citus/src/backend/distributed/planner/deparse_shard_query.c

844 lines
25 KiB
C

/*-------------------------------------------------------------------------
*
* deparse_shard_query.c
*
* This file contains functions for deparsing shard queries.
*
* Copyright (c) Citus Data, Inc.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "c.h"
#include "access/heapam.h"
#include "access/htup_details.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_operator.h"
#include "lib/stringinfo.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/nodes.h"
#include "nodes/parsenodes.h"
#include "nodes/pg_list.h"
#include "parser/parsetree.h"
#include "storage/lock.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/syscache.h"
#include "distributed/citus_nodefuncs.h"
#include "distributed/citus_ruleutils.h"
#include "distributed/combine_query_planner.h"
#include "distributed/deparse_shard_query.h"
#include "distributed/insert_select_planner.h"
#include "distributed/listutils.h"
#include "distributed/local_executor.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_physical_planner.h"
#include "distributed/multi_router_planner.h"
#include "distributed/query_utils.h"
#include "distributed/recursive_planning.h"
#include "distributed/shard_utils.h"
#include "distributed/stats/stat_tenants.h"
#include "distributed/version_compat.h"
static void UpdateTaskQueryString(Query *query, Task *task);
static RelationShard * FindRelationShard(Oid inputRelationId, List *relationShardList);
static void ConvertRteToSubqueryWithEmptyResult(RangeTblEntry *rte);
static bool ShouldLazyDeparseQuery(Task *task);
static char * DeparseTaskQuery(Task *task, Query *query);
/*
* RebuildQueryStrings deparses the job query for each task to
* include execution-time changes such as function evaluation.
*/
void
RebuildQueryStrings(Job *workerJob)
{
Query *originalQuery = workerJob->jobQuery;
List *taskList = workerJob->taskList;
Task *task = NULL;
bool isSingleTask = list_length(taskList) == 1;
if (originalQuery->commandType == CMD_INSERT)
{
AddInsertAliasIfNeeded(originalQuery);
}
foreach_declared_ptr(task, taskList)
{
Query *query = originalQuery;
/*
* Copy the query if there are multiple tasks. If there is a single
* task, we scribble on the original query to avoid the copying
* overhead.
*/
if (!isSingleTask)
{
query = copyObject(originalQuery);
}
if (UpdateOrDeleteOrMergeQuery(query))
{
List *relationShardList = task->relationShardList;
/*
* For UPDATE and DELETE queries, we may have subqueries and joins, so
* we use relation shard list to update shard names and call
* pg_get_query_def() directly.
*/
UpdateRelationToShardNames((Node *) query, relationShardList);
}
else if (query->commandType == CMD_INSERT && task->modifyWithSubquery)
{
/* for INSERT..SELECT, adjust shard names in SELECT part */
List *relationShardList = task->relationShardList;
ShardInterval *shardInterval = LoadShardInterval(task->anchorShardId);
RangeTblEntry *copiedInsertRte = ExtractResultRelationRTEOrError(query);
RangeTblEntry *copiedSubqueryRte = ExtractSelectRangeTableEntry(query);
Query *copiedSubquery = copiedSubqueryRte->subquery;
/* there are no restrictions to add for reference and citus local tables */
if (IsCitusTableType(shardInterval->relationId, DISTRIBUTED_TABLE))
{
AddPartitionKeyNotNullFilterToSelect(copiedSubquery);
}
ReorderInsertSelectTargetLists(query, copiedInsertRte, copiedSubqueryRte);
UpdateRelationToShardNames((Node *) copiedSubquery, relationShardList);
}
if (query->commandType == CMD_INSERT)
{
RangeTblEntry *modifiedRelationRTE = linitial(originalQuery->rtable);
/*
* We store the modified relaiton ID in the task so we can lazily call
* deparse_shard_query when the string is needed
*/
task->anchorDistributedTableId = modifiedRelationRTE->relid;
/*
* For multi-row inserts, we modify the VALUES before storing the
* query in the task.
*/
RangeTblEntry *valuesRTE = ExtractDistributedInsertValuesRTE(query);
if (valuesRTE != NULL)
{
Assert(valuesRTE->rtekind == RTE_VALUES);
Assert(task->rowValuesLists != NULL);
valuesRTE->values_lists = task->rowValuesLists;
}
}
bool isQueryObjectOrText = GetTaskQueryType(task) == TASK_QUERY_TEXT ||
GetTaskQueryType(task) == TASK_QUERY_OBJECT;
ereport(DEBUG4, (errmsg("query before rebuilding: %s",
!isQueryObjectOrText
? "(null)"
: TaskQueryString(task))));
task->partitionKeyValue = workerJob->partitionKeyValue;
SetJobColocationId(workerJob);
task->colocationId = workerJob->colocationId;
UpdateTaskQueryString(query, task);
/*
* If parameters were resolved in the job query, then they are now also
* resolved in the query string.
*/
task->parametersInQueryStringResolved = workerJob->parametersInJobQueryResolved;
ereport(DEBUG4, (errmsg("query after rebuilding: %s",
TaskQueryString(task))));
}
}
/*
* AddInsertAliasIfNeeded adds an alias in UPSERTs and multi-row INSERTs to avoid
* deparsing issues (e.g. RETURNING might reference the original table name,
* which has been replaced by a shard name).
*/
void
AddInsertAliasIfNeeded(Query *query)
{
Assert(query->commandType == CMD_INSERT);
if (query->onConflict == NULL &&
ExtractDistributedInsertValuesRTE(query) == NULL)
{
/* simple single-row insert does not need an alias */
return;
}
RangeTblEntry *rangeTableEntry = linitial(query->rtable);
if (rangeTableEntry->alias != NULL)
{
/* INSERT already has an alias */
return;
}
Alias *alias = makeAlias(CITUS_TABLE_ALIAS, NIL);
rangeTableEntry->alias = alias;
}
/*
* UpdateTaskQueryString updates the query string stored within the provided
* Task. If the Task has row values from a multi-row INSERT, those are injected
* into the provided query before deparse occurs (the query's full VALUES list
* will be restored before this function returns).
*/
static void
UpdateTaskQueryString(Query *query, Task *task)
{
SetTaskQueryIfShouldLazyDeparse(task, query);
}
/*
* CreateQualsForShardInterval creates the necessary qual conditions over the
* given attnum and rtindex for the given shard interval.
*/
Node *
CreateQualsForShardInterval(RelationShard *relationShard, int attnum, int rtindex)
{
uint64 shardId = relationShard->shardId;
Oid relationId = relationShard->relationId;
CitusTableCacheEntry *cacheEntry = GetCitusTableCacheEntry(relationId);
Var *partitionColumnVar = cacheEntry->partitionColumn;
/*
* Add constraints for the relation identified by rtindex, specifically on its column at attnum.
* Create a Var node representing this column, which will be used to compare against the bounds
* from the partition column of shard interval.
*/
Var *outerTablePartitionColumnVar = makeVar(
rtindex, attnum, partitionColumnVar->vartype,
partitionColumnVar->vartypmod,
partitionColumnVar->varcollid,
0);
bool isFirstShard = IsFirstShard(cacheEntry, shardId);
/* load the interval for the shard and create constant nodes for the upper/lower bounds */
ShardInterval *shardInterval = LoadShardInterval(shardId);
Const *constNodeLowerBound = makeConst(INT4OID, -1, InvalidOid, sizeof(int32),
shardInterval->minValue, false, true);
Const *constNodeUpperBound = makeConst(INT4OID, -1, InvalidOid, sizeof(int32),
shardInterval->maxValue, false, true);
Const *constNodeZero = makeConst(INT4OID, -1, InvalidOid, sizeof(int32),
Int32GetDatum(0), false, true);
/* create a function expression node for the hash partition column */
FuncExpr *hashFunction = makeNode(FuncExpr);
hashFunction->funcid = cacheEntry->hashFunction->fn_oid;
hashFunction->args = list_make1(outerTablePartitionColumnVar);
hashFunction->funcresulttype = get_func_rettype(cacheEntry->hashFunction->fn_oid);
hashFunction->funcretset = false;
/* create a function expression for the lower bound of the shard interval */
Oid resultTypeOid = get_func_rettype(
cacheEntry->shardIntervalCompareFunction->fn_oid);
FuncExpr *lowerBoundFuncExpr = makeNode(FuncExpr);
lowerBoundFuncExpr->funcid = cacheEntry->shardIntervalCompareFunction->fn_oid;
lowerBoundFuncExpr->args = list_make2((Node *) constNodeLowerBound,
(Node *) hashFunction);
lowerBoundFuncExpr->funcresulttype = resultTypeOid;
lowerBoundFuncExpr->funcretset = false;
Oid lessThan = GetSysCacheOid(OPERNAMENSP, Anum_pg_operator_oid, CStringGetDatum("<"),
resultTypeOid, resultTypeOid, ObjectIdGetDatum(
PG_CATALOG_NAMESPACE));
/*
* Finally, check if the comparison result is less than 0, i.e.,
* shardInterval->minValue < hash(partitionColumn)
* See SearchCachedShardInterval for the behavior at the boundaries.
*/
Expr *lowerBoundExpr = make_opclause(lessThan, BOOLOID, false,
(Expr *) lowerBoundFuncExpr,
(Expr *) constNodeZero, InvalidOid, InvalidOid);
/* create a function expression for the upper bound of the shard interval */
FuncExpr *upperBoundFuncExpr = makeNode(FuncExpr);
upperBoundFuncExpr->funcid = cacheEntry->shardIntervalCompareFunction->fn_oid;
upperBoundFuncExpr->args = list_make2((Node *) hashFunction,
(Expr *) constNodeUpperBound);
upperBoundFuncExpr->funcresulttype = resultTypeOid;
upperBoundFuncExpr->funcretset = false;
Oid lessThanOrEqualTo = GetSysCacheOid(OPERNAMENSP, Anum_pg_operator_oid,
CStringGetDatum("<="),
resultTypeOid, resultTypeOid,
ObjectIdGetDatum(PG_CATALOG_NAMESPACE));
/*
* Finally, check if the comparison result is less than or equal to 0, i.e.,
* hash(partitionColumn) <= shardInterval->maxValue
* See SearchCachedShardInterval for the behavior at the boundaries.
*/
Expr *upperBoundExpr = make_opclause(lessThanOrEqualTo, BOOLOID, false,
(Expr *) upperBoundFuncExpr,
(Expr *) constNodeZero, InvalidOid, InvalidOid);
/* create a node for both upper and lower bound */
Node *shardIntervalBoundQuals = make_and_qual((Node *) lowerBoundExpr,
(Node *) upperBoundExpr);
/*
* Add a null test for the partition column for the first shard.
* This is because we need to include the null values in exactly one of the shard queries.
* The null test is added as an OR clause to the existing AND clause.
*/
if (isFirstShard)
{
/* null test for the first shard */
NullTest *nullTest = makeNode(NullTest);
nullTest->nulltesttype = IS_NULL; /* Check for IS NULL */
nullTest->arg = (Expr *) outerTablePartitionColumnVar; /* The variable to check */
nullTest->argisrow = false;
shardIntervalBoundQuals = (Node *) make_orclause(list_make2(nullTest,
shardIntervalBoundQuals));
}
return shardIntervalBoundQuals;
}
/*
* UpdateWhereClauseToPushdownRecurringOuterJoinWalker walks over the query tree and
* updates the WHERE clause for outer joins satisfying feasibility conditions.
*/
bool
UpdateWhereClauseToPushdownRecurringOuterJoinWalker(Node *node, List *relationShardList)
{
if (node == NULL)
{
return false;
}
if (IsA(node, Query))
{
UpdateWhereClauseToPushdownRecurringOuterJoin((Query *) node, relationShardList);
return query_tree_walker((Query *) node,
UpdateWhereClauseToPushdownRecurringOuterJoinWalker,
relationShardList, QTW_EXAMINE_RTES_BEFORE);
}
if (!IsA(node, RangeTblEntry))
{
return expression_tree_walker(node,
UpdateWhereClauseToPushdownRecurringOuterJoinWalker,
relationShardList);
}
return false;
}
/*
* UpdateWhereClauseToPushdownRecurringOuterJoin
*
* Inject shard interval predicates into the query WHERE clause for certain
* outer joins to make the join semantically correct when distributed.
*
* Why this is needed:
* When an inner side of an OUTER JOIN is a distributed table that has been
* routed to a single shard, we cannot simply replace the RTE with the shard
* name and rely on implicit pruning: the preserved (outer) side could still
* produce rows whose join keys would hash to other shards. To keep results
* consistent with the global execution semantics we restrict the preserved
* (outer) side to only those partition key values that would route to the
* chosen shard (plus NULLs, which are assigned to exactly one shard).
*
* What the function does:
* 1. Iterate over the top-level jointree->fromlist.
* 2. For each JoinExpr call CanPushdownRecurringOuterJoinExtended() which:
* - Verifies shape / join type is eligible.
* - Returns:
* outerRtIndex : RT index whose column we will constrain,
* outerRte / innerRte,
* attnum : attribute number (partition column) on outer side.
* This is compared to partition column of innerRte.
* 3. Find the RelationShard for the inner distributed table (innerRte->relid)
* in relationShardList; skip if absent (no fixed shard chosen).
* 4. Build the shard qualification with CreateQualsForShardInterval():
* (minValue < hash(partcol) AND hash(partcol) <= maxValue)
* and, for the first shard only, OR (partcol IS NULL).
* The Var refers to (outerRtIndex, attnum) so the restriction applies to
* the preserved outer input.
* 5. AND the new quals into jointree->quals (creating it if NULL).
*
* The function does not return anything, it modifies the query in place.
*/
void
UpdateWhereClauseToPushdownRecurringOuterJoin(Query *query, List *relationShardList)
{
if (query == NULL)
{
return;
}
FromExpr *fromExpr = query->jointree;
if (fromExpr == NULL || fromExpr->fromlist == NIL)
{
return;
}
ListCell *fromExprCell;
foreach(fromExprCell, fromExpr->fromlist)
{
Node *fromItem = (Node *) lfirst(fromExprCell);
if (!IsA(fromItem, JoinExpr))
{
continue;
}
JoinExpr *joinExpr = (JoinExpr *) fromItem;
/*
* We will check if we need to add constraints to the WHERE clause.
*/
RangeTblEntry *innerRte = NULL;
RangeTblEntry *outerRte = NULL;
int outerRtIndex = -1;
int attnum;
if (!CanPushdownRecurringOuterJoinExtended(joinExpr, query, &outerRtIndex,
&outerRte, &innerRte, &attnum))
{
continue;
}
if (attnum == InvalidAttrNumber)
{
continue;
}
ereport(DEBUG5, (errmsg(
"Distributed table from the inner part of the outer join: %s.",
innerRte->eref->aliasname)));
RelationShard *relationShard = FindRelationShard(innerRte->relid,
relationShardList);
if (relationShard == NULL || relationShard->shardId == INVALID_SHARD_ID)
{
continue;
}
Node *shardIntervalBoundQuals = CreateQualsForShardInterval(relationShard, attnum,
outerRtIndex);
if (fromExpr->quals == NULL)
{
fromExpr->quals = (Node *) shardIntervalBoundQuals;
}
else
{
fromExpr->quals = make_and_qual(fromExpr->quals, shardIntervalBoundQuals);
}
}
}
/*
* UpdateRelationToShardNames walks over the query tree and appends shard ids to
* relations. It uses unique identity value to establish connection between a
* shard and the range table entry. If the range table id is not given a
* identity, than the relation is not referenced from the query, no connection
* could be found between a shard and this relation. Therefore relation is replaced
* by set of NULL values so that the query would work at worker without any problems.
*
*/
bool
UpdateRelationToShardNames(Node *node, List *relationShardList)
{
uint64 shardId = INVALID_SHARD_ID;
if (node == NULL)
{
return false;
}
/* want to look at all RTEs, even in subqueries, CTEs and such */
if (IsA(node, Query))
{
return query_tree_walker((Query *) node, UpdateRelationToShardNames,
relationShardList, QTW_EXAMINE_RTES_BEFORE);
}
if (!IsA(node, RangeTblEntry))
{
return expression_tree_walker(node, UpdateRelationToShardNames,
relationShardList);
}
RangeTblEntry *newRte = (RangeTblEntry *) node;
if (newRte->rtekind == RTE_FUNCTION)
{
newRte = NULL;
if (!FindCitusExtradataContainerRTE(node, &newRte))
{
/* only update function rtes containing citus_extradata_container */
return false;
}
}
else if (newRte->rtekind != RTE_RELATION)
{
return false;
}
if (!IsCitusTable(newRte->relid))
{
/* leave local tables as is */
return false;
}
RelationShard *relationShard = FindRelationShard(newRte->relid,
relationShardList);
bool replaceRteWithNullValues = relationShard == NULL ||
relationShard->shardId == INVALID_SHARD_ID;
if (replaceRteWithNullValues)
{
ConvertRteToSubqueryWithEmptyResult(newRte);
return false;
}
shardId = relationShard->shardId;
Oid relationId = relationShard->relationId;
char *relationName = get_rel_name(relationId);
AppendShardIdToName(&relationName, shardId);
Oid schemaId = get_rel_namespace(relationId);
char *schemaName = get_namespace_name(schemaId);
ModifyRangeTblExtraData(newRte, CITUS_RTE_SHARD, schemaName, relationName, NIL);
return false;
}
/*
* FindRelationShard finds the RelationShard for shard relation with
* given Oid if exists in given relationShardList. Otherwise, returns NULL.
*/
static RelationShard *
FindRelationShard(Oid inputRelationId, List *relationShardList)
{
RelationShard *relationShard = NULL;
/*
* Search for the restrictions associated with the RTE. There better be
* some, otherwise this query wouldn't be eligible as a router query.
* FIXME: We should probably use a hashtable here, to do efficient lookup.
*/
foreach_declared_ptr(relationShard, relationShardList)
{
if (inputRelationId == relationShard->relationId)
{
return relationShard;
}
}
return NULL;
}
/*
* ConvertRteToSubqueryWithEmptyResult converts given relation RTE into
* subquery RTE that returns no results.
*/
static void
ConvertRteToSubqueryWithEmptyResult(RangeTblEntry *rte)
{
Relation relation = table_open(rte->relid, NoLock);
TupleDesc tupleDescriptor = RelationGetDescr(relation);
int columnCount = tupleDescriptor->natts;
List *targetList = NIL;
for (int columnIndex = 0; columnIndex < columnCount; columnIndex++)
{
FormData_pg_attribute *attributeForm = TupleDescAttr(tupleDescriptor,
columnIndex);
if (attributeForm->attisdropped)
{
continue;
}
StringInfo resname = makeStringInfo();
Const *constValue = makeNullConst(attributeForm->atttypid,
attributeForm->atttypmod,
attributeForm->attcollation);
appendStringInfo(resname, "%s", attributeForm->attname.data);
TargetEntry *targetEntry = makeNode(TargetEntry);
targetEntry->expr = (Expr *) constValue;
targetEntry->resno = columnIndex;
targetEntry->resname = resname->data;
targetList = lappend(targetList, targetEntry);
}
table_close(relation, NoLock);
FromExpr *joinTree = makeNode(FromExpr);
joinTree->quals = makeBoolConst(false, false);
Query *subquery = makeNode(Query);
subquery->commandType = CMD_SELECT;
subquery->querySource = QSRC_ORIGINAL;
subquery->canSetTag = true;
subquery->targetList = targetList;
subquery->jointree = joinTree;
rte->rtekind = RTE_SUBQUERY;
#if PG_VERSION_NUM >= PG_VERSION_16
/* no permission checking for this RTE */
rte->perminfoindex = 0;
#endif
rte->subquery = subquery;
rte->alias = copyObject(rte->eref);
}
/*
* ShouldLazyDeparseQuery returns true if we should lazily deparse the query
* when adding it to the task. Right now it simply checks if any shards on the
* local node can be used for the task.
*/
static bool
ShouldLazyDeparseQuery(Task *task)
{
return TaskAccessesLocalNode(task);
}
/*
* SetTaskQueryIfShouldLazyDeparse attaches the query to the task so that it can be used during
* execution. If local execution can possibly take place it sets task->jobQueryReferenceForLazyDeparsing.
* If not it deparses the query and sets queryStringLazy, to avoid blowing the
* size of the task unnecesarily.
*/
void
SetTaskQueryIfShouldLazyDeparse(Task *task, Query *query)
{
if (ShouldLazyDeparseQuery(task))
{
task->taskQuery.queryType = TASK_QUERY_OBJECT;
task->taskQuery.data.jobQueryReferenceForLazyDeparsing = query;
task->queryCount = 1;
return;
}
SetTaskQueryString(task, AnnotateQuery(DeparseTaskQuery(task, query),
task->partitionKeyValue, task->colocationId));
}
/*
* SetTaskQueryString attaches the query string to the task so that it can be
* used during execution. It also unsets jobQueryReferenceForLazyDeparsing to be sure
* these are kept in sync.
*/
void
SetTaskQueryString(Task *task, char *queryString)
{
if (queryString == NULL)
{
task->taskQuery.queryType = TASK_QUERY_NULL;
task->queryCount = 0;
}
else
{
task->taskQuery.queryType = TASK_QUERY_TEXT;
task->taskQuery.data.queryStringLazy = queryString;
task->queryCount = 1;
}
}
/*
* SetTaskQueryStringList sets the queryStringList of the given task.
*/
void
SetTaskQueryStringList(Task *task, List *queryStringList)
{
Assert(queryStringList != NIL);
task->taskQuery.queryType = TASK_QUERY_TEXT_LIST;
task->taskQuery.data.queryStringList = queryStringList;
task->queryCount = list_length(queryStringList);
}
void
SetTaskQueryPlan(Task *task, Query *query, PlannedStmt *localPlan)
{
Assert(localPlan != NULL);
task->taskQuery.queryType = TASK_QUERY_LOCAL_PLAN;
task->taskQuery.data.localCompiled = (LocalCompilation *) palloc0(
sizeof(LocalCompilation));
task->taskQuery.data.localCompiled->query = query;
task->taskQuery.data.localCompiled->plan = localPlan;
task->queryCount = 1;
}
PlannedStmt *
TaskQueryLocalPlan(Task *task)
{
Assert(task->taskQuery.queryType == TASK_QUERY_LOCAL_PLAN);
return task->taskQuery.data.localCompiled->plan;
}
/*
* DeparseTaskQuery is a general way of deparsing a query based on a task.
*/
static char *
DeparseTaskQuery(Task *task, Query *query)
{
StringInfo queryString = makeStringInfo();
if (query->commandType == CMD_INSERT)
{
/*
* For INSERT queries we cannot use pg_get_query_def. Mainly because we
* cannot run UpdateRelationToShardNames on an INSERT query. This is
* because the PG deparsing logic fails when trying to insert into a
* RTE_FUNCTION (which is what will happen if you call
* UpdateRelationToShardNames).
*/
deparse_shard_query(query, task->anchorDistributedTableId, task->anchorShardId,
queryString);
}
else
{
pg_get_query_def(query, queryString);
}
return queryString->data;
}
/*
* GetTaskQueryType returns the type of the task query.
*/
int
GetTaskQueryType(Task *task)
{
return task->taskQuery.queryType;
}
/*
* TaskQueryStringAtIndex returns query at given index among the possibly
* multiple queries that a task can have.
*/
char *
TaskQueryStringAtIndex(Task *task, int index)
{
Assert(index < task->queryCount);
int taskQueryType = GetTaskQueryType(task);
if (taskQueryType == TASK_QUERY_TEXT_LIST)
{
return list_nth(task->taskQuery.data.queryStringList, index);
}
return TaskQueryString(task);
}
/*
* TaskQueryString generates task query string text if missing.
*
* For performance reasons, the queryString is generated lazily. For example
* for local queries it is usually not needed to generate it, so this way we
* can skip the expensive deparsing+parsing.
*/
char *
TaskQueryString(Task *task)
{
int taskQueryType = GetTaskQueryType(task);
if (taskQueryType == TASK_QUERY_NULL)
{
/* if task query type is TASK_QUERY_NULL then the data will be NULL,
* this is unexpected state */
ereport(ERROR, (errcode(ERRCODE_INTERNAL_ERROR),
errmsg("unexpected task query state: task query type is null"),
errdetail("Please report this to the Citus core team.")));
}
else if (taskQueryType == TASK_QUERY_TEXT_LIST)
{
return StringJoin(task->taskQuery.data.queryStringList, ';');
}
else if (taskQueryType == TASK_QUERY_TEXT)
{
return task->taskQuery.data.queryStringLazy;
}
else if (taskQueryType == TASK_QUERY_LOCAL_PLAN)
{
Query *query = task->taskQuery.data.localCompiled->query;
Assert(query != NULL);
/*
* Use the query of the local compilation to generate the
* query string. For local compiled tasks, the query is retained
* for this purpose, which may be EXPLAIN ANALYZing the task, or
* command logging. Generating the query string on the fly is
* acceptable because the plan of the local compilation is used
* for query execution.
*/
MemoryContext previousContext = MemoryContextSwitchTo(GetMemoryChunkContext(
query));
UpdateRelationToShardNames((Node *) query, task->relationShardList);
MemoryContextSwitchTo(previousContext);
return AnnotateQuery(DeparseTaskQuery(task, query),
task->partitionKeyValue, task->colocationId);
}
Query *jobQueryReferenceForLazyDeparsing =
task->taskQuery.data.jobQueryReferenceForLazyDeparsing;
/*
* At this point task query type should be TASK_QUERY_OBJECT.
*/
Assert(task->taskQuery.queryType == TASK_QUERY_OBJECT &&
jobQueryReferenceForLazyDeparsing != NULL);
/*
* Switch to the memory context of task->jobQueryReferenceForLazyDeparsing before generating the query
* string. This way the query string is not freed in between multiple
* executions of a prepared statement. Except when UpdateTaskQueryString is
* used to set task->jobQueryReferenceForLazyDeparsing, in that case it is freed but it will be set to
* NULL on the next execution of the query because UpdateTaskQueryString
* does that.
*/
MemoryContext previousContext = MemoryContextSwitchTo(GetMemoryChunkContext(
jobQueryReferenceForLazyDeparsing));
char *queryString = DeparseTaskQuery(task, jobQueryReferenceForLazyDeparsing);
MemoryContextSwitchTo(previousContext);
SetTaskQueryString(task, queryString);
return task->taskQuery.data.queryStringLazy;
}