With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
Currently in mx isolation tests the setup is the same except the creation of tables. Isolation framework lets us define multiple `setup` stages, therefore I thought that we can put the `mx_setup` to one file and prepend this prior to running tests.
How the structure works:
- cpp is used before running isolation tests to preprocess spec files. This way we can include any file we want to. Currently this is used to include mx common part.
- spec files are put to `/build/specs` for clear separation between generated files and template files
- a symbolic link is created for `/expected` in `build/expected/`.
- when running isolation tests, as the `inputdir`, `build` is passed so it runs the spec files from `build/specs` and checks the expected output from `build/expected`.
`/specs` is renamed as `/spec` because postgres first look at the `specs` file under current directory, so this is renamed to avoid that since we are running the isolation tests from `build/specs` now.
Note: now we use `//` instead of `#` in comments in spec files, because cpp interprets `#` as a directive and it ignores `//`.