In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
DESCRIPTION: Refactor ensure schema exists to dependency exists
Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.
We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.
Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
This commit by default enables hiding shard names on MX workers
by simple replacing `pg_table_is_visible()` calls with
`citus_table_is_visible()` calls on the MX worker nodes. The latter
function filters out tables that are known to be shards.
The main motivation of this change is a better UX. The functionality
can be opted out via a GUC.
We also added two views, namely citus_shards_on_worker and
citus_shard_indexes_on_worker such that users can query
them to see the shards and their corresponding indexes.
We also added debug messages such that the filtered tables can
be interactively seen by setting the level to DEBUG1.
After this commit DDL commands honour `citus.multi_shard_modify_mode`.
We preferred using the code-path that executes single task router
queries (e.g., ExecuteSingleModifyTask()) in order not to invent
a new executor that is only applicable for DDL commands that require
sequential execution.
* Change worker_hash_partition_table() such that the
divergence between Citus planner's hashing and
worker_hash_partition_table() becomes the same.
* Rename single partitioning to single range partitioning.
* Add single hash repartitioning. Basically, logical planner
treats single hash and range partitioning almost equally.
Physical planner, on the other hand, treats single hash and
dual hash repartitioning almost equally (except for JoinPruning).
* Add a new GUC to enable this feature
This change introduces the `pg_dist_node_metadata` which has a single jsonb value. When creating
the extension, a random server id is generated and stored in there. Everything in the metadata table
is added as a nested objected to the json payload that is sent to the reports server.
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
During version update, we indirectly calld CheckInstalledVersion via
ChackCitusVersions. This obviously fails because during version update it is
expected to have version mismatch between installed version and binary version.
Thus, we remove that ChackCitusVersions. We now only call ChackAvailableVersion.
Before this commit, we were erroring out at almost all queries if there is a
version mismatch. With this commit, we started to error out only requested
operation touches distributed tables.
Normally we would need to use distributed cache to understand whether a table
is distributed or not. However, it is not safe to read our metadata tables when
there is a version mismatch, thus it is not safe to create distributed cache.
Therefore for this specific occasion, we directly read from pg_dist_partition
table. However; reading from catalog is costly and we should not use this
method in other places as much as possible.
This determines whether it's possible to perform binary search on
sortedShardIntervalArray or not. If e.g. two shards have overlapping
ranges, that'd be prohibitive.
That'll be useful in later commit introducing faster shard pruning.
That's useful when comparing values a hash-partitioned table is
filtered by. The existing shardIntervalCompareFunction is about
comparing hashed values, not unhashed ones.
The added btree opclass function is so we can get a comparator
back. This should be changed much more widely, but is not necessary so
far.
Previously we, unnecessarily, used a the first shard's type
information to to look up the comparison function. But that
information is already available, so use it. That's helpful because
we sometimes want to access the comparator function even if there's no
shards.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
This UDF returns a shard placement from cache given shard id and placement id. At the
moment it iterates over all shard placements of given shard by ShardPlacementList and
searches given placement id in that list, which is not a good solution performance-wise.
However, currently, this function will be used only when there is a failed transaction.
If a need arises we can optimize this function in the future.
So far we've reloaded them frequently. Besides avoiding that cost -
noticeable for some workloads with large shard counts - it makes it
easier to add information to ShardPlacements that help us make
placement_connection.c colocation aware.
With this change, we start to replicate all reference tables to the new node when new node
is added to the cluster with master_add_node command. We also update replication factor
of reference table's colocation group.