This is necassery to support Q20 of the CHbenCHmark: #2582.
To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.
The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
will convert the SEMI JOIN into an INNER JOIN during the planning. It
will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
planning, if it doesn't we replace all SEMI JOINs in the rewritten
query with INNER JOIN (which we already support).
This completely hides `ListCell` to the user of the loop
Example usage:
```c
WorkerNode *workerNode = NULL;
foreach_ptr(workerNode, workerNodeList) {
// Do stuff with workerNode
}
```
Instead of:
```c
ListCell *workerNodeCell = NULL;
foreach(cell, workerNodeList) {
WorkerNode *workerNode = lfirst(workerNodeCell);
// Do stuff with workerNode
}
```
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
We used to rely on PG function flatten_join_alias_vars
to resolve actual columns referenced in target entry list.
The function goes deep and finds the actual relation. This logic
usually works fine. However, when joins are given an alias, inner
relation names are not visible to target entry entry. Thus relation
resolving should stop when we the target entry column refers an
rte of an aliased join.
We stopped using PG function and provided our own flatten function.
Do it in two ways (a) re-use the rte list as much as possible instead of
re-calculating over and over again (b) Limit the recursion to the relevant
parts of the query tree
Since flattening query may flatten outer joins' columns into coalesce expr that is
in the USING part, and that was not expected before this commit, these queries were
erroring out. It is fixed by this commit with considering coalesce expression as well.
We used to error out if there is a reference table
in the query participating a union. This has caused
pushdownable queries to be evaluated in coordinator.
Now we let reference tables inside union queries as long
as there is a distributed table in from clause.
Existing join checks (reference table on the outer part)
sufficient enought that we do not need check the join relation
of reference tables.