citus/src/test/regress/expected/multi_subquery_window_funct...

1234 lines
38 KiB
Plaintext

-- ===================================================================
-- test multi subquery functionality for window functions
-- ===================================================================
CREATE VIEW subq AS
SELECT
DISTINCT user_id, rank() OVER (PARTITION BY user_id ORDER BY value_1)
FROM
users_table
GROUP BY
user_id, value_1
HAVING count(*) > 1;
SELECT
user_id, time, rnk
FROM
(
SELECT
*, rank() OVER my_win as rnk
FROM
events_table
WINDOW my_win AS (PARTITION BY user_id ORDER BY time DESC)
) as foo
ORDER BY
3 DESC, 1 DESC, 2 DESC
LIMIT
10;
user_id | time | rnk
---------------------------------------------------------------------
2 | Wed Nov 22 20:16:16.614779 2017 | 24
2 | Wed Nov 22 22:06:12.107108 2017 | 23
2 | Wed Nov 22 22:23:25.40611 2017 | 22
3 | Wed Nov 22 18:36:16.372893 2017 | 21
2 | Wed Nov 22 22:50:33.855696 2017 | 21
3 | Wed Nov 22 20:23:46.906523 2017 | 20
2 | Wed Nov 22 22:56:47.673504 2017 | 20
3 | Wed Nov 22 21:12:24.542921 2017 | 19
2 | Thu Nov 23 01:08:57.24208 2017 | 19
3 | Wed Nov 22 21:26:21.185134 2017 | 18
(10 rows)
-- the same test with different syntax
SELECT
user_id, time, rnk
FROM
(
SELECT
*, rank() OVER (PARTITION BY user_id ORDER BY time DESC) as rnk
FROM
events_table
) as foo
ORDER BY
3 DESC, 1 DESC, 2 DESC
LIMIT
10;
user_id | time | rnk
---------------------------------------------------------------------
2 | Wed Nov 22 20:16:16.614779 2017 | 24
2 | Wed Nov 22 22:06:12.107108 2017 | 23
2 | Wed Nov 22 22:23:25.40611 2017 | 22
3 | Wed Nov 22 18:36:16.372893 2017 | 21
2 | Wed Nov 22 22:50:33.855696 2017 | 21
3 | Wed Nov 22 20:23:46.906523 2017 | 20
2 | Wed Nov 22 22:56:47.673504 2017 | 20
3 | Wed Nov 22 21:12:24.542921 2017 | 19
2 | Thu Nov 23 01:08:57.24208 2017 | 19
3 | Wed Nov 22 21:26:21.185134 2017 | 18
(10 rows)
-- similar test with lag
SELECT
user_id, time, lag_event_type, row_no
FROM
(
SELECT
*, lag(event_type) OVER my_win as lag_event_type, row_number() OVER my_win as row_no
FROM
events_table WINDOW my_win AS (PARTITION BY user_id ORDER BY time DESC)
) as foo
ORDER BY
4 DESC, 3 DESC NULLS LAST, 1 DESC, 2 DESC
LIMIT
10;
user_id | time | lag_event_type | row_no
---------------------------------------------------------------------
2 | Wed Nov 22 20:16:16.614779 2017 | 0 | 24
2 | Wed Nov 22 22:06:12.107108 2017 | 3 | 23
2 | Wed Nov 22 22:23:25.40611 2017 | 4 | 22
2 | Wed Nov 22 22:50:33.855696 2017 | 4 | 21
3 | Wed Nov 22 18:36:16.372893 2017 | 3 | 21
2 | Wed Nov 22 22:56:47.673504 2017 | 2 | 20
3 | Wed Nov 22 20:23:46.906523 2017 | 1 | 20
2 | Thu Nov 23 01:08:57.24208 2017 | 3 | 19
3 | Wed Nov 22 21:12:24.542921 2017 | 1 | 19
3 | Wed Nov 22 21:26:21.185134 2017 | 3 | 18
(10 rows)
-- simple window function, partitioned and grouped by on the distribution key
SELECT
user_id, rnk, avg_val_2
FROM
(
SELECT
user_id, rank() OVER my_win as rnk, avg(value_2) as avg_val_2
FROM
events_table
GROUP BY
user_id, date_trunc('day', time)
WINDOW my_win AS (PARTITION BY user_id ORDER BY avg(event_type) DESC)
) as foo
ORDER BY
2 DESC, 1 DESC, 3 DESC
LIMIT
10;
user_id | rnk | avg_val_2
---------------------------------------------------------------------
6 | 2 | 2.0000000000000000
5 | 2 | 2.0909090909090909
4 | 2 | 2.4000000000000000
3 | 2 | 3.1666666666666667
2 | 2 | 2.0000000000000000
1 | 2 | 2.1428571428571429
6 | 1 | 2.5000000000000000
5 | 1 | 2.6666666666666667
4 | 1 | 2.5000000000000000
3 | 1 | 1.8000000000000000
(10 rows)
-- top level query has a group by on the result of the window function
SELECT
min(user_id), min(time), lag_event_type, count(*)
FROM
(
SELECT
*, lag(event_type) OVER my_win as lag_event_type
FROM
events_table WINDOW my_win AS (PARTITION BY user_id ORDER BY time DESC)
) as foo
GROUP BY
lag_event_type
ORDER BY
3 DESC NULLS LAST, 1 DESC, 2 DESC
LIMIT
10;
min | min | lag_event_type | count
---------------------------------------------------------------------
1 | Thu Nov 23 11:09:38.074595 2017 | 6 | 1
2 | Wed Nov 22 19:00:10.396739 2017 | 5 | 7
1 | Wed Nov 22 18:49:42.327403 2017 | 4 | 21
1 | Wed Nov 22 18:36:16.372893 2017 | 3 | 21
1 | Wed Nov 22 19:07:03.846437 2017 | 2 | 17
1 | Wed Nov 22 19:03:01.772353 2017 | 1 | 23
1 | Wed Nov 22 20:16:16.614779 2017 | 0 | 5
1 | Thu Nov 23 14:00:13.20013 2017 | | 6
(8 rows)
-- window functions should work along with joins as well
SELECT * FROM
(
SELECT
DISTINCT users_table.user_id, lag(users_table.user_id) OVER w1, rank() OVER w1
FROM
users_table, events_table
WHERE
users_table.user_id = events_table.user_id and
event_type < 4
WINDOW w1 AS (PARTITION BY users_table.user_id, events_table.event_type ORDER BY events_table.time)
) as foo
ORDER BY 3 DESC, 1 DESC, 2 DESC NULLS LAST
LIMIT 10;
user_id | lag | rank
---------------------------------------------------------------------
2 | 2 | 109
5 | 5 | 105
3 | 3 | 103
2 | 2 | 91
3 | 3 | 86
5 | 5 | 79
2 | 2 | 73
4 | 4 | 70
3 | 3 | 69
2 | 2 | 55
(10 rows)
-- two window functions in a single subquery should work fine as well
SELECT * FROM
(
SELECT
DISTINCT users_table.user_id, lag(users_table.user_id) OVER w1, rank() OVER w2
FROM
users_table, events_table
WHERE
users_table.user_id = events_table.user_id and
event_type < 4
WINDOW w1 AS (PARTITION BY users_table.user_id, events_table.event_type ORDER BY events_table.time),
w2 AS (PARTITION BY users_table.user_id, (events_table.value_2 % 25) ORDER BY events_table.time)
) as foo
ORDER BY 3 DESC, 1 DESC, 2 DESC NULLS LAST
LIMIT 10;
user_id | lag | rank
---------------------------------------------------------------------
2 | 2 | 73
4 | 4 | 70
3 | 3 | 69
2 | 2 | 55
5 | 5 | 53
5 | | 53
3 | 3 | 52
4 | 4 | 47
2 | 2 | 37
3 | 3 | 35
(10 rows)
-- window functions should be fine within subquery joins
SELECT sub_1.user_id, max(lag_1), max(rank_1), max(rank_2) FROM
(
SELECT
DISTINCT users_table.user_id, lag(users_table.user_id) OVER w1 as lag_1, rank() OVER w2 as rank_1
FROM
users_table, events_table
WHERE
users_table.user_id = events_table.user_id and
event_type < 4
WINDOW w1 AS (PARTITION BY users_table.user_id, events_table.event_type ORDER BY events_table.time),
w2 AS (PARTITION BY users_table.user_id, (events_table.value_2 % 25) ORDER BY events_table.time)
) as sub_1
JOIN
(
SELECT
DISTINCT users_table.user_id, lag(users_table.user_id) OVER w1 as lag_2, rank() OVER w2 as rank_2
FROM
users_table, events_table
WHERE
users_table.user_id = events_table.user_id and
event_type < 4
WINDOW w1 AS (PARTITION BY users_table.user_id, events_table.value_2 ORDER BY events_table.time),
w2 AS (PARTITION BY users_table.user_id, (events_table.value_2 % 50) ORDER BY events_table.time)
) as sub_2
ON(sub_1.user_id = sub_2.user_id)
GROUP BY
sub_1.user_id
ORDER BY 3 DESC, 4 DESC, 1 DESC, 2 DESC NULLS LAST
LIMIT 10;
user_id | max | max | max
---------------------------------------------------------------------
2 | 2 | 73 | 73
4 | 4 | 70 | 70
3 | 3 | 69 | 69
5 | 5 | 53 | 53
6 | 6 | 21 | 21
1 | 1 | 15 | 15
(6 rows)
-- GROUP BYs and PARTITION BYs should work fine together
SELECT
avg(user_id), max(time), my_rank
FROM
(
SELECT
user_id, date_trunc('day', time) as time, rank() OVER my_win as my_rank
FROM
events_table
GROUP BY
user_id, date_trunc('day', time)
WINDOW my_win AS (PARTITION BY user_id ORDER BY count(*) DESC)
) as foo
WHERE
my_rank > 1
GROUP BY
my_rank
ORDER BY
3 DESC, 1 DESC,2 DESC
LIMIT
10;
avg | max | my_rank
---------------------------------------------------------------------
3.5000000000000000 | Wed Nov 22 00:00:00 2017 | 2
(1 row)
-- aggregates in the PARTITION BY is also allows
SELECT
avg(user_id), max(time), my_rank
FROM
(
SELECT
user_id, date_trunc('day', time) as time, rank() OVER my_win as my_rank
FROM
events_table
GROUP BY
user_id, date_trunc('day', time)
WINDOW my_win AS (PARTITION BY user_id, avg(event_type%3)::int ORDER BY count(*) DESC)
) as foo
WHERE
my_rank > 0
GROUP BY
my_rank
ORDER BY
3 DESC, 1 DESC,2 DESC
LIMIT
10;
avg | max | my_rank
---------------------------------------------------------------------
3.7500000000000000 | Wed Nov 22 00:00:00 2017 | 2
3.3750000000000000 | Thu Nov 23 00:00:00 2017 | 1
(2 rows)
-- GROUP BY should not necessarly be inclusive of partitioning
-- but this query doesn't make much sense
SELECT
avg(user_id), my_rank
FROM
(
SELECT
user_id, rank() OVER my_win as my_rank
FROM
events_table
GROUP BY
user_id
WINDOW my_win AS (PARTITION BY user_id, max(event_type) ORDER BY count(*) DESC)
) as foo
GROUP BY
my_rank
ORDER BY
2 DESC, 1 DESC
LIMIT
10;
avg | my_rank
---------------------------------------------------------------------
3.5000000000000000 | 1
(1 row)
-- Using previously defined supported window function on distribution key
SELECT * FROM (
SELECT
user_id, date_trunc('day', time) as time, sum(rank) OVER w2
FROM (
SELECT DISTINCT
user_id as user_id, time, rank() over w1
FROM users_table
WINDOW
w AS (PARTITION BY user_id),
w1 AS (w ORDER BY value_2, value_3)
) fab
WINDOW
w2 as (PARTITION BY user_id, time)
) a
ORDER BY
1, 2, 3 DESC
LIMIT
10;
user_id | time | sum
---------------------------------------------------------------------
1 | Wed Nov 22 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 7
1 | Thu Nov 23 00:00:00 2017 | 6
1 | Thu Nov 23 00:00:00 2017 | 5
1 | Thu Nov 23 00:00:00 2017 | 4
1 | Thu Nov 23 00:00:00 2017 | 3
1 | Thu Nov 23 00:00:00 2017 | 2
2 | Wed Nov 22 00:00:00 2017 | 17
2 | Thu Nov 23 00:00:00 2017 | 18
2 | Thu Nov 23 00:00:00 2017 | 16
(10 rows)
-- test with reference table partitioned on columns from both
SELECT *
FROM
(
SELECT
DISTINCT user_id, it_name, count(id) OVER (PARTITION BY user_id, id)
FROM
users_table, users_ref_test_table
WHERE users_table.value_2 + 40 = users_ref_test_table.k_no
) a
ORDER BY
1, 2, 3
LIMIT
20;
user_id | it_name | count
---------------------------------------------------------------------
2 | User_1 | 2
3 | User_1 | 6
4 | User_1 | 2
5 | User_1 | 3
(4 rows)
-- Group by has more columns than partition by
SELECT * FROM (
SELECT
DISTINCT user_id, SUM(value_2) OVER (PARTITION BY user_id)
FROM
users_table
GROUP BY
user_id, value_1, value_2
) a
ORDER BY
2 DESC, 1
LIMIT
10;
user_id | sum
---------------------------------------------------------------------
3 | 44
5 | 43
4 | 41
2 | 38
1 | 16
6 | 16
(6 rows)
SELECT user_id, max(sum) FROM (
SELECT
user_id, SUM(value_2) OVER (PARTITION BY user_id, value_1)
FROM
users_table
GROUP BY
user_id, value_1, value_2
) a
GROUP BY user_id ORDER BY
2 DESC,1
LIMIT
10;
user_id | max
---------------------------------------------------------------------
3 | 15
4 | 13
2 | 10
5 | 10
6 | 7
1 | 6
(6 rows)
-- Window functions with HAVING clause
SELECT * FROM (
SELECT
DISTINCT user_id, rank() OVER (PARTITION BY user_id ORDER BY value_1)
FROM
users_table
GROUP BY
user_id, value_1 HAVING count(*) > 1
) a
ORDER BY
2 DESC, 1
LIMIT
10;
user_id | rank
---------------------------------------------------------------------
5 | 6
2 | 5
4 | 5
5 | 5
2 | 4
3 | 4
4 | 4
5 | 4
6 | 4
2 | 3
(10 rows)
-- Window function in View works
SELECT *
FROM
subq
ORDER BY
2 DESC, 1
LIMIT
10;
user_id | rank
---------------------------------------------------------------------
5 | 6
2 | 5
4 | 5
5 | 5
2 | 4
3 | 4
4 | 4
5 | 4
6 | 4
2 | 3
(10 rows)
-- Window functions with UNION/UNION ALL works
SELECT
max(avg)
FROM
(
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (1, 2))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (2, 3))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (3, 4))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (4, 5))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (5, 6))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (1, 6))
) b
GROUP BY user_id
ORDER BY 1 DESC
LIMIT 5;
max
---------------------------------------------------------------------
5
3.5
3.25
3
3
(5 rows)
SELECT *
FROM (
( SELECT user_id,
sum(counter)
FROM
(SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
users_table
UNION
SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
events_table) user_id_1
GROUP BY
user_id)
UNION
(SELECT
user_id, sum(counter)
FROM
(SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
users_table
UNION
SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
events_table) user_id_2
GROUP BY
user_id)) AS ftop
ORDER BY 2 DESC, 1 DESC
LIMIT 5;
user_id | sum
---------------------------------------------------------------------
2 | 107
3 | 101
5 | 94
4 | 91
1 | 62
(5 rows)
-- Subquery in where with window function
SELECT
user_id
FROM
users_table
WHERE
value_2 > 1 AND
value_2 < ALL (
SELECT
avg(value_3) OVER (PARTITION BY user_id)
FROM
events_table
WHERE
users_table.user_id = events_table.user_id
)
GROUP BY
user_id
ORDER BY
user_id DESC
LIMIT
3;
user_id
---------------------------------------------------------------------
4
3
2
(3 rows)
-- Some more nested queries
SELECT
user_id, rank, SUM(ABS(value_2 - value_3)) AS difference, COUNT(*) AS distinct_users
FROM (
SELECT
*, rank() OVER (PARTITION BY user_id ORDER BY value_2 DESC)
FROM (
SELECT
user_id, value_2, sum(value_3) OVER (PARTITION BY user_id, value_2) as value_3
FROM users_table
) AS A
) AS A
GROUP BY
user_id, rank
ORDER BY
difference DESC, rank DESC, user_id
LIMIT 20;
user_id | rank | difference | distinct_users
---------------------------------------------------------------------
4 | 12 | 306 | 9
5 | 12 | 136 | 8
3 | 1 | 84 | 6
5 | 20 | 70 | 5
3 | 11 | 55 | 5
2 | 11 | 44 | 4
2 | 3 | 40 | 5
5 | 7 | 30 | 5
2 | 8 | 24 | 3
4 | 21 | 21 | 3
2 | 15 | 21 | 3
5 | 4 | 21 | 3
6 | 9 | 20 | 2
4 | 3 | 15 | 5
3 | 16 | 14 | 2
4 | 8 | 9 | 3
1 | 1 | 9 | 3
5 | 1 | 9 | 3
6 | 7 | 8 | 2
1 | 4 | 8 | 2
(20 rows)
SELECT * FROM (
SELECT DISTINCT
f3.user_id, ABS(f2.sum - f3.sum)
FROM (
SELECT DISTINCT
user_id, sum(value_3) OVER (PARTITION BY user_id)
FROM
users_table
GROUP BY
user_id, value_3
) f3,
(
SELECT DISTINCT
user_id, sum(value_2) OVER (PARTITION BY user_id)
FROM
users_table
GROUP BY
user_id, value_2
) f2
WHERE
f3.user_id=f2.user_id
) a
ORDER BY
abs DESC, user_id
LIMIT 10;
user_id | abs
---------------------------------------------------------------------
6 | 2
1 | 1
2 | 0
3 | 0
4 | 0
5 | 0
(6 rows)
-- Partition by with aggregate functions. This query does not make much sense since the
-- result of aggregate function will be the same for every row in a partition and it is
-- not going to affect the group that the count function will work on.
SELECT * FROM (
SELECT
user_id, COUNT(*) OVER (PARTITION BY user_id, MIN(value_2))
FROM
users_table
GROUP BY
1
) a
ORDER BY
1 DESC
LIMIT
5;
user_id | count
---------------------------------------------------------------------
6 | 1
5 | 1
4 | 1
3 | 1
2 | 1
(5 rows)
EXPLAIN (COSTS FALSE, VERBOSE TRUE)
SELECT *
FROM (
( SELECT user_id,
sum(counter)
FROM
(SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
users_table
UNION
SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
events_table) user_id_1
GROUP BY
user_id)
UNION
(SELECT
user_id, sum(counter)
FROM
(SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
users_table
UNION
SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
events_table) user_id_2
GROUP BY
user_id)) AS ftop
ORDER BY 2 DESC, 1 DESC
LIMIT 5;
QUERY PLAN
---------------------------------------------------------------------
Limit
Output: remote_scan.user_id, remote_scan.sum
-> Sort
Output: remote_scan.user_id, remote_scan.sum
Sort Key: remote_scan.sum DESC, remote_scan.user_id DESC
-> Custom Scan (Citus Adaptive)
Output: remote_scan.user_id, remote_scan.sum
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=xxxxx dbname=regression
-> Limit
Output: users_table.user_id, (sum((sum(users_table.value_2) OVER (?))))
-> Sort
Output: users_table.user_id, (sum((sum(users_table.value_2) OVER (?))))
Sort Key: (sum((sum(users_table.value_2) OVER (?)))) DESC, users_table.user_id DESC
-> HashAggregate
Output: users_table.user_id, (sum((sum(users_table.value_2) OVER (?))))
Group Key: users_table.user_id, (sum((sum(users_table.value_2) OVER (?))))
-> Append
-> HashAggregate
Output: users_table.user_id, sum((sum(users_table.value_2) OVER (?)))
Group Key: users_table.user_id
-> HashAggregate
Output: users_table.user_id, (sum(users_table.value_2) OVER (?))
Group Key: users_table.user_id, (sum(users_table.value_2) OVER (?))
-> Append
-> WindowAgg
Output: users_table.user_id, sum(users_table.value_2) OVER (?)
-> Sort
Output: users_table.user_id, users_table.value_2
Sort Key: users_table.user_id
-> Seq Scan on public.users_table_1400256 users_table
Output: users_table.user_id, users_table.value_2
-> WindowAgg
Output: events_table.user_id, sum(events_table.value_2) OVER (?)
-> Sort
Output: events_table.user_id, events_table.value_2
Sort Key: events_table.user_id
-> Seq Scan on public.events_table_1400260 events_table
Output: events_table.user_id, events_table.value_2
-> HashAggregate
Output: users_table_1.user_id, sum((sum(users_table_1.value_2) OVER (?)))
Group Key: users_table_1.user_id
-> HashAggregate
Output: users_table_1.user_id, (sum(users_table_1.value_2) OVER (?))
Group Key: users_table_1.user_id, (sum(users_table_1.value_2) OVER (?))
-> Append
-> WindowAgg
Output: users_table_1.user_id, sum(users_table_1.value_2) OVER (?)
-> Sort
Output: users_table_1.user_id, users_table_1.value_2
Sort Key: users_table_1.user_id
-> Seq Scan on public.users_table_1400256 users_table_1
Output: users_table_1.user_id, users_table_1.value_2
-> WindowAgg
Output: events_table_1.user_id, sum(events_table_1.value_2) OVER (?)
-> Sort
Output: events_table_1.user_id, events_table_1.value_2
Sort Key: events_table_1.user_id
-> Seq Scan on public.events_table_1400260 events_table_1
Output: events_table_1.user_id, events_table_1.value_2
(62 rows)
-- test with window functions which aren't pushed down
SELECT
user_id, time, rnk
FROM
(
SELECT
*, rank() OVER my_win as rnk
FROM
events_table
WINDOW my_win AS (PARTITION BY event_type ORDER BY time DESC)
) as foo
ORDER BY
3 DESC, 1 DESC, 2 DESC
LIMIT
10;
user_id | time | rnk
---------------------------------------------------------------------
1 | Wed Nov 22 19:07:03.846437 2017 | 24
5 | Wed Nov 22 20:45:35.99031 2017 | 23
1 | Wed Nov 22 18:49:42.327403 2017 | 23
3 | Wed Nov 22 21:12:24.542921 2017 | 22
3 | Wed Nov 22 20:23:46.906523 2017 | 22
6 | Wed Nov 22 20:36:09.106561 2017 | 21
3 | Wed Nov 22 21:26:21.185134 2017 | 21
1 | Wed Nov 22 19:03:01.772353 2017 | 21
6 | Wed Nov 22 22:44:48.458334 2017 | 20
3 | Wed Nov 22 22:05:38.409323 2017 | 20
(10 rows)
SELECT
user_id, time, rnk
FROM
(
SELECT
*, rank() OVER my_win as rnk
FROM
events_table
WINDOW my_win AS ()
) as foo
ORDER BY
3 DESC, 1 DESC, 2 DESC
LIMIT
10;
user_id | time | rnk
---------------------------------------------------------------------
6 | Thu Nov 23 14:00:13.20013 2017 | 1
6 | Thu Nov 23 11:16:13.106691 2017 | 1
6 | Thu Nov 23 07:27:32.822068 2017 | 1
6 | Thu Nov 23 02:06:53.132461 2017 | 1
6 | Thu Nov 23 00:45:41.784391 2017 | 1
6 | Thu Nov 23 00:01:48.155345 2017 | 1
6 | Wed Nov 22 23:15:15.875499 2017 | 1
6 | Wed Nov 22 22:44:48.458334 2017 | 1
6 | Wed Nov 22 21:17:09.549341 2017 | 1
6 | Wed Nov 22 20:36:09.106561 2017 | 1
(10 rows)
SELECT
user_id, time, rnk
FROM
(
SELECT
*, rank() OVER my_win as rnk
FROM
events_table
WINDOW my_win AS (ORDER BY time DESC)
) as foo
ORDER BY
3 DESC, 1 DESC, 2 DESC
LIMIT
10;
user_id | time | rnk
---------------------------------------------------------------------
3 | Wed Nov 22 18:36:16.372893 2017 | 101
1 | Wed Nov 22 18:49:42.327403 2017 | 100
4 | Wed Nov 22 19:00:10.396739 2017 | 99
1 | Wed Nov 22 19:03:01.772353 2017 | 98
1 | Wed Nov 22 19:07:03.846437 2017 | 97
2 | Wed Nov 22 20:16:16.614779 2017 | 96
3 | Wed Nov 22 20:23:46.906523 2017 | 95
6 | Wed Nov 22 20:36:09.106561 2017 | 94
5 | Wed Nov 22 20:45:35.99031 2017 | 93
1 | Wed Nov 22 20:56:21.122638 2017 | 92
(10 rows)
SELECT * FROM
(
SELECT
DISTINCT users_table.user_id, lag(users_table.user_id) OVER w1, rank() OVER w2
FROM
users_table, events_table
WHERE
users_table.user_id = events_table.user_id and
event_type < 4
WINDOW w1 AS (PARTITION BY users_table.user_id, events_table.event_type ORDER BY events_table.time),
w2 AS (PARTITION BY users_table.user_id+1, (events_table.value_2 % 25) ORDER BY events_table.time)
) as foo
ORDER BY 3 DESC, 1 DESC, 2 DESC NULLS LAST
LIMIT 10;
user_id | lag | rank
---------------------------------------------------------------------
2 | 2 | 73
4 | 4 | 70
3 | 3 | 69
2 | 2 | 55
5 | 5 | 53
5 | | 53
3 | 3 | 52
4 | 4 | 47
2 | 2 | 37
3 | 3 | 35
(10 rows)
SELECT * FROM
(
SELECT
DISTINCT users_table.user_id, lag(users_table.user_id) OVER w1, rank() OVER w2
FROM
users_table, events_table
WHERE
users_table.user_id = events_table.user_id and
event_type < 4
WINDOW w1 AS (PARTITION BY users_table.user_id, events_table.event_type ORDER BY events_table.time),
w2 AS (ORDER BY events_table.time)
) as foo
ORDER BY
3 DESC, 1 DESC, 2 DESC NULLS LAST
LIMIT
10;
user_id | lag | rank
---------------------------------------------------------------------
4 | 4 | 1262
3 | 3 | 1245
2 | 2 | 1227
4 | 4 | 1204
4 | | 1204
5 | 5 | 1178
5 | 5 | 1152
5 | 5 | 1126
4 | 4 | 1103
2 | 2 | 1085
(10 rows)
SELECT
user_id, time, my_rank
FROM
(
SELECT
user_id, date_trunc('day', time) as time, rank() OVER my_win as my_rank
FROM
events_table
GROUP BY
user_id, date_trunc('day', time)
WINDOW my_win AS (ORDER BY avg(event_type))
) as foo
WHERE
my_rank > 1
ORDER BY
3 DESC, 1 DESC,2 DESC
LIMIT
10;
user_id | time | my_rank
---------------------------------------------------------------------
4 | Wed Nov 22 00:00:00 2017 | 12
6 | Wed Nov 22 00:00:00 2017 | 11
5 | Wed Nov 22 00:00:00 2017 | 10
6 | Thu Nov 23 00:00:00 2017 | 9
3 | Thu Nov 23 00:00:00 2017 | 8
1 | Thu Nov 23 00:00:00 2017 | 7
1 | Wed Nov 22 00:00:00 2017 | 6
2 | Thu Nov 23 00:00:00 2017 | 5
4 | Thu Nov 23 00:00:00 2017 | 4
2 | Wed Nov 22 00:00:00 2017 | 3
(10 rows)
SELECT
user_id, time, my_rank
FROM
(
SELECT
user_id, date_trunc('day', time) as time, rank() OVER my_win as my_rank
FROM
events_table
GROUP BY
user_id, date_trunc('day', time)
WINDOW my_win AS (PARTITION BY date_trunc('day', time) ORDER BY avg(event_type))
) as foo
WHERE
my_rank > 1
ORDER BY
3 DESC, 1 DESC,2 DESC
LIMIT
10;
user_id | time | my_rank
---------------------------------------------------------------------
6 | Thu Nov 23 00:00:00 2017 | 6
4 | Wed Nov 22 00:00:00 2017 | 6
6 | Wed Nov 22 00:00:00 2017 | 5
3 | Thu Nov 23 00:00:00 2017 | 5
5 | Wed Nov 22 00:00:00 2017 | 4
1 | Thu Nov 23 00:00:00 2017 | 4
2 | Thu Nov 23 00:00:00 2017 | 3
1 | Wed Nov 22 00:00:00 2017 | 3
4 | Thu Nov 23 00:00:00 2017 | 2
2 | Wed Nov 22 00:00:00 2017 | 2
(10 rows)
SELECT * FROM (
SELECT
user_id, date_trunc('day', time) as time, sum(rank) OVER w2
FROM (
SELECT DISTINCT
user_id as user_id, time, rank() over w1
FROM
users_table
WINDOW
w AS (PARTITION BY time), w1 AS (w ORDER BY value_2, value_3)
) fab
WINDOW
w2 as (PARTITION BY user_id, time)
) a
ORDER BY
1,2,3;
user_id | time | sum
---------------------------------------------------------------------
1 | Wed Nov 22 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 1
1 | Thu Nov 23 00:00:00 2017 | 1
2 | Wed Nov 22 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
2 | Thu Nov 23 00:00:00 2017 | 1
3 | Wed Nov 22 00:00:00 2017 | 1
3 | Wed Nov 22 00:00:00 2017 | 1
3 | Wed Nov 22 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
3 | Thu Nov 23 00:00:00 2017 | 1
4 | Wed Nov 22 00:00:00 2017 | 1
4 | Wed Nov 22 00:00:00 2017 | 1
4 | Wed Nov 22 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
4 | Thu Nov 23 00:00:00 2017 | 1
5 | Wed Nov 22 00:00:00 2017 | 1
5 | Wed Nov 22 00:00:00 2017 | 1
5 | Wed Nov 22 00:00:00 2017 | 1
5 | Wed Nov 22 00:00:00 2017 | 1
5 | Wed Nov 22 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
5 | Thu Nov 23 00:00:00 2017 | 1
6 | Wed Nov 22 00:00:00 2017 | 1
6 | Wed Nov 22 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
6 | Thu Nov 23 00:00:00 2017 | 1
(101 rows)
SELECT * FROM (
SELECT
user_id, COUNT(*) OVER (PARTITION BY sum(user_id), MIN(value_2))
FROM
users_table
GROUP BY
user_id
) a
ORDER BY
1 DESC, 2 DESC;
user_id | count
---------------------------------------------------------------------
6 | 1
5 | 1
4 | 1
3 | 1
2 | 1
1 | 1
(6 rows)
-- test with reference table partitioned on only a column from reference table
SELECT *
FROM
(
SELECT
DISTINCT user_id, it_name, count(id) OVER (PARTITION BY id)
FROM
users_table, users_ref_test_table
) a
ORDER BY
1, 2, 3
LIMIT
20;
user_id | it_name | count
---------------------------------------------------------------------
1 | User_1 | 101
1 | User_2 | 101
1 | User_3 | 101
1 | User_4 | 101
1 | User_5 | 101
1 | User_6 | 101
2 | User_1 | 101
2 | User_2 | 101
2 | User_3 | 101
2 | User_4 | 101
2 | User_5 | 101
2 | User_6 | 101
3 | User_1 | 101
3 | User_2 | 101
3 | User_3 | 101
3 | User_4 | 101
3 | User_5 | 101
3 | User_6 | 101
4 | User_1 | 101
4 | User_2 | 101
(20 rows)
SELECT
max(avg)
FROM
(
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (1, 2))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (2, 3))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (3, 4))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (4, 5))
UNION ALL
(SELECT avg(value_3) over (partition by user_id), user_id FROM events_table where event_type IN (5, 6))
UNION ALL
(SELECT avg(value_3) over (partition by event_type), user_id FROM events_table where event_type IN (1, 6))
) b
GROUP BY user_id
ORDER BY 1 DESC
LIMIT 5;
max
---------------------------------------------------------------------
5
3.09090909090909
3
3
2.875
(5 rows)
SELECT *
FROM (
( SELECT user_id,
sum(counter)
FROM
(SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
users_table
UNION
SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
events_table) user_id_1
GROUP BY
user_id)
UNION
(SELECT
user_id, sum(counter)
FROM
(SELECT
user_id, sum(value_2) over (partition by user_id) AS counter
FROM
users_table
UNION
SELECT
user_id, sum(value_2) over (partition by event_type) AS counter
FROM
events_table) user_id_2
GROUP BY
user_id)) AS ftop
ORDER BY 2 DESC, 1 DESC
LIMIT 5;
user_id | sum
---------------------------------------------------------------------
5 | 298
6 | 244
1 | 244
4 | 235
2 | 235
(5 rows)
DROP VIEW subq;