UPDATEs on partitioned tables that affect only row partitions should
succeed, the rest should fail.
Also rename CStoreScan to ColumnarScan to make the error message more
relevant.
When Citus needs to parallelize queries on the local node (e.g., the node
executing the distributed query and the shards are the same), we need to
be mindful about the connection management. The reason is that the client
backends that are running distributed queries are competing with the client
backends that Citus initiates to parallelize the queries in order to get
a slot on the max_connections.
In that regard, we implemented a "failover" mechanism where if the distributed
queries cannot get a connection, the execution failovers the tasks to the local
execution.
The failover logic is follows:
- As the connection manager if it is OK to get a connection
- If yes, we are good.
- If no, we fail the workerPool and the failure triggers
the failover of the tasks to local execution queue
The decision of getting a connection is follows:
/*
* For local nodes, solely relying on citus.max_shared_pool_size or
* max_connections might not be sufficient. The former gives us
* a preview of the future (e.g., we let the new connections to establish,
* but they are not established yet). The latter gives us the close to
* precise view of the past (e.g., the active number of client backends).
*
* Overall, we want to limit both of the metrics. The former limit typically
* kics in under regular loads, where the load of the database increases in
* a reasonable pace. The latter limit typically kicks in when the database
* is issued lots of concurrent sessions at the same time, such as benchmarks.
*/
When distributing a columnar table, as well as changing options on a distributed columnar table, this patch will forward the settings from the coordinator to the workers.
For propagating options changes on an already distributed table this change is pretty straight forward. Before applying the change in options locally we will create a `DDLJob` that contains a call to `alter_columnar_table_set(...)` for every shard placement with all settings of the current table. This goes both for setting an option as well as resetting. This will reset the values to the defaults configured on the coordinator. Having the effect that the coordinator is authoritative on the settings and makes sure the shards have the same settings set as the table on the coordinator.
When a columnar table is distributed it is using the `TableDDLCommand` infra structure to create a new kind of `TableDDLCommand`. This new type, called a `TableDDLCommandFunction` contains a context and 2 function pointers to execute. One function returns the command as applied on the table, the second function will return the sql command to apply to a shard with a given shard id. The schema name is ignored as it will use the fully qualified name of the shard in the same schema as the base table.
Multi-row execution already uses sequential execution. When shards
are local, using local execution is profitable as it avoids
an extra connection establishment to the local node.
This is to avoid flaky changes like the following in test outputs:
-CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.
+CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.02 s.
Columnar options were by accident linked to the relfilenode instead of the regclass/relation oid. This PR moves everything related to columnar options to their own catalog table.
Considering the adaptive connection management
improvements that we plan to roll soon, it makes it
very helpful to know the number of active client
backends.
We are doing this addition to simplify yhe adaptive connection
management for single node Citus. In single node Citus, both the
client backends and Citus parallel queries would compete to get
slots on Postgres' `max_connections` on the same Citus database.
With adaptive connection management, we have the counters for
Citus parallel queries. That helps us to adaptively decide
on the remote executions pool size (e.g., throttle connections
if necessary).
However, we do not have any counters for the total number of
client backends on the database. For single node Citus, we
should consider all the client backends, not only the remote
connections that Citus does.
Of course Postgres internally knows how many client
backends are active. However, to get that number Postgres
iterates over all the backends. For examaple, see [pg_stat_get_db_numbackends](8e90ec5580/src/backend/utils/adt/pgstatfuncs.c (L1240))
where Postgres iterates over all the backends.
For our purpuses, we need this information on every connection
establishment. That's why we cannot affort to do this kind of
iterattion.
CitusTableTypeIdList() function iterates on all the entries of pg_dist_partition
and loads all the metadata in to the cache. This can be quite memory intensive
especially when there are lots of distributed tables.
When partitioned tables are used, it is common to have many distributed tables
given that each partition also becomes a distributed table.
CitusTableTypeIdList() is used on every CREATE TABLE .. PARTITION OF.. command
as well. It means that, anytime a partition is created, Citus loads all the
metadata to the cache. Note that Citus typically only loads the accessed table's
metadata to the cache.
* Move local execution after the remote execution
Before this commit, when both local and remote tasks
exist, the executor was starting the execution with
local execution. There is no strict requirements on
this.
Especially considering the adaptive connection management
improvements that we plan to roll soon, moving the local
execution after to the remote execution makes more sense.
The adaptive connection management for single node Citus
would look roughly as follows:
- Try to connect back to the coordinator for running
parallel queries.
- If succeeds, go on and execute tasks in parallel
- If fails, fallback to the local execution
So, we'll use local execution as a fallback mechanism. And,
moving it after to the remote execution allows us to implement
such further scenarios.
Before this commit, we let AdaptiveExecutorPreExecutorRun()
to be effective multiple times on every FETCH on cursors.
That does not affect the correctness of the query results,
but adds significant overhead.
TableAM API doesn't allow us to pass around a state variable along all of the tuple inserts belonging to the same command. We require this in columnar store, since we batch them, and when we have enough rows we flush them as stripes.
To do that, we keep a (relfilenode) -> stack of (subxact id, TableWriteState) global mapping.
**Inserts**
Whenever we want to insert a tuple, we look up for the relation's relfilenode in this mapping. If top of the stack matches current subtransaction, we us the existing TableWriteState. Otherwise, we allocate a new TableWriteState and push it on top of stack.
**(Sub)Transaction Commit/Aborts**
When the subtransaction or transaction is committed, we flush and pop all entries matching current SubTransactionId.
When the subtransaction or transaction is committed, we pop all entries matching current SubTransactionId and discard them without flushing.
**Reads**
Since we might have unwritten rows which needs to be read by a table scan, we flush write states on SELECTs. Since flushing the write state of upper transactions in a subtransaction will cause metadata being written in wrong subtransaction, we ERROR out if any of the upper subtransactions have unflushed rows.
**Table Drops**
We record in which subtransaction the table was dropped. When committing a subtransaction in which table was dropped, we propagate the drop to upper transaction. When aborting a subtransaction in which table was dropped, we mark table as not deleted.
When a relation is used on an OUTER JOIN with FALSE filters,
set_rel_pathlist_hook may not be called for the table.
There might be other cases as well, so do not rely on the hook
for classification of the tables.
Aliases that postgres choose for partitioned tables in explain output
might change in different pg versions, so normalize them and remove
the alternative test output
* Fix incorrect join related fields
Ruleutils expect to give the original index of join columns hence we
should consider the dropped columns while setting the fields in
SetJoinRelatedFieldsCompat.
* add some more tests for joins
* Move tests to join.sql and create a utility function
Disallow `ON TRUE` outer joins with reference & distributed tables
when reference table is outer relation by fixing the logic bug made
when calling `LeftListIsSubset` function.
Also, be more defensive when removing duplicate join restrictions
when join clause is empty for non-inner joins as they might still
contain useful information for non-inner joins.
It seems like Postgres could call set_rel_pathlist() for
the same relation multiple times. This breaks the logic
where we assume relationCount eqauls to the number of
entries in relationRestrictionList.
In summary, relationRestrictionList may contain duplicate
entries.
With this commit, we make sure that local execution adds the
intermediate result size as the distributed execution adds. Plus,
it enforces the citus.max_intermediate_result_size value.
Before this commit, the logic was:
- As long as the outer side of the JOIN is not a JOIN (e.g., relation
or subquery etc.), we check for the existence of any recurring
tuples. There were two implications of this decision.
First, even if a subquery which is on the outer side contains
distributed table JOIN reference table, Citus would unnecessarily throw
an error. Note that, the JOIN inside the subquery would already
be going to be tested recursively. But, as long as that check
passes, there is no reason for the upper JOIN to fail. An example, which
used to fail and now works:
SELECT * FROM (SELECT * FROM dist JOIN ref) as foo LEFT JOIN dist;
Second, certain JOINs, especially with ON (true) conditions were not
represented as Citus expects the JOINs to be in the format
DeferredErrorIfUnsupportedRecurringTuplesJoin().
Use short lived per-tuple context in citus_evaluate_expr like
(pg) evaluate_expr does.
We should not use planState->ExprContext when evaluating expressions
as it might lead to freeing the same executor twice (first one happens
in citus_evaluate_expr itself and the other one happens when postgres
doing clean-up for the top level executor state), which in turn might
cause seg.faults.
However, now as we don't have necessary planState info to evaluate
prepared statements, we also add planState->es_param_list_info to
per-tuple ExprContext.
With postgres 13, there is a global lock that prevents multiple VACUUMs
happening in the current database. This global lock is taken for a short
time but this creates a problem because of the following:
- We execute the VACUUM for the shell table through the standard process
utility. In this step the global lock is taken for the current database.
- If the current node has shard placements then it tries to execute
VACUUM over a connection to localhost with ExecuteUtilityTaskList.
- the VACUUM on shard placements cannot proceed because it is waiting
for the global lock for the current database to be released.
- The acquired lock from the VACUUM for shell table will not be released
until the transaction is committed.
- So there is a deadlock.
As a solution, we commit the current transaction in case of VACUUM after
the VACUUM is executed for the shell table. Executing the VACUUM on a
shell table is not important because the data there will probably be
truncated. PostprocessVacuumStmt takes the necessary locks on the shell
table so we don't need to take any extra locks after we commit the
current transaction.
Multi-row & router INSERT's were crashing with local execution if at
least one of the DEFAULT columns were not specified in VALUES list.
This was because, the changes we make on query->values_lists and
query->targetList was sufficient for deparsing given INSERT for remote
execution but not sufficient for local execution.
With this commit, DEFAULT value normalization for multi-row & router
INSERT's is fixed by adding dummy column references for unspecified
DEFAULT columns.
Citus has the logic to truncate the long shard names to prevent
various issues, including self-deadlocks. However, for partitioned
tables, when index is created on the parent table, the index names
on the partitions are auto-generated by Postgres. We use the same
Postgres function to generate the index names on the shards of the
partitions. If the length exceeds the limit, we switch to sequential
execution mode.
We currently do not support volatile functions in update/delete statements
because the function evaluation logic does not know how to distinguish
volatile functions (that need to be evaluated per row) from stable functions
(that need to be evaluated per query), and it is also not safe to push the
volatile functions down on replicated tables.
Add sort method parameter for regression tests
Fix check-style
Change sorting method parameters to enum
Polish
Add task fields to OutTask
Add test into multi_explain
Fix isolation test
As the previous versions of Citus don't know how to handle citus local
tables, we should prevent downgrading from 9.5 to older versions if any
citus local tables exists.
Pushing down the CALLs to the node that the CALL is executed is
dangerous and could lead to infinite recursion.
When the coordinator added as worker, Citus was by chance preventing
this. The coordinator was marked as "not metadatasynced" node
in pg_dist_node, which prevented CALL/function delegation to happen.
With this commit, we do the following:
- Fix metadatasynced column for the coordinator on pg_dist_node
- Prevent pushdown of function/procedure to the same node that
the function/procedure is being executed. Today, we do not sync
pg_dist_object (e.g., distributed functions metadata) to the
worker nodes. But, even if we do it now, the function call delegation
would prevent the infinite recursion.
* Not allow removing a single node with ref tables
We should not allow removing a node if it is the only node in the
cluster and there is a data on it. We have this check for distributed
tables but we didn't have it for reference tables.
* Update src/test/regress/expected/single_node.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* Update src/test/regress/sql/single_node.sql
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>