
point exactly to that table entry when a table is freed (at the end of the
transaction or any call to CitusTableCacheFlushInvalidatedEntries).
Co-authored-by: SaitTalhaNisanci <s.talhanisanci@gmail.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
It was possible to get an assertion error, if a DML command was
cancelled that opened a connection and then "ROLLBACK TO SAVEPOINT" was
used to continue the transaction. The reason for this was that canceling
the transaction might leave the `claimedExclusively` flag on for (some
of) it's connections.
This caused an assertion failure because `CanUseExistingConnection`
would return false and a new connection would be opened, and then there
would be two connections doing DML for the same placement. Which is
disallowed. That this situation caused an assertion failure instead of
an error, means that without asserts this could possibly result in some
visibility bugs, similar to the ones described
https://github.com/citusdata/citus/issues/3867
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
* Not set TaskExecution with adaptive executor
Adaptive executor is using a utility method from task tracker for
repartition joins, however adaptive executor doesn't need taskExecution.
It is only used by task tracker. This causes a problem when explain
analyze is used because what taskExecution is pointing to might be
random.
We solve this by not setting taskExecution from adaptive executor. So it
will stay NULL as set by CreateTask.
* use same memory context as task for taskExecution
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
As suggested by @marcocitus in https://github.com/citusdata/citus/pull/3911#issuecomment-643978531, there was
a regression in #3893. If another backend would write a file during deletion of
the intermediate results directory, this file would not necessarily be deleted.
The approach used in `CitusRemoveDirectory` is to try recursive removal of the
directory again if it has failed. This does not work here, since when a file
can not be removed for other reasons (e.g. `EPERM`) it will not throw an error
anymore. So then we would get into an infinite removal loop. Instead I now
`rename` the directory before removing it. That way other backends will not
write files to it anymore.
We sort the workerList because adaptive connection management
(e.g., OPTIONAL_CONNECTION) requires any concurrent executions
to wait for the connections in the same order to prevent any
starvation. If we don't sort, we might end up with:
Execution 1: Get connection for worker 1, wait for worker 2
Execution 2: Get connection for worker 2, wait for worker 1
and, none could proceed. Instead, we enforce every execution establish
the required connections to workers in the same order.
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Shard id to index mapping stored in cache entry as there may now be multiple entries alive for a given relation
insert_select_executor: revert copying cache entry, which was a hack added to avoid memory safety issues
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
This can save a lot of data to be sent in some cases, thus improving
performance for which inter query bandwidth is the bottleneck.
There's some issues with enabling this as default, so that's currently not done.
DESCRIPTION: Adds support to partially push down tdigest aggregates
tdigest extensions: https://github.com/tvondra/tdigest
This PR implements the partial pushdown of tdigest calculations when possible. The extension adds a tdigest type which can be combined into the same structure. There are several aggregate functions that can be used to get;
- a quantile
- a list of quantiles
- the quantile of a hypothetical value
- a list of quantiles for a list of hypothetical values
These function can work both on values or tdigest types.
Since we can create tdigest values either by combining them, or based on a group of values we can rewrite the aggregates in such a way that most of the computation gets delegated to the compute on the shards. This both speeds up the percentile calculations because the values don't have to be sorted while at the same time making the transfer size from the shards to the coordinator significantly less.
We still recursively plan some cases, eg:
- INSERTs
- SELECT FOR UPDATE when reference tables in query
- Everything must be same single shard & replication model
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
This code is not needed anymore since #3668 was merged.
It's actually causing some issues when using the binary Postgres
protocol, because postgres thinks it gets a `bigint` from
the worker, but actually gets an normal `int`.
The query in question that fails is this:
```sql
CREATE TABLE test_table_1(id int, val1 int);
CREATE TABLE test_table_2(id int, val1 bigint);
SELECT create_distributed_table('test_table_1', 'id');
SELECT create_distributed_table('test_table_2', 'id');
INSERT INTO test_table_1 VALUES(1,1),(2,2),(3,3);
INSERT INTO test_table_2 VALUES(1,1),(3,3),(4,5);
SELECT val1
FROM test_table_1 LEFT JOIN test_table_2 USING(id, val1)
ORDER BY 1;
```
The difference in queries that is sent to the workers after this change is this, for this query:
```diff
--- query_old.sql 2020-06-09 09:51:21.460000000 +0200
+++ query_new.sql 2020-06-09 09:51:39.500000000 +0200
@@ -1 +1 @@
-SELECT worker_column_1 AS val1 FROM (SELECT test_table_1.val1 AS worker_column_1 FROM (public.test_table_1_102015 test_table_1(id, val1) LEFT JOIN public.test_table_2_102019 test_table_2(id, val1) USING (id, val1))) worker_subquery
+SELECT worker_column_1 AS val1 FROM (SELECT val1 AS worker_column_1 FROM (public.test_table_1_102015 test_table_1(id, val1) LEFT JOIN public.test_table_2_102019 test_table_2(id, val1) USING (id, val1))) worker_subquery
```