Distributed PostgreSQL as an extension
 
 
 
 
 
 
Go to file
Onder Kalaci 0d5a4b9c72 Recursively plan subqueries that are not safe to pushdown
With this commit, Citus recursively plans subqueries that
are not safe to pushdown, in other words, requires a merge
step.

The algorithm is simple: Recursively traverse the query from bottom
up (i.e., bottom meaning the leaf queries). On each level, check
whether the query is safe to pushdown (or a single repartition
subquery). If the answer is yes, do not touch that subquery. If the
answer is no, plan the subquery seperately (i.e., create a subPlan
for it) and replace the subquery with a call to
`read_intermediate_results(planId, subPlanId)`. During the the
execution, run the subPlans first, and make them avaliable to the
next query executions.

Some of the queries hat this change allows us:

   * Subqueries with LIMIT
   * Subqueries with GROUP BY/DISTINCT on non-partition keys
   * Subqueries involving re-partition joins, router queries
   * Mixed usage of subqueries and CTEs (i.e., use CTEs in
     subqueries as well). Nested subqueries as long as we
     support the subquery inside the nested subquery.
   * Subqueries with local tables (i.e., those subqueries
     has the limitation that they have to be leaf subqueries)

   * VIEWs on the distributed tables just works (i.e., the
     limitations mentioned below still applies to views)

Some of the queries that is still NOT supported:

  * Corrolated subqueries that are not safe to pushdown
  * Window function on non-partition keys
  * Recursively planned subqueries or CTEs on the outer
    side of an outer join
  * Only recursively planned subqueries and CTEs in the FROM
    (i.e., not any distributed tables in the FROM) and subqueries
    in WHERE clause
  * Subquery joins that are not on the partition columns (i.e., each
    subquery is individually joined on partition keys but not the upper
    level subquery.)
  * Any limitation that logical planner applies such as aggregate
    distincts (except for count) when GROUP BY is on non-partition key,
    or array_agg with ORDER BY
2017-12-21 08:37:40 +02:00
config Add citus_version(), analogous to PG's version() 2017-10-16 18:09:29 -06:00
src Recursively plan subqueries that are not safe to pushdown 2017-12-21 08:37:40 +02:00
.codecov.yml Remove obsolete lines 2017-09-25 11:18:25 -07:00
.editorconfig Set tab size for GitHub display 2017-03-22 13:03:39 -06:00
.gitattributes Add ruleutils file for PostgreSQL 11 2017-09-25 17:20:24 -07:00
.gitignore Add vim swap files to .gitignore 2017-07-12 14:16:23 +02:00
.travis.yml Use custom compiled PostgreSQL on push builds 2017-11-01 06:29:59 -07:00
CHANGELOG.md Add CHANGELOG entry for 7.1.1 2017-12-01 12:01:06 +03:00
CONTRIBUTING.md Two more libs I needed to build citus 2017-08-24 13:04:35 -06:00
LICENSE Add AGPL-3.0 in LICENSE file 2016-03-23 17:04:58 -06:00
Makefile Fix VPATH builds broken in 087d8427e3. 2017-04-25 16:04:42 -07:00
Makefile.global.in Basic usage statistics collection. (#1656) 2017-10-11 09:55:15 -04:00
README.md Update README.md 2017-03-23 11:00:32 -07:00
aclocal.m4 Basic usage statistics collection. (#1656) 2017-10-11 09:55:15 -04:00
autogen.sh Changed product name to citus 2016-02-15 16:04:31 +02:00
configure Bump Citus version to 7.2devel 2017-11-15 10:32:49 +01:00
configure.in Bump Citus version to 7.2devel 2017-11-15 10:32:49 +01:00
github-banner.png Readme for 5.0 2016-03-18 13:32:13 -07:00
prep_buildtree Changed product name to citus 2016-02-15 16:04:31 +02:00

README.md

Citus Banner

Build Status Slack Status Latest Docs

What is Citus?

  • Open-source PostgreSQL extension (not a fork)
  • Scalable across multiple machines through sharding and replication
  • Distributed engine for query parallelization
  • Database designed to scale multi-tenant applications

Citus is a distributed database that scales across commodity servers using transparent sharding and replication. Citus extends the underlying database rather than forking it, giving developers and enterprises the power and familiarity of a relational database. As an extension, Citus supports new PostgreSQL releases, and allows you to benefit from new features while maintaining compatibility with existing PostgreSQL tools.

Citus serves many use cases. Two common ones are:

  1. Multi-tenant database: Most B2B applications already have the notion of a tenant / customer / account built into their data model. Citus allows you to scale out your transactional relational database to 100K+ tenants with minimal changes to your application.

  2. Real-time analytics: Citus enables ingesting large volumes of data and running analytical queries on that data in human real-time. Example applications include analytic dashboards with subsecond response times and exploratory queries on unfolding events.

To learn more, visit citusdata.com and join the mailing list to stay on top of the latest developments.

Getting started with Citus

The fastest way to get up and running is to create a Citus Cloud account. You can also setup a local Citus cluster with Docker.

Citus Cloud

Citus Cloud runs on top of AWS as a fully managed database as a service and has development plans available for getting started. You can provision a Citus Cloud account at https://console.citusdata.com and get started with just a few clicks.

Local Citus Cluster

If you're looking to get started locally, you can follow the following steps to get up and running.

  1. Install Docker Community Edition and Docker Compose
  • Mac:
    1. Download and install Docker.
    2. Start Docker by clicking on the applications icon.
  • Linux:
    curl -sSL https://get.docker.com/ | sh
    sudo usermod -aG docker $USER && exec sg docker newgrp `id -gn`
    sudo systemctl start docker
    
    sudo curl -sSL https://github.com/docker/compose/releases/download/1.11.2/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
    sudo chmod +x /usr/local/bin/docker-compose
    
    The above version of Docker Compose is sufficient for running Citus, or you can install the latest version.
  1. Pull and start the Docker images
curl -sSLO https://raw.githubusercontent.com/citusdata/docker/master/docker-compose.yml
docker-compose -p citus up -d
  1. Connect to the master database
docker exec -it citus_master psql -U postgres
  1. Follow the first tutorial instructions
  2. To shut the cluster down, run
docker-compose -p citus down

Talk to Contributors and Learn More

Documentation Try the Citus tutorial for a hands-on introduction or
the documentation for a more comprehensive reference.
Google Groups The Citus Google Group is our place for detailed questions and discussions.
Slack Chat with us in our community Slack channel.
Github Issues We track specific bug reports and feature requests on our project issues.
Twitter Follow @citusdata for general updates and PostgreSQL scaling tips.

Contributing

Citus is built on and of open source, and we welcome your contributions. The CONTRIBUTING.md file explains how to get started developing the Citus extension itself and our code quality guidelines.

Who is Using Citus?

Citus is deployed in production by many customers, ranging from technology start-ups to large enterprises. Here are some examples:

  • CloudFlare uses Citus to provide real-time analytics on 100 TBs of data from over 4 million customer websites. Case Study
  • MixRank uses Citus to efficiently collect and analyze vast amounts of data to allow inside B2B sales teams to find new customers. Case Study
  • Neustar builds and maintains scalable ad-tech infrastructure that counts billions of events per day using Citus and HyperLogLog.
  • Agari uses Citus to secure more than 85 percent of U.S. consumer emails on two 6-8 TB clusters. Case Study
  • Heap uses Citus to run dynamic funnel, segmentation, and cohort queries across billions of users and tens of billions of events. Watch Video

Copyright © 20122017 Citus Data, Inc.