Distributed PostgreSQL as an extension
 
 
 
 
 
 
Go to file
Andres Freund 2e8e8d377e Store ShardInterval instead of shardId in RangeTableFragments.
For CITUS_RTE_RELATION type fragments, reloading shardIntervals from the
database is rather expensive. So store a pointer to the full shard
interval, instead of just the shard id.  There's no new memory lifetime
hazards here, because we already passed a pointer to the shardInterval's
->shardId field around.

The plan time for the query in issue #607 goes from 2889 ms to 106 ms.
with this change.
2016-06-16 17:31:35 -07:00
src Store ShardInterval instead of shardId in RangeTableFragments. 2016-06-16 17:31:35 -07:00
.gitattributes Switch to using git attributes to ignore files 2016-02-15 23:41:51 -07:00
.gitignore Initial commit of Citus 5.0 2016-02-11 04:05:32 +02:00
.travis.yml Omit open- tracking branches from build 2016-06-03 18:01:36 -06:00
CHANGELOG.md Add CHANGELOG entries for 5.1 release 2016-05-17 10:02:05 -06:00
CONTRIBUTING.md Proper indentation for code blocks in lists 2016-03-30 15:40:53 -07:00
LICENSE Add AGPL-3.0 in LICENSE file 2016-03-23 17:04:58 -06:00
Makefile Fix various build issues 2016-03-11 13:38:47 -07:00
Makefile.global.in Fix various build issues 2016-03-11 13:38:47 -07:00
README.md Fix the documentation link from Citus 5.0 to Citus 5.1 (#593) 2016-06-16 10:45:36 -07:00
autogen.sh Changed product name to citus 2016-02-15 16:04:31 +02:00
configure Update copyright dates 2016-03-23 17:14:37 -06:00
configure.in Update copyright dates 2016-03-23 17:14:37 -06:00
github-banner.png Readme for 5.0 2016-03-18 13:32:13 -07:00
prep_buildtree Changed product name to citus 2016-02-15 16:04:31 +02:00

README.md

Citus Banner

Build Status Slack Status Latest Docs

What is Citus?

  • Open-source PostgreSQL extension (not a fork)
  • Scalable across multiple hosts through sharding and replication
  • Distributed engine for query parallelization
  • Highly available in the face of host failures

Citus horizontally scales PostgreSQL across commodity servers using sharding and replication. Its query engine parallelizes incoming SQL queries across these servers to enable real-time responses on large datasets.

Citus extends the underlying database rather than forking it, which gives developers and enterprises the power and familiarity of a traditional relational database. As an extension, Citus supports new PostgreSQL releases, allowing users to benefit from new features while maintaining compatibility with existing PostgreSQL tools. Note that Citus supports many (but not all) SQL commands; see the FAQ for more details.

Common Use-Cases:

  • Powering real-time analytic dashboards
  • Exploratory queries on events as they happen
  • Large dataset archival and reporting
  • Session analytics (funnels, segmentation, and cohorts)

To learn more, visit citusdata.com and join the mailing list to stay on top of the latest developments.

Quickstart

Local Citus Cluster

  • Install docker-compose: Mac | Linux

  • (Mac only) connect to Docker VM

    eval $(docker-machine env default)
    
  • Pull and start the docker images

    wget https://raw.githubusercontent.com/citusdata/docker/master/docker-compose.yml
    docker-compose -p citus up -d
    
  • Connect to the master database

    docker exec -it citus_master psql -U postgres -d postgres
    
  • Follow the first tutorial instructions

  • To shut the cluster down, run

    docker-compose -p citus down
    

Talk to Contributors and Learn More

Documentation Try the Citus tutorials for a hands-on introduction or
the documentation for a more comprehensive reference.
Google Groups The Citus Google Group is our place for detailed questions and discussions.
Slack Chat with us in our community Slack channel.
Github Issues We track specific bug reports and feature requests on our project issues.
Twitter Follow @citusdata for general updates and PostgreSQL scaling tips.
Training and Support See our support page for training and dedicated support options.

Contributing

Citus is built on and of open source. We welcome your contributions, and have added a helpwanted label to issues which are accessible to new contributors. The CONTRIBUTING.md file explains how to get started developing the Citus extension itself and our code quality guidelines.

Who is Using Citus?

Citus is deployed in production by many customers, ranging from technology start-ups to large enterprises. Here are some examples:

  • CloudFlare uses Citus to provide real-time analytics on 100 TBs of data from over 4 million customer websites. Case Study
  • MixRank uses Citus to efficiently collect and analyze vast amounts of data to allow inside B2B sales teams to find new customers. Case Study
  • Neustar builds and maintains scalable ad-tech infrastructure that counts billions of events per day using Citus and HyperLogLog.
  • Agari uses Citus to secure more than 85 percent of U.S. consumer emails on two 6-8 TB clusters. Case Study
  • Heap uses Citus to run dynamic funnel, segmentation, and cohort queries across billions of users and tens of billions of events. Watch Video

Copyright © 20122016 Citus Data, Inc.