With this commit, rebalancer backends are identified by application_name = citus_rebalancer
and the regular internal backends are identified by application_name = citus_internal
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
Split distributed/version_compat.h into dependency-free
pg_version_compat.h, and the original which still has
dependencies. The original doesn't have much purpose, but until other
files have better discipline about including the correct header files,
then it's still needed.
Also make distributed/listutils.h dependency-free. Should be moved
outside of 'distributed' subdirectory, but that will cause significant
code churn, so leave for another cleanup patch.
Now both files can be included in columnar without creating a
dependency on citus.
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
PostgreSQL does not need calling this function since 7.4 release, and it
is a NOOP.
For more details, check PostgreSQL commit below :
commit dd04e958c8b03c0f0512497651678c7816af3198
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Mar 9 03:34:10 2003 +0000
tuplestore_donestoring() isn't needed anymore, but provide a no-op
macro definition so as not to create compatibility problems.
diff --git a/src/include/utils/tuplestore.h b/src/include/utils/tuplestore.h
index b46babacd1..76fe9fb428 100644
--- a/src/include/utils/tuplestore.h
+++ b/src/include/utils/tuplestore.h
@@ -17,7 +17,7 @@
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
- * $Id: tuplestore.h,v 1.8 2003/03/09 02:19:13 tgl Exp $
+ * $Id: tuplestore.h,v 1.9 2003/03/09 03:34:10 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -41,6 +41,9 @@ extern Tuplestorestate *tuplestore_begin_heap(bool randomAccess,
extern void tuplestore_puttuple(Tuplestorestate *state, void *tuple);
+/* tuplestore_donestoring() used to be required, but is no longer used */
+#define tuplestore_donestoring(state) ((void) 0)
+
/* backwards scan is only allowed if randomAccess was specified 'true' */
extern void *tuplestore_gettuple(Tuplestorestate *state, bool forward,
bool *should_free);
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
In the past, we allowed users to manually switch to 1PC
(e.g., one phase commit). However, with this commit, we
don't. All multi-shard modifications are done via 2PC.
The logging of the amount of ignored moves crashed when no distributed
tables existed in a cluster. This also fixes in passing that the logging
of ignored moves logs the correct number of ignored moves if there
exist multiple colocation groups and all are rebalanced at the same time.
As we use the current user to sync the metadata to the nodes
with #5105 (and many other PRs), there is no reason that
prevents us to use the coordinated transaction for metadata syncing.
This commit also renames few functions to reflect their actual
implementation.
The progress monitor wouldn't actually update the size of the shard on
the target node when using "block_writes" as the `shard_transfer_mode`.
The reason for this is that the CREATE TABLE part of the shard creation
would only be committed once all data was moved as well. This caused
our size calculation to always return 0, since the table did not exist
yet in the session that the progress monitor used.
This is fixed by first committing creation of the table, and only then
starting the actual data copy.
The test output changes slightly. Apparently splitting this up in two
transactions instead of one, increases the table size after the copy by
about 40kB. The additional size used doesn't increase when with the
amount of data in the table is larger (it stays ~40kB per shard). So
this small change in test output is not considered an actual problem.
Before this commit, we always synced the metadata with superuser.
However, that creates various edge cases such as visibility errors
or self distributed deadlocks or complicates user access checks.
Instead, with this commit, we use the current user to sync the metadata.
Note that, `start_metadata_sync_to_node` still requires super user
because accessing certain metadata (like pg_dist_node) always require
superuser (e.g., the current user should be a superuser).
However, metadata syncing operations regarding the distributed
tables can now be done with regular users, as long as the user
is the owner of the table. A table owner can still insert non-sense
metadata, however it'd only affect its own table. So, we cannot do
anything about that.
Ignore orphaned shards in more places
Only use active shard placements in RouterInsertTaskList
Use IncludingOrphanedPlacements in some more places
Fix comment
Add tests
Moving shards of reference tables was possible in at least one case:
```sql
select citus_disable_node('localhost', 9702);
create table r(x int);
select create_reference_table('r');
set citus.replicate_reference_tables_on_activate = off;
select citus_activate_node('localhost', 9702);
select citus_move_shard_placement(102008, 'localhost', 9701, 'localhost', 9702);
```
This would then remove the reference table shard on the source, causing
all kinds of issues. This fixes that by disallowing all shard moves
except for shards of distributed tables.
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
The first and main issue was that we were putting absolute pointers into
shared memory for the `steps` field of the `ProgressMonitorData`. This
pointer was being overwritten every time a process requested the monitor
steps, which is the only reason why this even worked in the first place.
To quote a part of a relevant stack overflow answer:
> First of all, putting absolute pointers in shared memory segments is
> terrible terible idea - those pointers would only be valid in the
> process that filled in their values. Shared memory segments are not
> guaranteed to attach at the same virtual address in every process.
> On the contrary - they attach where the system deems it possible when
> `shmaddr == NULL` is specified on call to `shmat()`
Source: https://stackoverflow.com/a/10781921/2570866
In this case a race condition occurred when a second process overwrote
the pointer in between the first process its write and read of the steps
field.
This issue is fixed by not storing the pointer in shared memory anymore.
Instead we now calculate it's position every time we need it.
The second race condition I have not been able to trigger, but I found
it while investigating this. This issue was that we published the handle
of the shared memory segment, before we initialized the data in the
steps. This means that during initialization of the data, a call to
`get_rebalance_progress()` could read partial data in an unsynchronized
manner.
A shard move would fail if there was an orphaned version of the shard on
the target node. With this change before actually fail, we try to clean
up orphaned shards to see if that fixes the issue.
Sometimes the background daemon doesn't cleanup orphaned shards quickly
enough. It's useful to have a UDF to trigger this removal when needed.
We already had a UDF like this but it was only used during testing. This
exposes that UDF to users. As a safety measure it cannot be run in a
transaction, because that would cause the background daemon to stop
cleaning up shards while this transaction is running.
Previously this was usually done after argument parsing. This can cause
SEGFAULTs if the number or type of arguments changes in a new version.
By checking that Citus version is correct before doing any argument
parsing we protect against these types of issues. Issues like this have
occurred in pg_auto_failover, so it's not just a theoretical issue.
The main reason why these calls were not at the top of functions is
really just historical. It was because in the past we didn't allow
statements before declarations. Thus having this check before the
argument parsing would have only been possible if we first declared all
variables.
In addition to moving existing CheckCitusVersion calls it also adds
these calls to rebalancer related functions (they were missing there).
To be able to report progress of the rebalancer, the rebalancer updates
the state of a shard move in a shared memory segment. To then fetch the
progress, `get_rebalance_progress` can be called which reads this shared
memory.
Without this change it did so without using any synchronization
primitives, allowing for data races. This fixes that by using atomic
operations to update and read from the parts of the shared memory that
can be changed after initialization.
Without this change the rebalancer progress monitor gets the shard sizes
from the `shardlength` column in `pg_dist_placement`. This column needs to
be updated manually by calling `citus_update_table_statistics`.
However, `citus_update_table_statistics` could lead to distributed
deadlocks while database traffic is on-going (see #4752).
To work around this we don't use `shardlength` column anymore. Instead
for every rebalance we now fetch all shard sizes on the fly.
Two additional things this does are:
1. It adds tests for the rebalance progress function.
2. If a shard move cannot be done because a source or target node is
unreachable, then we error in stop the rebalance, instead of showing
a warning and continuing. When using the by_disk_size rebalance
strategy it's not safe to continue with other moves if a specific
move failed. It's possible that the failed move made space for the
next move, and because the failed move never happened this space now
does not exist.
3. Adds two new columns to the result of `get_rebalancer_progress` which
shows the size of the shard on the source and target node.
Fixes#4930