citus/src/backend/distributed/planner/multi_logical_planner.c

4258 lines
126 KiB
C

/*-------------------------------------------------------------------------
*
* multi_logical_planner.c
*
* Routines for constructing a logical plan tree from the given Query tree
* structure. This new logical plan is based on multi-relational algebra rules.
*
* Copyright (c) 2012-2016, Citus Data, Inc.
*
* $Id$
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/nbtree.h"
#include "catalog/pg_am.h"
#include "catalog/pg_class.h"
#include "commands/defrem.h"
#include "distributed/citus_clauses.h"
#include "distributed/colocation_utils.h"
#include "distributed/metadata_cache.h"
#include "distributed/insert_select_planner.h"
#include "distributed/multi_logical_optimizer.h"
#include "distributed/multi_logical_planner.h"
#include "distributed/multi_physical_planner.h"
#include "distributed/relation_restriction_equivalence.h"
#include "distributed/multi_router_planner.h"
#include "distributed/worker_protocol.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/relation.h"
#include "optimizer/clauses.h"
#include "optimizer/prep.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/rel.h"
#include "utils/relcache.h"
/* Config variable managed via guc.c */
bool SubqueryPushdown = false; /* is subquery pushdown enabled */
/* Struct to differentiate different qualifier types in an expression tree walker */
typedef struct QualifierWalkerContext
{
List *baseQualifierList;
List *outerJoinQualifierList;
} QualifierWalkerContext;
/*
* RecurringTuplesType is used to distinguish different types of expressions
* that always produce the same set of tuples when a shard is queried. We make
* this distinction to produce relevant error messages when recurring tuples
* are used in a way that would give incorrect results.
*/
typedef enum RecurringTuplesType
{
RECURRING_TUPLES_INVALID = 0,
RECURRING_TUPLES_REFERENCE_TABLE,
RECURRING_TUPLES_FUNCTION,
RECURRING_TUPLES_EMPTY_JOIN_TREE
} RecurringTuplesType;
/* Function pointer type definition for apply join rule functions */
typedef MultiNode *(*RuleApplyFunction) (MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static RuleApplyFunction RuleApplyFunctionArray[JOIN_RULE_LAST] = { 0 }; /* join rules */
/* Local functions forward declarations */
static bool SingleRelationRepartitionSubquery(Query *queryTree);
static DeferredErrorMessage * DeferErrorIfUnsupportedSubqueryPushdown(Query *
originalQuery,
PlannerRestrictionContext
*
plannerRestrictionContext);
static RelationRestrictionContext * FilterRelationRestrictionContext(
RelationRestrictionContext *relationRestrictionContext,
Relids
queryRteIdentities);
static JoinRestrictionContext * FilterJoinRestrictionContext(
JoinRestrictionContext *joinRestrictionContext, Relids
queryRteIdentities);
static bool RangeTableArrayContainsAnyRTEIdentities(RangeTblEntry **rangeTableEntries, int
rangeTableArrayLength, Relids
queryRteIdentities);
static Relids QueryRteIdentities(Query *queryTree);
static DeferredErrorMessage * DeferErrorIfUnsupportedSublinkAndReferenceTable(
Query *queryTree);
static DeferredErrorMessage * DeferErrorIfUnsupportedFilters(Query *subquery);
static bool EqualOpExpressionLists(List *firstOpExpressionList,
List *secondOpExpressionList);
static DeferredErrorMessage * DeferErrorIfCannotPushdownSubquery(Query *subqueryTree,
bool
outerMostQueryHasLimit);
static DeferredErrorMessage * DeferErrorIfUnsupportedUnionQuery(Query *queryTree,
bool
outerMostQueryHasLimit);
static bool ExtractSetOperationStatmentWalker(Node *node, List **setOperationList);
static DeferredErrorMessage * DeferErrorIfUnsupportedTableCombination(Query *queryTree);
static bool WindowPartitionOnDistributionColumn(Query *query);
static bool AllTargetExpressionsAreColumnReferences(List *targetEntryList);
static bool RangeTableListContainsOnlyReferenceTables(List *rangeTableList);
static FieldSelect * CompositeFieldRecursive(Expr *expression, Query *query);
static bool FullCompositeFieldList(List *compositeFieldList);
static MultiNode * MultiNodeTree(Query *queryTree);
static void ErrorIfQueryNotSupported(Query *queryTree);
static DeferredErrorMessage * DeferredErrorIfUnsupportedRecurringTuplesJoin(
PlannerRestrictionContext *plannerRestrictionContext);
static bool ShouldRecurseForRecurringTuplesJoinChecks(RelOptInfo *relOptInfo);
static bool HasUnsupportedJoinWalker(Node *node, void *context);
static bool ErrorHintRequired(const char *errorHint, Query *queryTree);
static DeferredErrorMessage * DeferErrorIfUnsupportedSubqueryRepartition(Query *
subqueryTree);
static bool HasTablesample(Query *queryTree);
static bool HasOuterJoin(Query *queryTree);
static bool HasOuterJoinWalker(Node *node, void *maxJoinLevel);
static bool HasComplexJoinOrder(Query *queryTree);
static bool HasComplexRangeTableType(Query *queryTree);
static bool RelationInfoContainsRecurringTuples(PlannerInfo *plannerInfo,
RelOptInfo *relationInfo,
RecurringTuplesType *recurType);
static bool HasRecurringTuples(Node *node, RecurringTuplesType *recurType);
static void ValidateClauseList(List *clauseList);
static bool ExtractFromExpressionWalker(Node *node,
QualifierWalkerContext *walkerContext);
static List * MultiTableNodeList(List *tableEntryList, List *rangeTableList);
static List * AddMultiCollectNodes(List *tableNodeList);
static MultiNode * MultiJoinTree(List *joinOrderList, List *collectTableList,
List *joinClauseList);
static MultiCollect * CollectNodeForTable(List *collectTableList, uint32 rangeTableId);
static MultiSelect * MultiSelectNode(List *whereClauseList);
static bool IsSelectClause(Node *clause);
static MultiProject * MultiProjectNode(List *targetEntryList);
static MultiExtendedOp * MultiExtendedOpNode(Query *queryTree);
/* Local functions forward declarations for applying joins */
static MultiNode * ApplyJoinRule(MultiNode *leftNode, MultiNode *rightNode,
JoinRuleType ruleType, Var *partitionColumn,
JoinType joinType, List *joinClauseList);
static RuleApplyFunction JoinRuleApplyFunction(JoinRuleType ruleType);
static MultiNode * ApplyBroadcastJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplyLocalJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplySinglePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplyDualPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplyCartesianProduct(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
/*
* Local functions forward declarations for subquery pushdown. Note that these
* functions will be removed with upcoming subqery changes.
*/
static bool ShouldUseSubqueryPushDown(Query *originalQuery, Query *rewrittenQuery);
static bool IsFunctionRTE(Node *node);
static bool FindNodeCheck(Node *node, bool (*check)(Node *));
static Node * ResolveExternalParams(Node *inputNode, ParamListInfo boundParams);
static MultiNode * SubqueryMultiNodeTree(Query *originalQuery,
Query *queryTree,
PlannerRestrictionContext *
plannerRestrictionContext);
static List * SublinkList(Query *originalQuery);
static bool ExtractSublinkWalker(Node *node, List **sublinkList);
static MultiNode * SubqueryPushdownMultiNodeTree(Query *queryTree);
static List * CreateSubqueryTargetEntryList(List *columnList);
static void UpdateVarMappingsForExtendedOpNode(List *columnList,
List *subqueryTargetEntryList);
static MultiTable * MultiSubqueryPushdownTable(Query *subquery);
/*
* MultiLogicalPlanCreate takes in both the original query and its corresponding modified
* query tree yield by the standard planner. It uses helper functions to create logical
* plan and adds a root node to top of it. The original query is only used for subquery
* pushdown planning.
*
* In order to support external parameters for the queries where planning
* is done on the original query, we need to replace the external parameters
* manually. To achive that for subquery pushdown planning, we pass boundParams
* to this function. We need to do that since Citus currently unable to send
* parameters to the workers on the execution.
*
* We also pass queryTree and plannerRestrictionContext to the planner. They
* are primarily used to decide whether the subquery is safe to pushdown.
* If not, it helps to produce meaningful error messages for subquery
* pushdown planning.
*/
MultiTreeRoot *
MultiLogicalPlanCreate(Query *originalQuery, Query *queryTree,
PlannerRestrictionContext *plannerRestrictionContext,
ParamListInfo boundParams)
{
MultiNode *multiQueryNode = NULL;
MultiTreeRoot *rootNode = NULL;
if (ShouldUseSubqueryPushDown(originalQuery, queryTree))
{
originalQuery = (Query *) ResolveExternalParams((Node *) originalQuery,
boundParams);
multiQueryNode = SubqueryMultiNodeTree(originalQuery, queryTree,
plannerRestrictionContext);
}
else
{
multiQueryNode = MultiNodeTree(queryTree);
}
/* add a root node to serve as the permanent handle to the tree */
rootNode = CitusMakeNode(MultiTreeRoot);
SetChild((MultiUnaryNode *) rootNode, multiQueryNode);
return rootNode;
}
/*
* ShouldUseSubqueryPushDown determines whether it's desirable to use
* subquery pushdown to plan the query based on the original and
* rewritten query.
*/
static bool
ShouldUseSubqueryPushDown(Query *originalQuery, Query *rewrittenQuery)
{
/*
* We check the existence of subqueries in FROM clause on the modified query
* given that if postgres already flattened the subqueries, MultiPlanTree()
* can plan corresponding distributed plan.
*/
if (SubqueryEntryList(rewrittenQuery) != NIL)
{
return true;
}
/*
* We also check the existence of subqueries in WHERE clause. Note that
* this check needs to be done on the original query given that
* standard_planner() may replace the sublinks with anti/semi joins and
* MultiPlanTree() cannot plan such queries.
*/
if (SublinkList(originalQuery) != NIL)
{
return true;
}
/*
* We process function RTEs as subqueries, since the join order planner
* does not know how to handle them.
*/
if (FindNodeCheck((Node *) originalQuery, IsFunctionRTE))
{
return true;
}
return false;
}
/*
* IsFunctionRTE determines whether the given node is a function RTE.
*/
static bool
IsFunctionRTE(Node *node)
{
if (IsA(node, RangeTblEntry))
{
RangeTblEntry *rangeTblEntry = (RangeTblEntry *) node;
if (rangeTblEntry->rtekind == RTE_FUNCTION)
{
return true;
}
}
return false;
}
/*
* FindNodeCheck finds a node for which the check function returns true.
*
* To call this function directly with an RTE, use:
* range_table_walker(rte, FindNodeCheck, check, QTW_EXAMINE_RTES)
*/
static bool
FindNodeCheck(Node *node, bool (*check)(Node *))
{
if (node == NULL)
{
return false;
}
if (check(node))
{
return true;
}
if (IsA(node, RangeTblEntry))
{
/* query_tree_walker descends into RTEs */
return false;
}
else if (IsA(node, Query))
{
return query_tree_walker((Query *) node, FindNodeCheck, check, QTW_EXAMINE_RTES);
}
return expression_tree_walker(node, FindNodeCheck, check);
}
/*
* ResolveExternalParams replaces the external parameters that appears
* in the query with the corresponding entries in the boundParams.
*
* Note that this function is inspired by eval_const_expr() on Postgres.
* We cannot use that function because it requires access to PlannerInfo.
*/
static Node *
ResolveExternalParams(Node *inputNode, ParamListInfo boundParams)
{
/* consider resolving external parameters only when boundParams exists */
if (!boundParams)
{
return inputNode;
}
if (inputNode == NULL)
{
return NULL;
}
if (IsA(inputNode, Param))
{
Param *paramToProcess = (Param *) inputNode;
ParamExternData *correspondingParameterData = NULL;
int numberOfParameters = boundParams->numParams;
int parameterId = paramToProcess->paramid;
int16 typeLength = 0;
bool typeByValue = false;
Datum constValue = 0;
bool paramIsNull = false;
int parameterIndex = 0;
if (paramToProcess->paramkind != PARAM_EXTERN)
{
return inputNode;
}
if (parameterId < 0)
{
return inputNode;
}
/* parameterId starts from 1 */
parameterIndex = parameterId - 1;
if (parameterIndex >= numberOfParameters)
{
return inputNode;
}
correspondingParameterData = &boundParams->params[parameterIndex];
if (!(correspondingParameterData->pflags & PARAM_FLAG_CONST))
{
return inputNode;
}
get_typlenbyval(paramToProcess->paramtype, &typeLength, &typeByValue);
paramIsNull = correspondingParameterData->isnull;
if (paramIsNull)
{
constValue = 0;
}
else if (typeByValue)
{
constValue = correspondingParameterData->value;
}
else
{
/*
* Out of paranoia ensure that datum lives long enough,
* although bind params currently should always live
* long enough.
*/
constValue = datumCopy(correspondingParameterData->value, typeByValue,
typeLength);
}
return (Node *) makeConst(paramToProcess->paramtype, paramToProcess->paramtypmod,
paramToProcess->paramcollid, typeLength, constValue,
paramIsNull, typeByValue);
}
else if (IsA(inputNode, Query))
{
return (Node *) query_tree_mutator((Query *) inputNode, ResolveExternalParams,
boundParams, 0);
}
return expression_tree_mutator(inputNode, ResolveExternalParams, boundParams);
}
/*
* SublinkList finds the subquery nodes in the where clause of the given query. Note
* that the function should be called on the original query given that postgres
* standard_planner() may convert the subqueries in WHERE clause to joins.
*/
static List *
SublinkList(Query *originalQuery)
{
FromExpr *joinTree = originalQuery->jointree;
Node *queryQuals = NULL;
List *sublinkList = NIL;
if (!joinTree)
{
return NIL;
}
queryQuals = joinTree->quals;
ExtractSublinkWalker(queryQuals, &sublinkList);
return sublinkList;
}
/*
* ExtractSublinkWalker walks over a quals node, and finds all sublinks
* in that node.
*/
static bool
ExtractSublinkWalker(Node *node, List **sublinkList)
{
bool walkerResult = false;
if (node == NULL)
{
return false;
}
if (IsA(node, SubLink))
{
(*sublinkList) = lappend(*sublinkList, node);
}
else
{
walkerResult = expression_tree_walker(node, ExtractSublinkWalker,
sublinkList);
}
return walkerResult;
}
/*
* SubqueryMultiNodeTree gets the query objects and returns logical plan
* for subqueries.
*
* We currently have two different code paths for creating logic plan for subqueries:
* (i) subquery pushdown
* (ii) single relation repartition subquery
*
* In order to create the logical plan, we follow the algorithm below:
* - If subquery pushdown planner can plan the query
* - We're done, we create the multi plan tree and return
* - Else
* - If the query is not eligible for single table repartition subquery planning
* - Throw the error that the subquery pushdown planner generated
* - If it is eligible for single table repartition subquery planning
* - Check for the errors for single table repartition subquery planning
* - If no errors found, we're done. Create the multi plan and return
* - If found errors, throw it
*/
static MultiNode *
SubqueryMultiNodeTree(Query *originalQuery, Query *queryTree,
PlannerRestrictionContext *plannerRestrictionContext)
{
MultiNode *multiQueryNode = NULL;
DeferredErrorMessage *subqueryPushdownError = NULL;
/*
* This is a generic error check that applies to both subquery pushdown
* and single table repartition subquery.
*/
ErrorIfQueryNotSupported(originalQuery);
/*
* In principle, we're first trying subquery pushdown planner. If it fails
* to create a logical plan, continue with trying the single table
* repartition subquery planning.
*/
subqueryPushdownError = DeferErrorIfUnsupportedSubqueryPushdown(originalQuery,
plannerRestrictionContext);
if (!subqueryPushdownError)
{
multiQueryNode = SubqueryPushdownMultiNodeTree(originalQuery);
}
else if (subqueryPushdownError)
{
bool singleRelationRepartitionSubquery = false;
RangeTblEntry *subqueryRangeTableEntry = NULL;
Query *subqueryTree = NULL;
DeferredErrorMessage *repartitionQueryError = NULL;
List *subqueryEntryList = NULL;
/*
* If not eligible for single relation repartition query, we should raise
* subquery pushdown error.
*/
singleRelationRepartitionSubquery =
SingleRelationRepartitionSubquery(originalQuery);
if (!singleRelationRepartitionSubquery)
{
RaiseDeferredErrorInternal(subqueryPushdownError, ERROR);
}
subqueryEntryList = SubqueryEntryList(queryTree);
subqueryRangeTableEntry = (RangeTblEntry *) linitial(subqueryEntryList);
Assert(subqueryRangeTableEntry->rtekind == RTE_SUBQUERY);
subqueryTree = subqueryRangeTableEntry->subquery;
repartitionQueryError = DeferErrorIfUnsupportedSubqueryRepartition(subqueryTree);
if (repartitionQueryError)
{
RaiseDeferredErrorInternal(repartitionQueryError, ERROR);
}
/* all checks has passed, safe to create the multi plan */
multiQueryNode = MultiNodeTree(queryTree);
}
Assert(multiQueryNode != NULL);
return multiQueryNode;
}
/*
* SingleRelationRepartitionSubquery returns true if it is eligible single
* repartition query planning in the sense that:
* - None of the levels of the subquery contains a join
* - Only a single RTE_RELATION exists, which means only a single table
* name is specified on the whole query
* - No sublinks exists in the subquery
* - No window functions in the subquery
*
* Note that the caller should still call DeferErrorIfUnsupportedSubqueryRepartition()
* to ensure that Citus supports the subquery. Also, this function is designed to run
* on the original query.
*/
static bool
SingleRelationRepartitionSubquery(Query *queryTree)
{
List *rangeTableIndexList = NULL;
RangeTblEntry *rangeTableEntry = NULL;
List *rangeTableList = queryTree->rtable;
int rangeTableIndex = 0;
/* we don't support subqueries in WHERE */
if (queryTree->hasSubLinks)
{
return false;
}
/* we don't support window functions */
if (queryTree->hasWindowFuncs)
{
return false;
}
/*
* Don't allow joins and set operations. If join appears in the queryTree, the
* length would be greater than 1. If only set operations exists, the length
* would be 0.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree,
&rangeTableIndexList);
if (list_length(rangeTableIndexList) != 1)
{
return false;
}
rangeTableIndex = linitial_int(rangeTableIndexList);
rangeTableEntry = rt_fetch(rangeTableIndex, rangeTableList);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
return true;
}
else if (rangeTableEntry->rtekind == RTE_SUBQUERY)
{
Query *subqueryTree = rangeTableEntry->subquery;
return SingleRelationRepartitionSubquery(subqueryTree);
}
return false;
}
/*
* DeferErrorIfContainsUnsupportedSubqueryPushdown iterates on the query's subquery
* entry list and uses helper functions to check if we can push down subquery
* to worker nodes. These helper functions returns a deferred error if we
* cannot push down the subquery.
*/
static DeferredErrorMessage *
DeferErrorIfUnsupportedSubqueryPushdown(Query *originalQuery,
PlannerRestrictionContext *
plannerRestrictionContext)
{
bool outerMostQueryHasLimit = false;
ListCell *subqueryCell = NULL;
List *subqueryList = NIL;
DeferredErrorMessage *error = NULL;
if (originalQuery->limitCount != NULL)
{
outerMostQueryHasLimit = true;
}
/*
* We're checking two things here:
* (i) If the query contains a top level union, ensure that all leaves
* return the partition key at the same position
* (ii) Else, check whether all relations joined on the partition key or not
*/
if (ContainsUnionSubquery(originalQuery))
{
if (!SafeToPushdownUnionSubquery(plannerRestrictionContext))
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery since not all subqueries "
"in the UNION have the partition column in the same "
"position",
"Each leaf query of the UNION should return the "
"partition column in the same position and all joins "
"must be on the partition column",
NULL);
}
}
else if (!RestrictionEquivalenceForPartitionKeys(plannerRestrictionContext))
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery since all relations are not "
"joined using distribution keys",
"Each relation should be joined with at least "
"one another relation using distribution keys and "
"equality operator.", NULL);
}
/* we shouldn't allow reference tables in the FROM clause when the query has sublinks */
error = DeferErrorIfUnsupportedSublinkAndReferenceTable(originalQuery);
if (error)
{
return error;
}
/* we shouldn't allow reference tables in the outer part of outer joins */
error = DeferredErrorIfUnsupportedRecurringTuplesJoin(plannerRestrictionContext);
if (error)
{
return error;
}
/*
* We first extract all the queries that appear in the original query. Later,
* we delete the original query given that error rules does not apply to the
* top level query. For instance, we could support any LIMIT/ORDER BY on the
* top level query.
*/
ExtractQueryWalker((Node *) originalQuery, &subqueryList);
subqueryList = list_delete(subqueryList, originalQuery);
/* iterate on the subquery list and error out accordingly */
foreach(subqueryCell, subqueryList)
{
Query *subquery = lfirst(subqueryCell);
error = DeferErrorIfCannotPushdownSubquery(subquery,
outerMostQueryHasLimit);
if (error)
{
return error;
}
error = DeferErrorIfUnsupportedFilters(subquery);
if (error)
{
return error;
}
}
return NULL;
}
/*
* FilterPlannerRestrictionForQuery gets a planner restriction context and
* set of rte identities. It returns the restrictions that that appear
* in the queryRteIdentities and returns a newly allocated
* PlannerRestrictionContext. The function also sets all the other fields of
* the PlannerRestrictionContext with respect to the filtered restrictions.
*/
PlannerRestrictionContext *
FilterPlannerRestrictionForQuery(PlannerRestrictionContext *plannerRestrictionContext,
Query *query)
{
PlannerRestrictionContext *filteredPlannerRestrictionContext = NULL;
int referenceRelationCount = 0;
int totalRelationCount = 0;
Relids queryRteIdentities = QueryRteIdentities(query);
RelationRestrictionContext *relationRestrictionContext =
plannerRestrictionContext->relationRestrictionContext;
JoinRestrictionContext *joinRestrictionContext =
plannerRestrictionContext->joinRestrictionContext;
RelationRestrictionContext *filteredRelationRestrictionContext =
FilterRelationRestrictionContext(relationRestrictionContext, queryRteIdentities);
JoinRestrictionContext *filtererdJoinRestrictionContext =
FilterJoinRestrictionContext(joinRestrictionContext, queryRteIdentities);
/* allocate the filtered planner restriction context and set all the fields */
filteredPlannerRestrictionContext = palloc0(sizeof(PlannerRestrictionContext));
filteredPlannerRestrictionContext->memoryContext =
plannerRestrictionContext->memoryContext;
totalRelationCount = list_length(
filteredRelationRestrictionContext->relationRestrictionList);
referenceRelationCount = ReferenceRelationCount(filteredRelationRestrictionContext);
filteredRelationRestrictionContext->allReferenceTables =
(totalRelationCount == referenceRelationCount);
/* we currently don't support local relations and we cannot come up to this point */
filteredRelationRestrictionContext->hasLocalRelation = false;
filteredRelationRestrictionContext->hasDistributedRelation = true;
/* finally set the relation and join restriction contexts */
filteredPlannerRestrictionContext->relationRestrictionContext =
filteredRelationRestrictionContext;
filteredPlannerRestrictionContext->joinRestrictionContext =
filtererdJoinRestrictionContext;
return filteredPlannerRestrictionContext;
}
/*
* FilterRelationRestrictionContext gets a relation restriction context and
* set of rte identities. It returns the relation restrictions that that appear
* in the queryRteIdentities and returns a newly allocated
* RelationRestrictionContext.
*/
static RelationRestrictionContext *
FilterRelationRestrictionContext(RelationRestrictionContext *relationRestrictionContext,
Relids queryRteIdentities)
{
RelationRestrictionContext *filteredRestrictionContext =
palloc0(sizeof(RelationRestrictionContext));
ListCell *relationRestrictionCell = NULL;
foreach(relationRestrictionCell, relationRestrictionContext->relationRestrictionList)
{
RelationRestriction *relationRestriction =
(RelationRestriction *) lfirst(relationRestrictionCell);
int rteIdentity = GetRTEIdentity(relationRestriction->rte);
if (bms_is_member(rteIdentity, queryRteIdentities))
{
filteredRestrictionContext->relationRestrictionList =
lappend(filteredRestrictionContext->relationRestrictionList,
relationRestriction);
}
}
return filteredRestrictionContext;
}
/*
* FilterJoinRestrictionContext gets a join restriction context and
* set of rte identities. It returns the join restrictions that that appear
* in the queryRteIdentities and returns a newly allocated
* JoinRestrictionContext.
*
* Note that the join restriction is added to the return context as soon as
* any range table entry that appear in the join belongs to queryRteIdentities.
*/
static JoinRestrictionContext *
FilterJoinRestrictionContext(JoinRestrictionContext *joinRestrictionContext, Relids
queryRteIdentities)
{
JoinRestrictionContext *filtererdJoinRestrictionContext =
palloc0(sizeof(JoinRestrictionContext));
ListCell *joinRestrictionCell = NULL;
foreach(joinRestrictionCell, joinRestrictionContext->joinRestrictionList)
{
JoinRestriction *joinRestriction =
(JoinRestriction *) lfirst(joinRestrictionCell);
RangeTblEntry **rangeTableEntries =
joinRestriction->plannerInfo->simple_rte_array;
int rangeTableArrayLength = joinRestriction->plannerInfo->simple_rel_array_size;
if (RangeTableArrayContainsAnyRTEIdentities(rangeTableEntries,
rangeTableArrayLength,
queryRteIdentities))
{
filtererdJoinRestrictionContext->joinRestrictionList = lappend(
filtererdJoinRestrictionContext->joinRestrictionList,
joinRestriction);
}
}
return filtererdJoinRestrictionContext;
}
/*
* RangeTableArrayContainsAnyRTEIdentities returns true if any of the range table entries
* int rangeTableEntries array is an range table relation specified in queryRteIdentities.
*/
static bool
RangeTableArrayContainsAnyRTEIdentities(RangeTblEntry **rangeTableEntries, int
rangeTableArrayLength, Relids queryRteIdentities)
{
int rteIndex = 0;
/* simple_rte_array starts from 1, see plannerInfo struct */
for (rteIndex = 1; rteIndex < rangeTableArrayLength; ++rteIndex)
{
RangeTblEntry *rangeTableEntry = rangeTableEntries[rteIndex];
List *rangeTableRelationList = NULL;
ListCell *rteRelationCell = NULL;
/*
* Get list of all RTE_RELATIONs in the given range table entry
* (i.e.,rangeTableEntry could be a subquery where we're interested
* in relations).
*/
ExtractRangeTableRelationWalker((Node *) rangeTableEntry,
&rangeTableRelationList);
foreach(rteRelationCell, rangeTableRelationList)
{
RangeTblEntry *rteRelation = (RangeTblEntry *) lfirst(rteRelationCell);
int rteIdentity = 0;
Assert(rteRelation->rtekind == RTE_RELATION);
rteIdentity = GetRTEIdentity(rteRelation);
if (bms_is_member(rteIdentity, queryRteIdentities))
{
return true;
}
}
}
return false;
}
/*
* QueryRteIdentities gets a queryTree, find get all the rte identities assigned by
* us.
*/
static Relids
QueryRteIdentities(Query *queryTree)
{
List *rangeTableList = NULL;
ListCell *rangeTableCell = NULL;
Relids queryRteIdentities = NULL;
/* extract range table entries for simple relations only */
ExtractRangeTableRelationWalker((Node *) queryTree, &rangeTableList);
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
int rteIdentity = 0;
/* we're only interested in relations */
Assert(rangeTableEntry->rtekind == RTE_RELATION);
rteIdentity = GetRTEIdentity(rangeTableEntry);
queryRteIdentities = bms_add_member(queryRteIdentities, rteIdentity);
}
return queryRteIdentities;
}
/*
* DeferErrorIfUnsupportedSublinkAndReferenceTable returns a deferred error if the
* given query is not suitable for subquery pushdown.
*
* While planning sublinks, we rely on Postgres in the sense that it converts some of
* sublinks into joins.
*
* In some cases, sublinks are pulled up and converted into outer joins. Those cases
* are already handled with DeferredErrorIfUnsupportedRecurringTuplesJoin().
*
* If the sublinks are not pulled up, we should still error out in if any reference table
* appears in the FROM clause of a subquery.
*
* Otherwise, the result would include duplicate rows.
*/
static DeferredErrorMessage *
DeferErrorIfUnsupportedSublinkAndReferenceTable(Query *queryTree)
{
RecurringTuplesType recurType = RECURRING_TUPLES_INVALID;
if (!queryTree->hasSubLinks)
{
return NULL;
}
if (HasRecurringTuples((Node *) queryTree->rtable, &recurType))
{
if (recurType == RECURRING_TUPLES_REFERENCE_TABLE)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery",
"Reference tables are not allowed in FROM "
"clause when the query has subqueries in "
"WHERE clause", NULL);
}
else if (recurType == RECURRING_TUPLES_FUNCTION)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery",
"Functions are not allowed in FROM "
"clause when the query has subqueries in "
"WHERE clause", NULL);
}
else
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery",
"Subqueries without FROM are not allowed in FROM "
"clause when the outer query has subqueries in "
"WHERE clause", NULL);
}
}
return NULL;
}
/*
* DeferErrorIfUnsupportedFilters checks if all leaf queries in the given query have
* same filter on the partition column. Note that if there are queries without
* any filter on the partition column, they don't break this prerequisite.
*/
static DeferredErrorMessage *
DeferErrorIfUnsupportedFilters(Query *subquery)
{
List *queryList = NIL;
ListCell *queryCell = NULL;
List *subqueryOpExpressionList = NIL;
List *relationIdList = RelationIdList(subquery);
Var *partitionColumn = NULL;
Oid relationId = InvalidOid;
/*
* If there are no appropriate relations, we're going to error out on
* DeferErrorIfCannotPushdownSubquery(). It may happen once the subquery
* does not include a relation.
*/
if (relationIdList == NIL)
{
return NULL;
}
/*
* Get relation id of any relation in the subquery and create partiton column
* for this relation. We will use this column to replace columns on operator
* expressions on different tables. Then we compare these operator expressions
* to see if they consist of same operator and constant value.
*/
relationId = linitial_oid(relationIdList);
partitionColumn = PartitionColumn(relationId, 0);
ExtractQueryWalker((Node *) subquery, &queryList);
foreach(queryCell, queryList)
{
Query *query = (Query *) lfirst(queryCell);
List *opExpressionList = NIL;
List *newOpExpressionList = NIL;
bool leafQuery = LeafQuery(query);
if (!leafQuery)
{
continue;
}
opExpressionList = PartitionColumnOpExpressionList(query);
if (opExpressionList == NIL)
{
continue;
}
newOpExpressionList = ReplaceColumnsInOpExpressionList(opExpressionList,
partitionColumn);
if (subqueryOpExpressionList == NIL)
{
subqueryOpExpressionList = newOpExpressionList;
}
else
{
bool equalOpExpressionLists = EqualOpExpressionLists(subqueryOpExpressionList,
newOpExpressionList);
if (!equalOpExpressionLists)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
"Currently all leaf queries need to "
"have same filters on partition column", NULL);
}
}
}
return NULL;
}
/*
* EqualOpExpressionLists checks if given two operator expression lists are
* equal.
*/
static bool
EqualOpExpressionLists(List *firstOpExpressionList, List *secondOpExpressionList)
{
bool equalOpExpressionLists = false;
ListCell *firstOpExpressionCell = NULL;
uint32 equalOpExpressionCount = 0;
uint32 firstOpExpressionCount = list_length(firstOpExpressionList);
uint32 secondOpExpressionCount = list_length(secondOpExpressionList);
if (firstOpExpressionCount != secondOpExpressionCount)
{
return false;
}
foreach(firstOpExpressionCell, firstOpExpressionList)
{
OpExpr *firstOpExpression = (OpExpr *) lfirst(firstOpExpressionCell);
ListCell *secondOpExpressionCell = NULL;
foreach(secondOpExpressionCell, secondOpExpressionList)
{
OpExpr *secondOpExpression = (OpExpr *) lfirst(secondOpExpressionCell);
bool equalExpressions = equal(firstOpExpression, secondOpExpression);
if (equalExpressions)
{
equalOpExpressionCount++;
continue;
}
}
}
if (equalOpExpressionCount == firstOpExpressionCount)
{
equalOpExpressionLists = true;
}
return equalOpExpressionLists;
}
/*
* DeferErrorIfCannotPushdownSubquery checks if we can push down the given
* subquery to worker nodes. If we cannot push down the subquery, this function
* returns a deferred error.
*
* We can push down a subquery if it follows rules below:
* a. If there is an aggregate, it must be grouped on partition column.
* b. If there is a join, it must be between two regular tables or two subqueries.
* We don't support join between a regular table and a subquery. And columns on
* the join condition must be partition columns.
* c. If there is a distinct clause, it must be on the partition column.
*
* This function is very similar to ErrorIfQueryNotSupported() in logical
* planner, but we don't reuse it, because differently for subqueries we support
* a subset of distinct, union and left joins.
*
* Note that this list of checks is not exhaustive, there can be some cases
* which we let subquery to run but returned results would be wrong. Such as if
* a subquery has a group by on another subquery which includes order by with
* limit, we let this query to run, but results could be wrong depending on the
* features of underlying tables.
*/
static DeferredErrorMessage *
DeferErrorIfCannotPushdownSubquery(Query *subqueryTree, bool outerMostQueryHasLimit)
{
bool preconditionsSatisfied = true;
char *errorDetail = NULL;
StringInfo errorInfo = NULL;
DeferredErrorMessage *deferredError = NULL;
deferredError = DeferErrorIfUnsupportedTableCombination(subqueryTree);
if (deferredError)
{
return deferredError;
}
if (subqueryTree->rtable == NIL &&
contain_mutable_functions((Node *) subqueryTree->targetList))
{
preconditionsSatisfied = false;
errorDetail = "Subqueries without a FROM clause can only contain immutable "
"functions";
}
if (subqueryTree->limitOffset)
{
preconditionsSatisfied = false;
errorDetail = "Offset clause is currently unsupported";
}
/* limit is not supported when SubqueryPushdown is not set */
if (subqueryTree->limitCount && !SubqueryPushdown)
{
preconditionsSatisfied = false;
errorDetail = "Limit in subquery is currently unsupported";
}
/*
* Limit is partially supported when SubqueryPushdown is set.
* The outermost query must have a limit clause.
*/
if (subqueryTree->limitCount && SubqueryPushdown && !outerMostQueryHasLimit)
{
preconditionsSatisfied = false;
errorDetail = "Limit in subquery without limit in the outermost query is "
"unsupported";
}
if (subqueryTree->setOperations)
{
deferredError = DeferErrorIfUnsupportedUnionQuery(subqueryTree,
outerMostQueryHasLimit);
if (deferredError)
{
return deferredError;
}
}
if (subqueryTree->hasRecursive)
{
preconditionsSatisfied = false;
errorDetail = "Recursive queries are currently unsupported";
}
if (subqueryTree->cteList)
{
preconditionsSatisfied = false;
errorDetail = "Common Table Expressions are currently unsupported";
}
if (subqueryTree->hasForUpdate)
{
preconditionsSatisfied = false;
errorDetail = "For Update/Share commands are currently unsupported";
}
/* group clause list must include partition column */
if (subqueryTree->groupClause)
{
List *groupClauseList = subqueryTree->groupClause;
List *targetEntryList = subqueryTree->targetList;
List *groupTargetEntryList = GroupTargetEntryList(groupClauseList,
targetEntryList);
bool groupOnPartitionColumn = TargetListOnPartitionColumn(subqueryTree,
groupTargetEntryList);
if (!groupOnPartitionColumn)
{
preconditionsSatisfied = false;
errorDetail = "Group by list without partition column is currently "
"unsupported";
}
}
/*
* We support window functions when the window function
* is partitioned on distribution column.
*/
if (subqueryTree->windowClause && !SafeToPushdownWindowFunction(subqueryTree,
&errorInfo))
{
errorDetail = (char *) errorInfo->data;
preconditionsSatisfied = false;
}
/* we don't support aggregates without group by */
if (subqueryTree->hasAggs && (subqueryTree->groupClause == NULL))
{
preconditionsSatisfied = false;
errorDetail = "Aggregates without group by are currently unsupported";
}
/* having clause without group by on partition column is not supported */
if (subqueryTree->havingQual && (subqueryTree->groupClause == NULL))
{
preconditionsSatisfied = false;
errorDetail = "Having qual without group by on partition column is "
"currently unsupported";
}
/* distinct clause list must include partition column */
if (subqueryTree->distinctClause)
{
List *distinctClauseList = subqueryTree->distinctClause;
List *targetEntryList = subqueryTree->targetList;
List *distinctTargetEntryList = GroupTargetEntryList(distinctClauseList,
targetEntryList);
bool distinctOnPartitionColumn =
TargetListOnPartitionColumn(subqueryTree, distinctTargetEntryList);
if (!distinctOnPartitionColumn)
{
preconditionsSatisfied = false;
errorDetail = "Distinct on columns without partition column is "
"currently unsupported";
}
}
deferredError = DeferErrorIfUnsupportedSublinkAndReferenceTable(subqueryTree);
if (deferredError)
{
preconditionsSatisfied = false;
errorDetail = (char *) deferredError->detail;
}
/* finally check and return deferred if not satisfied */
if (!preconditionsSatisfied)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
errorDetail, NULL);
}
return NULL;
}
/*
* DeferErrorIfUnsupportedUnionQuery is a helper function for ErrorIfCannotPushdownSubquery().
* The function also errors out for set operations INTERSECT and EXCEPT.
*/
static DeferredErrorMessage *
DeferErrorIfUnsupportedUnionQuery(Query *subqueryTree,
bool outerMostQueryHasLimit)
{
List *setOperationStatementList = NIL;
ListCell *setOperationStatmentCell = NULL;
RecurringTuplesType recurType = RECURRING_TUPLES_INVALID;
ExtractSetOperationStatmentWalker((Node *) subqueryTree->setOperations,
&setOperationStatementList);
foreach(setOperationStatmentCell, setOperationStatementList)
{
SetOperationStmt *setOperation =
(SetOperationStmt *) lfirst(setOperationStatmentCell);
Node *leftArg = setOperation->larg;
Node *rightArg = setOperation->rarg;
int leftArgRTI = 0;
int rightArgRTI = 0;
if (setOperation->op != SETOP_UNION)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
"Intersect and Except are currently unsupported", NULL);
}
if (IsA(leftArg, RangeTblRef))
{
Node *leftArgSubquery = NULL;
leftArgRTI = ((RangeTblRef *) leftArg)->rtindex;
leftArgSubquery = (Node *) rt_fetch(leftArgRTI,
subqueryTree->rtable)->subquery;
if (HasRecurringTuples(leftArgSubquery, &recurType))
{
break;
}
}
if (IsA(rightArg, RangeTblRef))
{
Node *rightArgSubquery = NULL;
rightArgRTI = ((RangeTblRef *) rightArg)->rtindex;
rightArgSubquery = (Node *) rt_fetch(rightArgRTI,
subqueryTree->rtable)->subquery;
if (HasRecurringTuples(rightArgSubquery, &recurType))
{
break;
}
}
}
if (recurType == RECURRING_TUPLES_REFERENCE_TABLE)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
"Reference tables are not supported with union operator",
NULL);
}
else if (recurType == RECURRING_TUPLES_FUNCTION)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
"Table functions are not supported with union operator",
NULL);
}
else if (recurType == RECURRING_TUPLES_EMPTY_JOIN_TREE)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
"Subqueries without a FROM clause are not supported with "
"union operator", NULL);
}
return NULL;
}
/*
* ExtractSetOperationStatementWalker walks over a set operations statment,
* and finds all set operations in the tree.
*/
static bool
ExtractSetOperationStatmentWalker(Node *node, List **setOperationList)
{
bool walkerResult = false;
if (node == NULL)
{
return false;
}
if (IsA(node, SetOperationStmt))
{
SetOperationStmt *setOperation = (SetOperationStmt *) node;
(*setOperationList) = lappend(*setOperationList, setOperation);
}
walkerResult = expression_tree_walker(node, ExtractSetOperationStatmentWalker,
setOperationList);
return walkerResult;
}
/*
* DeferErrorIfUnsupportedTableCombination checks if the given query tree contains any
* unsupported range table combinations. For this, the function walks over all
* range tables in the join tree, and checks if they correspond to simple relations
* or subqueries. It also checks if there is a join between a regular table and
* a subquery and if join is on more than two range table entries. If any error is found,
* a deferred error is returned. Else, NULL is returned.
*/
static DeferredErrorMessage *
DeferErrorIfUnsupportedTableCombination(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *joinTreeTableIndexList = NIL;
ListCell *joinTreeTableIndexCell = NULL;
bool unsupportedTableCombination = false;
char *errorDetail = NULL;
/*
* Extract all range table indexes from the join tree. Note that sub-queries
* that get pulled up by PostgreSQL don't appear in this join tree.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
{
/*
* Join tree's range table index starts from 1 in the query tree. But,
* list indexes start from 0.
*/
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
int rangeTableListIndex = joinTreeTableIndex - 1;
RangeTblEntry *rangeTableEntry =
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
/*
* Check if the range table in the join tree is a simple relation, a
* subquery, or immutable function.
*/
if (rangeTableEntry->rtekind == RTE_RELATION ||
rangeTableEntry->rtekind == RTE_SUBQUERY)
{
/* accepted */
}
else if (rangeTableEntry->rtekind == RTE_FUNCTION)
{
if (contain_mutable_functions((Node *) rangeTableEntry->functions))
{
unsupportedTableCombination = true;
errorDetail = "Only immutable functions can be used as a table "
"expressions in a multi-shard query";
}
else
{
/* immutable function RTEs are treated as reference tables */
}
}
else if (rangeTableEntry->rtekind == RTE_CTE)
{
unsupportedTableCombination = true;
errorDetail = "CTEs in multi-shard queries are currently unsupported";
break;
}
else if (rangeTableEntry->rtekind == RTE_VALUES)
{
unsupportedTableCombination = true;
errorDetail = "VALUES in multi-shard queries is currently unsupported";
break;
}
else
{
unsupportedTableCombination = true;
errorDetail = "Table expressions other than relations, subqueries, "
"and immutable functions are currently unsupported";
break;
}
}
/* finally check and error out if not satisfied */
if (unsupportedTableCombination)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot push down this subquery",
errorDetail, NULL);
}
return NULL;
}
/*
* SafeToPushdownWindowFunction checks if the query with window function is supported.
* It returns the result accordingly and modifies the error detail.
*/
bool
SafeToPushdownWindowFunction(Query *query, StringInfo *errorDetail)
{
ListCell *windowClauseCell = NULL;
List *windowClauseList = query->windowClause;
/*
* We need to check each window clause separately if there is a partition by clause
* and if it is partitioned on the distribution column.
*/
foreach(windowClauseCell, windowClauseList)
{
WindowClause *windowClause = lfirst(windowClauseCell);
if (!windowClause->partitionClause)
{
*errorDetail = makeStringInfo();
appendStringInfoString(*errorDetail,
"Window functions without PARTITION BY on distribution "
"column is currently unsupported");
return false;
}
}
if (!WindowPartitionOnDistributionColumn(query))
{
*errorDetail = makeStringInfo();
appendStringInfoString(*errorDetail,
"Window functions with PARTITION BY list missing distribution "
"column is currently unsupported");
return false;
}
return true;
}
/*
* WindowPartitionOnDistributionColumn checks if the given subquery has one
* or more window functions and at least one of them is not partitioned by
* distribution column. The function returns false if your window function does not
* have a partition by clause or it does not include the distribution column.
*
* Please note that if the query does not have a window function, the function
* returns true.
*/
static bool
WindowPartitionOnDistributionColumn(Query *query)
{
List *windowClauseList = query->windowClause;
ListCell *windowClauseCell = NULL;
foreach(windowClauseCell, windowClauseList)
{
WindowClause *windowClause = lfirst(windowClauseCell);
List *groupTargetEntryList = NIL;
bool partitionOnDistributionColumn = false;
List *partitionClauseList = windowClause->partitionClause;
List *targetEntryList = query->targetList;
groupTargetEntryList =
GroupTargetEntryList(partitionClauseList, targetEntryList);
partitionOnDistributionColumn =
TargetListOnPartitionColumn(query, groupTargetEntryList);
if (!partitionOnDistributionColumn)
{
return false;
}
}
return true;
}
/*
* TargetListOnPartitionColumn checks if at least one target list entry is on
* partition column.
*/
bool
TargetListOnPartitionColumn(Query *query, List *targetEntryList)
{
bool targetListOnPartitionColumn = false;
List *compositeFieldList = NIL;
ListCell *targetEntryCell = NULL;
foreach(targetEntryCell, targetEntryList)
{
TargetEntry *targetEntry = (TargetEntry *) lfirst(targetEntryCell);
Expr *targetExpression = targetEntry->expr;
bool isPartitionColumn = IsPartitionColumn(targetExpression, query);
Oid relationId = InvalidOid;
Var *column = NULL;
FindReferencedTableColumn(targetExpression, NIL, query, &relationId, &column);
/*
* If the expression belongs to a reference table continue searching for
* other partition keys.
*/
if (IsDistributedTable(relationId) && PartitionMethod(relationId) ==
DISTRIBUTE_BY_NONE)
{
continue;
}
if (isPartitionColumn)
{
FieldSelect *compositeField = CompositeFieldRecursive(targetExpression,
query);
if (compositeField)
{
compositeFieldList = lappend(compositeFieldList, compositeField);
}
else
{
targetListOnPartitionColumn = true;
break;
}
}
}
/* check composite fields */
if (!targetListOnPartitionColumn)
{
bool fullCompositeFieldList = FullCompositeFieldList(compositeFieldList);
if (fullCompositeFieldList)
{
targetListOnPartitionColumn = true;
}
}
/*
* We could still behave as if the target list is on partition column if
* all range table entries are reference tables and all target expressions
* are column references to the given query level.
*/
if (!targetListOnPartitionColumn)
{
if (RangeTableListContainsOnlyReferenceTables(query->rtable) &&
AllTargetExpressionsAreColumnReferences(targetEntryList))
{
targetListOnPartitionColumn = true;
}
}
return targetListOnPartitionColumn;
}
/*
* AllTargetExpressionsAreColumnReferences returns true if non of the
* elements in the target entry list belong to an outer query (for
* example the query is a sublink and references to another query
* in the from list).
*
* The function also returns true if any of the target entries is not
* a column itself. This might be too restrictive, but, given that we're
* handling a very specific type of queries, that seems acceptable for now.
*/
static bool
AllTargetExpressionsAreColumnReferences(List *targetEntryList)
{
ListCell *targetEntryCell = NULL;
foreach(targetEntryCell, targetEntryList)
{
TargetEntry *targetEntry = lfirst(targetEntryCell);
Var *candidateColumn = NULL;
Expr *strippedColumnExpression = (Expr *) strip_implicit_coercions(
(Node *) targetEntry->expr);
if (IsA(strippedColumnExpression, Var))
{
candidateColumn = (Var *) strippedColumnExpression;
}
else if (IsA(strippedColumnExpression, FieldSelect))
{
FieldSelect *compositeField = (FieldSelect *) strippedColumnExpression;
Expr *fieldExpression = compositeField->arg;
if (IsA(fieldExpression, Var))
{
candidateColumn = (Var *) fieldExpression;
}
}
/* we don't support target entries that are not columns */
if (candidateColumn == NULL)
{
return false;
}
if (candidateColumn->varlevelsup > 0)
{
return false;
}
}
return true;
}
/*
* RangeTableListContainsOnlyReferenceTables returns true if all range table
* entries are reference tables.
*
* The function returns false for range table entries that are not relations.
*
* Note that the function doesn't recurse into subqueries, returns false when
* a subquery is found.
*/
static bool
RangeTableListContainsOnlyReferenceTables(List *rangeTableList)
{
ListCell *rangeTableCell = NULL;
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
Oid relationId = rangeTableEntry->relid;
if (!IsDistributedTable(relationId))
{
return false;
}
if (PartitionMethod(relationId) != DISTRIBUTE_BY_NONE)
{
return false;
}
}
else
{
return false;
}
}
return true;
}
/*
* FullCompositeFieldList gets a composite field list, and checks if all fields
* of composite type are used in the list.
*/
static bool
FullCompositeFieldList(List *compositeFieldList)
{
bool fullCompositeFieldList = true;
bool *compositeFieldArray = NULL;
uint32 compositeFieldCount = 0;
uint32 fieldIndex = 0;
ListCell *fieldSelectCell = NULL;
foreach(fieldSelectCell, compositeFieldList)
{
FieldSelect *fieldSelect = (FieldSelect *) lfirst(fieldSelectCell);
uint32 compositeFieldIndex = 0;
Expr *fieldExpression = fieldSelect->arg;
if (!IsA(fieldExpression, Var))
{
continue;
}
if (compositeFieldArray == NULL)
{
uint32 index = 0;
Var *compositeColumn = (Var *) fieldExpression;
Oid compositeTypeId = compositeColumn->vartype;
Oid compositeRelationId = get_typ_typrelid(compositeTypeId);
/* get composite type attribute count */
Relation relation = relation_open(compositeRelationId, AccessShareLock);
compositeFieldCount = relation->rd_att->natts;
compositeFieldArray = palloc0(compositeFieldCount * sizeof(bool));
relation_close(relation, AccessShareLock);
for (index = 0; index < compositeFieldCount; index++)
{
compositeFieldArray[index] = false;
}
}
compositeFieldIndex = fieldSelect->fieldnum - 1;
compositeFieldArray[compositeFieldIndex] = true;
}
for (fieldIndex = 0; fieldIndex < compositeFieldCount; fieldIndex++)
{
if (!compositeFieldArray[fieldIndex])
{
fullCompositeFieldList = false;
}
}
if (compositeFieldCount == 0)
{
fullCompositeFieldList = false;
}
return fullCompositeFieldList;
}
/*
* CompositeFieldRecursive recursively finds composite field in the query tree
* referred by given expression. If expression does not refer to a composite
* field, then it returns NULL.
*
* If expression is a field select we directly return composite field. If it is
* a column is referenced from a subquery, then we recursively check that subquery
* until we reach the source of that column, and find composite field. If this
* column is referenced from join range table entry, then we resolve which join
* column it refers and recursively use this column with the same query.
*/
static FieldSelect *
CompositeFieldRecursive(Expr *expression, Query *query)
{
FieldSelect *compositeField = NULL;
List *rangetableList = query->rtable;
Index rangeTableEntryIndex = 0;
RangeTblEntry *rangeTableEntry = NULL;
Var *candidateColumn = NULL;
if (IsA(expression, FieldSelect))
{
compositeField = (FieldSelect *) expression;
return compositeField;
}
if (IsA(expression, Var))
{
candidateColumn = (Var *) expression;
}
else
{
return NULL;
}
rangeTableEntryIndex = candidateColumn->varno - 1;
rangeTableEntry = list_nth(rangetableList, rangeTableEntryIndex);
if (rangeTableEntry->rtekind == RTE_SUBQUERY)
{
Query *subquery = rangeTableEntry->subquery;
List *targetEntryList = subquery->targetList;
AttrNumber targetEntryIndex = candidateColumn->varattno - 1;
TargetEntry *subqueryTargetEntry = list_nth(targetEntryList, targetEntryIndex);
Expr *subqueryExpression = subqueryTargetEntry->expr;
compositeField = CompositeFieldRecursive(subqueryExpression, subquery);
}
else if (rangeTableEntry->rtekind == RTE_JOIN)
{
List *joinColumnList = rangeTableEntry->joinaliasvars;
AttrNumber joinColumnIndex = candidateColumn->varattno - 1;
Expr *joinColumn = list_nth(joinColumnList, joinColumnIndex);
compositeField = CompositeFieldRecursive(joinColumn, query);
}
return compositeField;
}
/*
* SubqueryEntryList finds the subquery nodes in the range table entry list, and
* builds a list of subquery range table entries from these subquery nodes. Range
* table entry list also includes subqueries which are pulled up. We don't want
* to add pulled up subqueries to list, so we walk over join tree indexes and
* check range table entries referenced in the join tree.
*/
List *
SubqueryEntryList(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *subqueryEntryList = NIL;
List *joinTreeTableIndexList = NIL;
ListCell *joinTreeTableIndexCell = NULL;
/*
* Extract all range table indexes from the join tree. Note that here we
* only walk over range table entries at this level and do not recurse into
* subqueries.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
{
/*
* Join tree's range table index starts from 1 in the query tree. But,
* list indexes start from 0.
*/
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
int rangeTableListIndex = joinTreeTableIndex - 1;
RangeTblEntry *rangeTableEntry =
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
if (rangeTableEntry->rtekind == RTE_SUBQUERY)
{
subqueryEntryList = lappend(subqueryEntryList, rangeTableEntry);
}
}
return subqueryEntryList;
}
/*
* MultiNodeTree takes in a parsed query tree and uses that tree to construct a
* logical plan. This plan is based on multi-relational algebra. This function
* creates the logical plan in several steps.
*
* First, the function checks if there is a subquery. If there is a subquery
* it recursively creates nested multi trees. If this query has a subquery, the
* function does not create any join trees and jumps to last step.
*
* If there is no subquery, the function calculates the join order using tables
* in the query and join clauses between the tables. Second, the function
* starts building the logical plan from the bottom-up, and begins with the table
* and collect nodes. Third, the function builds the join tree using the join
* order information and table nodes.
*
* In the last step, the function adds the select, project, aggregate, sort,
* group, and limit nodes if they appear in the original query tree.
*/
static MultiNode *
MultiNodeTree(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *targetEntryList = queryTree->targetList;
List *whereClauseList = NIL;
List *joinClauseList = NIL;
List *joinOrderList = NIL;
List *tableEntryList = NIL;
List *tableNodeList = NIL;
List *collectTableList = NIL;
List *subqueryEntryList = NIL;
MultiNode *joinTreeNode = NULL;
MultiSelect *selectNode = NULL;
MultiProject *projectNode = NULL;
MultiExtendedOp *extendedOpNode = NULL;
MultiNode *currentTopNode = NULL;
/* verify we can perform distributed planning on this query */
ErrorIfQueryNotSupported(queryTree);
/* extract where clause qualifiers and verify we can plan for them */
whereClauseList = WhereClauseList(queryTree->jointree);
ValidateClauseList(whereClauseList);
/*
* If we have a subquery, build a multi table node for the subquery and
* add a collect node on top of the multi table node.
*/
subqueryEntryList = SubqueryEntryList(queryTree);
if (subqueryEntryList != NIL)
{
RangeTblEntry *subqueryRangeTableEntry = NULL;
MultiCollect *subqueryCollectNode = CitusMakeNode(MultiCollect);
MultiTable *subqueryNode = NULL;
MultiNode *subqueryExtendedNode = NULL;
Query *subqueryTree = NULL;
List *whereClauseColumnList = NIL;
List *targetListColumnList = NIL;
List *columnList = NIL;
ListCell *columnCell = NULL;
/* we only support single subquery in the entry list */
Assert(list_length(subqueryEntryList) == 1);
subqueryRangeTableEntry = (RangeTblEntry *) linitial(subqueryEntryList);
subqueryTree = subqueryRangeTableEntry->subquery;
/* ensure if subquery satisfies preconditions */
Assert(DeferErrorIfUnsupportedSubqueryRepartition(subqueryTree) == NULL);
subqueryNode = CitusMakeNode(MultiTable);
subqueryNode->relationId = SUBQUERY_RELATION_ID;
subqueryNode->rangeTableId = SUBQUERY_RANGE_TABLE_ID;
subqueryNode->partitionColumn = NULL;
subqueryNode->alias = NULL;
subqueryNode->referenceNames = NULL;
/*
* We disregard pulled subqueries. This changes order of range table list.
* We do not allow subquery joins, so we will have only one range table
* entry in range table list after dropping pulled subquery. For this
* reason, here we are updating columns in the most outer query for where
* clause list and target list accordingly.
*/
Assert(list_length(subqueryEntryList) == 1);
whereClauseColumnList = pull_var_clause_default((Node *) whereClauseList);
targetListColumnList = pull_var_clause_default((Node *) targetEntryList);
columnList = list_concat(whereClauseColumnList, targetListColumnList);
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
column->varno = 1;
}
/* recursively create child nested multitree */
subqueryExtendedNode = MultiNodeTree(subqueryTree);
SetChild((MultiUnaryNode *) subqueryCollectNode, (MultiNode *) subqueryNode);
SetChild((MultiUnaryNode *) subqueryNode, subqueryExtendedNode);
currentTopNode = (MultiNode *) subqueryCollectNode;
}
else
{
bool hasOuterJoin = false;
/*
* We calculate the join order using the list of tables in the query and
* the join clauses between them. Note that this function owns the table
* entry list's memory, and JoinOrderList() shallow copies the list's
* elements.
*/
joinClauseList = JoinClauseList(whereClauseList);
tableEntryList = UsedTableEntryList(queryTree);
/* build the list of multi table nodes */
tableNodeList = MultiTableNodeList(tableEntryList, rangeTableList);
/* add collect nodes on top of the multi table nodes */
collectTableList = AddMultiCollectNodes(tableNodeList);
hasOuterJoin = HasOuterJoin(queryTree);
if (hasOuterJoin)
{
/* use the user-defined join order when there are outer joins */
joinOrderList = FixedJoinOrderList(queryTree->jointree, tableEntryList);
}
else
{
/* find best join order for commutative inner joins */
joinOrderList = JoinOrderList(tableEntryList, joinClauseList);
}
/* build join tree using the join order and collected tables */
joinTreeNode = MultiJoinTree(joinOrderList, collectTableList, joinClauseList);
currentTopNode = joinTreeNode;
}
Assert(currentTopNode != NULL);
/* build select node if the query has selection criteria */
selectNode = MultiSelectNode(whereClauseList);
if (selectNode != NULL)
{
SetChild((MultiUnaryNode *) selectNode, currentTopNode);
currentTopNode = (MultiNode *) selectNode;
}
/* build project node for the columns to project */
projectNode = MultiProjectNode(targetEntryList);
SetChild((MultiUnaryNode *) projectNode, currentTopNode);
currentTopNode = (MultiNode *) projectNode;
/*
* We build the extended operator node to capture aggregate functions, group
* clauses, sort clauses, limit/offset clauses, and expressions. We need to
* distinguish between aggregates and expressions; and we address this later
* in the logical optimizer.
*/
extendedOpNode = MultiExtendedOpNode(queryTree);
SetChild((MultiUnaryNode *) extendedOpNode, currentTopNode);
currentTopNode = (MultiNode *) extendedOpNode;
return currentTopNode;
}
/*
* DeferredErrorIfUnsupportedRecurringTuplesJoin returns true if there exists a outer join
* between reference table and distributed tables which does not follow
* the rules :
* - Reference tables can not be located in the outer part of the semi join or the
* anti join. Otherwise, we may have duplicate results. Although getting duplicate
* results is not possible by checking the equality on the column of the reference
* table and partition column of distributed table, we still keep these checks.
* Because, using the reference table in the outer part of the semi join or anti
* join is not very common.
* - Reference tables can not be located in the outer part of the left join
* (Note that PostgreSQL converts right joins to left joins. While converting
* join types, innerrel and outerrel are also switched.) Otherwise we will
* definitely have duplicate rows. Beside, reference tables can not be used
* with full outer joins because of the same reason.
*/
static DeferredErrorMessage *
DeferredErrorIfUnsupportedRecurringTuplesJoin(
PlannerRestrictionContext *plannerRestrictionContext)
{
List *joinRestrictionList =
plannerRestrictionContext->joinRestrictionContext->joinRestrictionList;
ListCell *joinRestrictionCell = NULL;
RecurringTuplesType recurType = RECURRING_TUPLES_INVALID;
foreach(joinRestrictionCell, joinRestrictionList)
{
JoinRestriction *joinRestriction = (JoinRestriction *) lfirst(
joinRestrictionCell);
JoinType joinType = joinRestriction->joinType;
PlannerInfo *plannerInfo = joinRestriction->plannerInfo;
RelOptInfo *innerrel = joinRestriction->innerrel;
RelOptInfo *outerrel = joinRestriction->outerrel;
if (joinType == JOIN_SEMI || joinType == JOIN_ANTI || joinType == JOIN_LEFT)
{
if (ShouldRecurseForRecurringTuplesJoinChecks(outerrel) &&
RelationInfoContainsRecurringTuples(plannerInfo, outerrel, &recurType))
{
break;
}
}
else if (joinType == JOIN_FULL)
{
if ((ShouldRecurseForRecurringTuplesJoinChecks(innerrel) &&
RelationInfoContainsRecurringTuples(plannerInfo, innerrel,
&recurType)) ||
(ShouldRecurseForRecurringTuplesJoinChecks(outerrel) &&
RelationInfoContainsRecurringTuples(plannerInfo, outerrel, &recurType)))
{
break;
}
}
}
if (recurType == RECURRING_TUPLES_REFERENCE_TABLE)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery",
"There exist a reference table in the outer "
"part of the outer join", NULL);
}
else if (recurType == RECURRING_TUPLES_FUNCTION)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery",
"There exist a table function in the outer "
"part of the outer join", NULL);
}
else if (recurType == RECURRING_TUPLES_EMPTY_JOIN_TREE)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot pushdown the subquery",
"There exist a subquery without FROM in the outer "
"part of the outer join", NULL);
}
return NULL;
}
/*
* ShouldRecurseForRecurringTuplesJoinChecks is a helper function for deciding
* on whether the input relOptInfo should be checked for table expressions that
* generate the same tuples in every query on a shard. We use this to avoid
* redundant checks and false positives in complex join trees.
*/
static bool
ShouldRecurseForRecurringTuplesJoinChecks(RelOptInfo *relOptInfo)
{
bool shouldRecurse = true;
/*
* We shouldn't recursively go down for joins since we're already
* going to process each join seperately. Otherwise we'd restrict
* the coverage. See the below sketch where (h) denotes a hash
* distributed relation, (r) denotes a reference table, (L) denotes
* LEFT JOIN and (I) denotes INNER JOIN. If we're to recurse into
* the inner join, we'd be preventing to push down the following
* join tree, which is actually safe to push down.
*
* (L)
* / \
* (I) h
* / \
* r h
*/
if (relOptInfo->reloptkind == RELOPT_JOINREL)
{
return false;
}
/*
* Note that we treat the same query where relations appear in subqueries
* differently. (i.e., use SELECT * FROM r; instead of r)
*
* In that case, to relax some restrictions, we do the following optimization:
* If the subplan (i.e., plannerInfo corresponding to the subquery) contains any
* joins, we skip reference table checks keeping in mind that the join is already
* going to be processed seperately. This optimization should suffice for many
* use cases.
*/
if (relOptInfo->reloptkind == RELOPT_BASEREL && relOptInfo->subroot != NULL)
{
PlannerInfo *subroot = relOptInfo->subroot;
if (list_length(subroot->join_rel_list) > 0)
{
RelOptInfo *subqueryJoin = linitial(subroot->join_rel_list);
/*
* Subqueries without relations (e.g. SELECT 1) are a little funny.
* They are treated as having a join, but the join is between 0
* relations and won't be in the join restriction list and therefore
* won't be revisited in DeferredErrorIfUnsupportedRecurringTuplesJoin.
*
* We therefore only skip joins with >0 relations.
*/
if (bms_num_members(subqueryJoin->relids) > 0)
{
shouldRecurse = false;
}
}
}
return shouldRecurse;
}
/*
* RelationInfoContainsRecurringTuples checks whether the relationInfo
* contains any recurring table expression, namely a reference table,
* or immutable function. If found, RelationInfoContainsRecurringTuples
* returns true.
*
* Note that since relation ids of relationInfo indexes to the range
* table entry list of planner info, planner info is also passed.
*/
static bool
RelationInfoContainsRecurringTuples(PlannerInfo *plannerInfo, RelOptInfo *relationInfo,
RecurringTuplesType *recurType)
{
Relids relids = bms_copy(relationInfo->relids);
int relationId = -1;
while ((relationId = bms_first_member(relids)) >= 0)
{
RangeTblEntry *rangeTableEntry = plannerInfo->simple_rte_array[relationId];
/* relationInfo has this range table entry */
if (HasRecurringTuples((Node *) rangeTableEntry, recurType))
{
return true;
}
}
return false;
}
/*
* HasRecurringTuples returns whether any part of the expression will generate
* the same set of tuples in every query on shards when executing a distributed
* query.
*/
bool
HasRecurringTuples(Node *node, RecurringTuplesType *recurType)
{
if (node == NULL)
{
return false;
}
if (IsA(node, RangeTblEntry))
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) node;
if (rangeTableEntry->rtekind == RTE_RELATION)
{
Oid relationId = rangeTableEntry->relid;
if (IsDistributedTable(relationId) &&
PartitionMethod(relationId) == DISTRIBUTE_BY_NONE)
{
*recurType = RECURRING_TUPLES_REFERENCE_TABLE;
/*
* Tuples from reference tables will recur in every query on shards
* that includes it.
*/
return true;
}
}
else if (rangeTableEntry->rtekind == RTE_FUNCTION)
{
*recurType = RECURRING_TUPLES_FUNCTION;
/*
* Tuples from functions will recur in every query on shards that includes
* it.
*/
return true;
}
return range_table_walker(list_make1(rangeTableEntry), HasRecurringTuples,
recurType, 0);
}
else if (IsA(node, Query))
{
Query *query = (Query *) node;
if (query->rtable == NIL)
{
*recurType = RECURRING_TUPLES_EMPTY_JOIN_TREE;
/*
* Queries with empty join trees will recur in every query on shards
* that includes it.
*/
return true;
}
return query_tree_walker((Query *) node, HasRecurringTuples,
recurType, QTW_EXAMINE_RTES);
}
return expression_tree_walker(node, HasRecurringTuples, recurType);
}
/*
* ErrorIfQueryNotSupported checks that we can perform distributed planning for
* the given query. The checks in this function will be removed as we support
* more functionality in our distributed planning.
*/
static void
ErrorIfQueryNotSupported(Query *queryTree)
{
char *errorMessage = NULL;
bool hasTablesample = false;
bool hasUnsupportedJoin = false;
bool hasComplexJoinOrder = false;
bool hasComplexRangeTableType = false;
bool preconditionsSatisfied = true;
const char *errorHint = NULL;
const char *joinHint = "Consider joining tables on partition column and have "
"equal filter on joining columns.";
const char *filterHint = "Consider using an equality filter on the distributed "
"table's partition column.";
/*
* There could be Sublinks in the target list as well. To produce better
* error messages we're checking sublinks in the where clause.
*/
if (queryTree->hasSubLinks && SublinkList(queryTree) == NIL)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with subquery outside the "
"FROM and WHERE clauses";
errorHint = filterHint;
}
if (queryTree->hasWindowFuncs)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with window functions";
errorHint = filterHint;
}
if (queryTree->setOperations)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with UNION, INTERSECT, or "
"EXCEPT";
errorHint = filterHint;
}
if (queryTree->hasRecursive)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with RECURSIVE";
errorHint = filterHint;
}
if (queryTree->cteList)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with common table expressions";
errorHint = filterHint;
}
if (queryTree->hasForUpdate)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with FOR UPDATE/SHARE commands";
errorHint = filterHint;
}
if (queryTree->groupingSets)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with GROUPING SETS, CUBE, "
"or ROLLUP";
errorHint = filterHint;
}
hasTablesample = HasTablesample(queryTree);
if (hasTablesample)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query which use TABLESAMPLE";
errorHint = filterHint;
}
hasUnsupportedJoin = HasUnsupportedJoinWalker((Node *) queryTree->jointree, NULL);
if (hasUnsupportedJoin)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with join types other than "
"INNER or OUTER JOINS";
errorHint = joinHint;
}
hasComplexJoinOrder = HasComplexJoinOrder(queryTree);
if (hasComplexJoinOrder)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with complex join orders";
errorHint = joinHint;
}
hasComplexRangeTableType = HasComplexRangeTableType(queryTree);
if (hasComplexRangeTableType)
{
preconditionsSatisfied = false;
errorMessage = "could not run distributed query with complex table expressions";
errorHint = filterHint;
}
/* finally check and error out if not satisfied */
if (!preconditionsSatisfied)
{
bool showHint = ErrorHintRequired(errorHint, queryTree);
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("%s", errorMessage),
showHint ? errhint("%s", errorHint) : 0));
}
}
/* HasTablesample returns tree if the query contains tablesample */
static bool
HasTablesample(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
ListCell *rangeTableEntryCell = NULL;
bool hasTablesample = false;
foreach(rangeTableEntryCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = lfirst(rangeTableEntryCell);
if (rangeTableEntry->tablesample)
{
hasTablesample = true;
break;
}
}
return hasTablesample;
}
/*
* HasUnsupportedJoinWalker returns tree if the query contains an unsupported
* join type. We currently support inner, left, right, full and anti joins.
* Semi joins are not supported. A full description of these join types is
* included in nodes/nodes.h.
*/
static bool
HasUnsupportedJoinWalker(Node *node, void *context)
{
bool hasUnsupportedJoin = false;
if (node == NULL)
{
return false;
}
if (IsA(node, JoinExpr))
{
JoinExpr *joinExpr = (JoinExpr *) node;
JoinType joinType = joinExpr->jointype;
bool outerJoin = IS_OUTER_JOIN(joinType);
if (!outerJoin && joinType != JOIN_INNER)
{
hasUnsupportedJoin = true;
}
}
if (!hasUnsupportedJoin)
{
hasUnsupportedJoin = expression_tree_walker(node, HasUnsupportedJoinWalker,
NULL);
}
return hasUnsupportedJoin;
}
/*
* ErrorHintRequired returns true if error hint shold be displayed with the
* query error message. Error hint is valid only for queries involving reference
* and hash partitioned tables. If more than one hash distributed table is
* present we display the hint only if the tables are colocated. If the query
* only has reference table(s), then it is handled by router planner.
*/
static bool
ErrorHintRequired(const char *errorHint, Query *queryTree)
{
List *rangeTableList = NIL;
ListCell *rangeTableCell = NULL;
List *colocationIdList = NIL;
if (errorHint == NULL)
{
return false;
}
ExtractRangeTableRelationWalker((Node *) queryTree, &rangeTableList);
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rangeTableCell);
Oid relationId = rte->relid;
char partitionMethod = PartitionMethod(relationId);
if (partitionMethod == DISTRIBUTE_BY_NONE)
{
continue;
}
else if (partitionMethod == DISTRIBUTE_BY_HASH)
{
int colocationId = TableColocationId(relationId);
colocationIdList = list_append_unique_int(colocationIdList, colocationId);
}
else
{
return false;
}
}
/* do not display the hint if there are more than one colocation group */
if (list_length(colocationIdList) > 1)
{
return false;
}
return true;
}
/*
* DeferErrorIfSubqueryNotSupported checks that we can perform distributed planning for
* the given subquery. If not, a deferred error is returned. The function recursively
* does this check to all lower levels of the subquery.
*/
static DeferredErrorMessage *
DeferErrorIfUnsupportedSubqueryRepartition(Query *subqueryTree)
{
char *errorDetail = NULL;
bool preconditionsSatisfied = true;
List *joinTreeTableIndexList = NIL;
int rangeTableIndex = 0;
RangeTblEntry *rangeTableEntry = NULL;
Query *innerSubquery = NULL;
if (!subqueryTree->hasAggs)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries without aggregates are not supported yet";
}
if (subqueryTree->groupClause == NIL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries without group by clause are not supported yet";
}
if (subqueryTree->sortClause != NULL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries with order by clause are not supported yet";
}
if (subqueryTree->limitCount != NULL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries with limit are not supported yet";
}
if (subqueryTree->limitOffset != NULL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries with offset are not supported yet";
}
if (subqueryTree->hasSubLinks)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries other than from-clause subqueries are unsupported";
}
/* finally check and return error if conditions are not satisfied */
if (!preconditionsSatisfied)
{
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"cannot perform distributed planning on this query",
errorDetail, NULL);
}
/*
* Extract all range table indexes from the join tree. Note that sub-queries
* that get pulled up by PostgreSQL don't appear in this join tree.
*/
ExtractRangeTableIndexWalker((Node *) subqueryTree->jointree,
&joinTreeTableIndexList);
Assert(list_length(joinTreeTableIndexList) == 1);
/* continue with the inner subquery */
rangeTableIndex = linitial_int(joinTreeTableIndexList);
rangeTableEntry = rt_fetch(rangeTableIndex, subqueryTree->rtable);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
return NULL;
}
Assert(rangeTableEntry->rtekind == RTE_SUBQUERY);
innerSubquery = rangeTableEntry->subquery;
/* recursively continue to the inner subqueries */
return DeferErrorIfUnsupportedSubqueryRepartition(innerSubquery);
}
/*
* HasOuterJoin returns true if query has a outer join.
*/
static bool
HasOuterJoin(Query *queryTree)
{
bool hasOuterJoin = HasOuterJoinWalker((Node *) queryTree->jointree, NULL);
return hasOuterJoin;
}
/*
* HasOuterJoinWalker returns true if the query has an outer join. The context
* parameter should be NULL.
*/
static bool
HasOuterJoinWalker(Node *node, void *context)
{
bool hasOuterJoin = false;
if (node == NULL)
{
return false;
}
if (IsA(node, JoinExpr))
{
JoinExpr *joinExpr = (JoinExpr *) node;
JoinType joinType = joinExpr->jointype;
if (IS_OUTER_JOIN(joinType))
{
hasOuterJoin = true;
}
}
if (!hasOuterJoin)
{
hasOuterJoin = expression_tree_walker(node, HasOuterJoinWalker, NULL);
}
return hasOuterJoin;
}
/*
* HasComplexJoinOrder returns true if join tree is not a left-handed tree i.e.
* it has a join expression in at least one right argument.
*/
static bool
HasComplexJoinOrder(Query *queryTree)
{
bool hasComplexJoinOrder = false;
List *joinList = NIL;
ListCell *joinCell = NULL;
joinList = JoinExprList(queryTree->jointree);
foreach(joinCell, joinList)
{
JoinExpr *joinExpr = lfirst(joinCell);
if (IsA(joinExpr->rarg, JoinExpr))
{
hasComplexJoinOrder = true;
break;
}
}
return hasComplexJoinOrder;
}
/*
* HasComplexRangeTableType checks if the given query tree contains any complex
* range table types. For this, the function walks over all range tables in the
* join tree, and checks if they correspond to simple relations or subqueries.
* If they don't, the function assumes the query has complex range tables.
*/
static bool
HasComplexRangeTableType(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *joinTreeTableIndexList = NIL;
ListCell *joinTreeTableIndexCell = NULL;
bool hasComplexRangeTableType = false;
/*
* Extract all range table indexes from the join tree. Note that sub-queries
* that get pulled up by PostgreSQL don't appear in this join tree.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
{
/*
* Join tree's range table index starts from 1 in the query tree. But,
* list indexes start from 0.
*/
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
int rangeTableListIndex = joinTreeTableIndex - 1;
RangeTblEntry *rangeTableEntry =
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
/*
* Check if the range table in the join tree is a simple relation or a
* subquery.
*/
if (rangeTableEntry->rtekind != RTE_RELATION &&
rangeTableEntry->rtekind != RTE_SUBQUERY)
{
hasComplexRangeTableType = true;
}
/*
* Check if the subquery range table entry includes children inheritance.
*
* Note that PostgreSQL flattens out simple union all queries into an
* append relation, sets "inh" field of RangeTblEntry to true and deletes
* set operations. Here we check this for subqueries.
*/
if (rangeTableEntry->rtekind == RTE_SUBQUERY && rangeTableEntry->inh)
{
hasComplexRangeTableType = true;
}
}
return hasComplexRangeTableType;
}
/*
* ExtractRangeTableIndexWalker walks over a join tree, and finds all range
* table indexes in that tree.
*/
bool
ExtractRangeTableIndexWalker(Node *node, List **rangeTableIndexList)
{
bool walkerResult = false;
if (node == NULL)
{
return false;
}
if (IsA(node, RangeTblRef))
{
int rangeTableIndex = ((RangeTblRef *) node)->rtindex;
(*rangeTableIndexList) = lappend_int(*rangeTableIndexList, rangeTableIndex);
}
else
{
walkerResult = expression_tree_walker(node, ExtractRangeTableIndexWalker,
rangeTableIndexList);
}
return walkerResult;
}
/*
* WhereClauseList walks over the FROM expression in the query tree, and builds
* a list of all clauses from the expression tree. The function checks for both
* implicitly and explicitly defined clauses, but only selects INNER join
* explicit clauses, and skips any outer-join clauses. Explicit clauses are
* expressed as "SELECT ... FROM R1 INNER JOIN R2 ON R1.A = R2.A". Implicit
* joins differ in that they live in the WHERE clause, and are expressed as
* "SELECT ... FROM ... WHERE R1.a = R2.a".
*/
List *
WhereClauseList(FromExpr *fromExpr)
{
FromExpr *fromExprCopy = copyObject(fromExpr);
QualifierWalkerContext *walkerContext = palloc0(sizeof(QualifierWalkerContext));
List *whereClauseList = NIL;
ExtractFromExpressionWalker((Node *) fromExprCopy, walkerContext);
whereClauseList = walkerContext->baseQualifierList;
return whereClauseList;
}
/*
* QualifierList walks over the FROM expression in the query tree, and builds
* a list of all qualifiers from the expression tree. The function checks for
* both implicitly and explicitly defined qualifiers. Note that this function
* is very similar to WhereClauseList(), but QualifierList() also includes
* outer-join clauses.
*/
List *
QualifierList(FromExpr *fromExpr)
{
FromExpr *fromExprCopy = copyObject(fromExpr);
QualifierWalkerContext *walkerContext = palloc0(sizeof(QualifierWalkerContext));
List *qualifierList = NIL;
ExtractFromExpressionWalker((Node *) fromExprCopy, walkerContext);
qualifierList = list_concat(qualifierList, walkerContext->baseQualifierList);
qualifierList = list_concat(qualifierList, walkerContext->outerJoinQualifierList);
return qualifierList;
}
/*
* ValidateClauseList walks over the given list of clauses, and checks that we
* can recognize all the clauses. This function ensures that we do not drop an
* unsupported clause type on the floor, and thus prevents erroneous results.
*/
static void
ValidateClauseList(List *clauseList)
{
ListCell *clauseCell = NULL;
foreach(clauseCell, clauseList)
{
Node *clause = (Node *) lfirst(clauseCell);
if (!(IsSelectClause(clause) || IsJoinClause(clause) || or_clause(clause)))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported clause type")));
}
}
}
/*
* JoinClauseList finds the join clauses from the given where clause expression
* list, and returns them. The function does not iterate into nested OR clauses
* and relies on find_duplicate_ors() in the optimizer to pull up factorizable
* OR clauses.
*/
List *
JoinClauseList(List *whereClauseList)
{
List *joinClauseList = NIL;
ListCell *whereClauseCell = NULL;
foreach(whereClauseCell, whereClauseList)
{
Node *whereClause = (Node *) lfirst(whereClauseCell);
if (IsJoinClause(whereClause))
{
joinClauseList = lappend(joinClauseList, whereClause);
}
}
return joinClauseList;
}
/*
* ExtractFromExpressionWalker walks over a FROM expression, and finds all
* implicit and explicit qualifiers in the expression. The function looks at
* join and from expression nodes to find qualifiers, and returns these
* qualifiers.
*
* Note that we don't want outer join clauses in regular outer join planning,
* but we need outer join clauses in subquery pushdown prerequisite checks.
* Therefore, outer join qualifiers are returned in a different list than other
* qualifiers inside the given walker context. For this reason, we return two
* qualifier lists.
*
* Note that we check if the qualifier node in join and from expression nodes
* is a list node. If it is not a list node which is the case for subqueries,
* then we run eval_const_expressions(), canonicalize_qual() and make_ands_implicit()
* on the qualifier node and get a list of flattened implicitly AND'ed qualifier
* list. Actually in the planer phase of PostgreSQL these functions also run on
* subqueries but differently from the outermost query, they are run on a copy
* of parse tree and changes do not get persisted as modifications to the original
* query tree.
*
* Also this function adds SubLinks to the baseQualifierList when they appear on
* the query's WHERE clause. The callers of the function should consider processing
* Sublinks as well.
*/
static bool
ExtractFromExpressionWalker(Node *node, QualifierWalkerContext *walkerContext)
{
bool walkerResult = false;
if (node == NULL)
{
return false;
}
/*
* Get qualifier lists of join and from expression nodes. Note that in the
* case of subqueries, PostgreSQL can skip simplifying, flattening and
* making ANDs implicit. If qualifiers node is not a list, then we run these
* preprocess routines on qualifiers node.
*/
if (IsA(node, JoinExpr))
{
List *joinQualifierList = NIL;
JoinExpr *joinExpression = (JoinExpr *) node;
Node *joinQualifiersNode = joinExpression->quals;
JoinType joinType = joinExpression->jointype;
if (joinQualifiersNode != NULL)
{
if (IsA(joinQualifiersNode, List))
{
joinQualifierList = (List *) joinQualifiersNode;
}
else
{
/* this part of code only run for subqueries */
Node *joinClause = eval_const_expressions(NULL, joinQualifiersNode);
joinClause = (Node *) canonicalize_qual((Expr *) joinClause);
joinQualifierList = make_ands_implicit((Expr *) joinClause);
}
}
/* return outer join clauses in a separate list */
if (joinType == JOIN_INNER)
{
walkerContext->baseQualifierList =
list_concat(walkerContext->baseQualifierList, joinQualifierList);
}
else if (IS_OUTER_JOIN(joinType))
{
walkerContext->outerJoinQualifierList =
list_concat(walkerContext->outerJoinQualifierList, joinQualifierList);
}
}
else if (IsA(node, FromExpr))
{
List *fromQualifierList = NIL;
FromExpr *fromExpression = (FromExpr *) node;
Node *fromQualifiersNode = fromExpression->quals;
if (fromQualifiersNode != NULL)
{
if (IsA(fromQualifiersNode, List))
{
fromQualifierList = (List *) fromQualifiersNode;
}
else
{
/* this part of code only run for subqueries */
Node *fromClause = eval_const_expressions(NULL, fromQualifiersNode);
fromClause = (Node *) canonicalize_qual((Expr *) fromClause);
fromQualifierList = make_ands_implicit((Expr *) fromClause);
}
walkerContext->baseQualifierList =
list_concat(walkerContext->baseQualifierList, fromQualifierList);
}
}
walkerResult = expression_tree_walker(node, ExtractFromExpressionWalker,
(void *) walkerContext);
return walkerResult;
}
/*
* IsJoinClause determines if the given node is a join clause according to our
* criteria. Our criteria defines a join clause as an equi join operator between
* two columns that belong to two different tables.
*/
bool
IsJoinClause(Node *clause)
{
bool isJoinClause = false;
OpExpr *operatorExpression = NULL;
List *argumentList = NIL;
Node *leftArgument = NULL;
Node *rightArgument = NULL;
List *leftColumnList = NIL;
List *rightColumnList = NIL;
if (!IsA(clause, OpExpr))
{
return false;
}
operatorExpression = (OpExpr *) clause;
argumentList = operatorExpression->args;
/* join clauses must have two arguments */
if (list_length(argumentList) != 2)
{
return false;
}
/* get left and right side of the expression */
leftArgument = (Node *) linitial(argumentList);
rightArgument = (Node *) lsecond(argumentList);
leftColumnList = pull_var_clause_default(leftArgument);
rightColumnList = pull_var_clause_default(rightArgument);
/* each side of the expression should have only one column */
if ((list_length(leftColumnList) == 1) && (list_length(rightColumnList) == 1))
{
Var *leftColumn = (Var *) linitial(leftColumnList);
Var *rightColumn = (Var *) linitial(rightColumnList);
bool equiJoin = false;
bool joinBetweenDifferentTables = false;
bool equalsOperator = OperatorImplementsEquality(operatorExpression->opno);
if (equalsOperator)
{
equiJoin = true;
}
if (leftColumn->varno != rightColumn->varno)
{
joinBetweenDifferentTables = true;
}
/* codifies our logic for determining if this node is a join clause */
if (equiJoin && joinBetweenDifferentTables)
{
isJoinClause = true;
}
}
return isJoinClause;
}
/*
* TableEntryList finds the regular relation nodes in the range table entry
* list, and builds a list of table entries from these regular relation nodes.
*/
List *
TableEntryList(List *rangeTableList)
{
List *tableEntryList = NIL;
ListCell *rangeTableCell = NULL;
uint32 tableId = 1; /* range table indices start at 1 */
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
TableEntry *tableEntry = (TableEntry *) palloc0(sizeof(TableEntry));
tableEntry->relationId = rangeTableEntry->relid;
tableEntry->rangeTableId = tableId;
tableEntryList = lappend(tableEntryList, tableEntry);
}
/*
* Increment tableId regardless so that table entry's tableId remains
* congruent with column's range table reference (varno).
*/
tableId++;
}
return tableEntryList;
}
/*
* UsedTableEntryList returns list of relation range table entries
* that are referenced within the query. Unused entries due to query
* flattening or re-rewriting are ignored.
*/
List *
UsedTableEntryList(Query *query)
{
List *tableEntryList = NIL;
List *rangeTableList = query->rtable;
List *joinTreeTableIndexList = NIL;
ListCell *joinTreeTableIndexCell = NULL;
ExtractRangeTableIndexWalker((Node *) query->jointree, &joinTreeTableIndexList);
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
{
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
RangeTblEntry *rangeTableEntry = rt_fetch(joinTreeTableIndex, rangeTableList);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
TableEntry *tableEntry = (TableEntry *) palloc0(sizeof(TableEntry));
tableEntry->relationId = rangeTableEntry->relid;
tableEntry->rangeTableId = joinTreeTableIndex;
tableEntryList = lappend(tableEntryList, tableEntry);
}
}
return tableEntryList;
}
/*
* MultiTableNodeList builds a list of MultiTable nodes from the given table
* entry list. A multi table node represents one entry from the range table
* list. These entries may belong to the same physical relation in the case of
* self-joins.
*/
static List *
MultiTableNodeList(List *tableEntryList, List *rangeTableList)
{
List *tableNodeList = NIL;
ListCell *tableEntryCell = NULL;
foreach(tableEntryCell, tableEntryList)
{
TableEntry *tableEntry = (TableEntry *) lfirst(tableEntryCell);
Oid relationId = tableEntry->relationId;
uint32 rangeTableId = tableEntry->rangeTableId;
Var *partitionColumn = PartitionColumn(relationId, rangeTableId);
RangeTblEntry *rangeTableEntry = rt_fetch(rangeTableId, rangeTableList);
MultiTable *tableNode = CitusMakeNode(MultiTable);
tableNode->subquery = NULL;
tableNode->relationId = relationId;
tableNode->rangeTableId = rangeTableId;
tableNode->partitionColumn = partitionColumn;
tableNode->alias = rangeTableEntry->alias;
tableNode->referenceNames = rangeTableEntry->eref;
tableNodeList = lappend(tableNodeList, tableNode);
}
return tableNodeList;
}
/* Adds a MultiCollect node on top of each MultiTable node in the given list. */
static List *
AddMultiCollectNodes(List *tableNodeList)
{
List *collectTableList = NIL;
ListCell *tableNodeCell = NULL;
foreach(tableNodeCell, tableNodeList)
{
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
MultiCollect *collectNode = CitusMakeNode(MultiCollect);
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) tableNode);
collectTableList = lappend(collectTableList, collectNode);
}
return collectTableList;
}
/*
* MultiJoinTree takes in the join order information and the list of tables, and
* builds a join tree by applying the corresponding join rules. The function
* builds a left deep tree, as expressed by the join order list.
*
* The function starts by setting the first table as the top node in the join
* tree. Then, the function iterates over the list of tables, and builds a new
* join node between the top of the join tree and the next table in the list.
* At each iteration, the function sets the top of the join tree to the newly
* built list. This results in a left deep join tree, and the function returns
* this tree after every table in the list has been joined.
*/
static MultiNode *
MultiJoinTree(List *joinOrderList, List *collectTableList, List *joinWhereClauseList)
{
MultiNode *currentTopNode = NULL;
ListCell *joinOrderCell = NULL;
bool firstJoinNode = true;
foreach(joinOrderCell, joinOrderList)
{
JoinOrderNode *joinOrderNode = (JoinOrderNode *) lfirst(joinOrderCell);
uint32 joinTableId = joinOrderNode->tableEntry->rangeTableId;
MultiCollect *collectNode = CollectNodeForTable(collectTableList, joinTableId);
if (firstJoinNode)
{
currentTopNode = (MultiNode *) collectNode;
firstJoinNode = false;
}
else
{
JoinRuleType joinRuleType = joinOrderNode->joinRuleType;
JoinType joinType = joinOrderNode->joinType;
Var *partitionColumn = joinOrderNode->partitionColumn;
MultiNode *newJoinNode = NULL;
List *joinClauseList = joinOrderNode->joinClauseList;
/*
* Build a join node between the top of our join tree and the next
* table in the join order.
*/
newJoinNode = ApplyJoinRule(currentTopNode, (MultiNode *) collectNode,
joinRuleType, partitionColumn, joinType,
joinClauseList);
/* the new join node becomes the top of our join tree */
currentTopNode = newJoinNode;
}
}
/* current top node points to the entire left deep join tree */
return currentTopNode;
}
/*
* CollectNodeForTable finds the MultiCollect node whose MultiTable node has the
* given range table identifier. Note that this function expects each collect
* node in the given list to have one table node as its child.
*/
static MultiCollect *
CollectNodeForTable(List *collectTableList, uint32 rangeTableId)
{
MultiCollect *collectNodeForTable = NULL;
ListCell *collectTableCell = NULL;
foreach(collectTableCell, collectTableList)
{
MultiCollect *collectNode = (MultiCollect *) lfirst(collectTableCell);
List *tableIdList = OutputTableIdList((MultiNode *) collectNode);
uint32 tableId = (uint32) linitial_int(tableIdList);
Assert(list_length(tableIdList) == 1);
if (tableId == rangeTableId)
{
collectNodeForTable = collectNode;
break;
}
}
Assert(collectNodeForTable != NULL);
return collectNodeForTable;
}
/*
* MultiSelectNode extracts the select clauses from the given where clause list,
* and builds a MultiSelect node from these clauses. If the expression tree does
* not have any select clauses, the function return null.
*/
static MultiSelect *
MultiSelectNode(List *whereClauseList)
{
List *selectClauseList = NIL;
MultiSelect *selectNode = NULL;
ListCell *whereClauseCell = NULL;
foreach(whereClauseCell, whereClauseList)
{
Node *whereClause = (Node *) lfirst(whereClauseCell);
if (IsSelectClause(whereClause) || or_clause(whereClause))
{
selectClauseList = lappend(selectClauseList, whereClause);
}
}
if (list_length(selectClauseList) > 0)
{
selectNode = CitusMakeNode(MultiSelect);
selectNode->selectClauseList = selectClauseList;
}
return selectNode;
}
/*
* IsSelectClause determines if the given node is a select clause according to
* our criteria. Our criteria defines a select clause as an expression that has
* zero or more columns belonging to only one table. The function assumes that
* no sublinks exists in the clause.
*/
static bool
IsSelectClause(Node *clause)
{
List *columnList = NIL;
ListCell *columnCell = NULL;
Var *firstColumn = NULL;
Index firstColumnTableId = 0;
bool isSelectClause = true;
/* extract columns from the clause */
columnList = pull_var_clause_default(clause);
if (list_length(columnList) == 0)
{
return true;
}
/* get first column's tableId */
firstColumn = (Var *) linitial(columnList);
firstColumnTableId = firstColumn->varno;
/* check if all columns are from the same table */
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
if (column->varno != firstColumnTableId)
{
isSelectClause = false;
}
}
return isSelectClause;
}
/*
* MultiProjectNode builds the project node using the target entry information
* from the query tree. The project node only encapsulates projected columns,
* and does not include aggregates, group clauses, or project expressions.
*/
static MultiProject *
MultiProjectNode(List *targetEntryList)
{
MultiProject *projectNode = NULL;
List *uniqueColumnList = NIL;
List *columnList = NIL;
ListCell *columnCell = NULL;
/* extract the list of columns and remove any duplicates */
columnList = pull_var_clause_default((Node *) targetEntryList);
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
uniqueColumnList = list_append_unique(uniqueColumnList, column);
}
/* create project node with list of columns to project */
projectNode = CitusMakeNode(MultiProject);
projectNode->columnList = uniqueColumnList;
return projectNode;
}
/* Builds the extended operator node using fields from the given query tree. */
static MultiExtendedOp *
MultiExtendedOpNode(Query *queryTree)
{
MultiExtendedOp *extendedOpNode = CitusMakeNode(MultiExtendedOp);
extendedOpNode->targetList = queryTree->targetList;
extendedOpNode->groupClauseList = queryTree->groupClause;
extendedOpNode->sortClauseList = queryTree->sortClause;
extendedOpNode->limitCount = queryTree->limitCount;
extendedOpNode->limitOffset = queryTree->limitOffset;
extendedOpNode->havingQual = queryTree->havingQual;
extendedOpNode->distinctClause = queryTree->distinctClause;
extendedOpNode->hasDistinctOn = queryTree->hasDistinctOn;
return extendedOpNode;
}
/* Helper function to return the parent node of the given node. */
MultiNode *
ParentNode(MultiNode *multiNode)
{
MultiNode *parentNode = multiNode->parentNode;
return parentNode;
}
/* Helper function to return the child of the given unary node. */
MultiNode *
ChildNode(MultiUnaryNode *multiNode)
{
MultiNode *childNode = multiNode->childNode;
return childNode;
}
/* Helper function to return the grand child of the given unary node. */
MultiNode *
GrandChildNode(MultiUnaryNode *multiNode)
{
MultiNode *childNode = ChildNode(multiNode);
MultiNode *grandChildNode = ChildNode((MultiUnaryNode *) childNode);
return grandChildNode;
}
/* Sets the given child node as a child of the given unary parent node. */
void
SetChild(MultiUnaryNode *parent, MultiNode *child)
{
parent->childNode = child;
child->parentNode = (MultiNode *) parent;
}
/* Sets the given child node as a left child of the given parent node. */
void
SetLeftChild(MultiBinaryNode *parent, MultiNode *leftChild)
{
parent->leftChildNode = leftChild;
leftChild->parentNode = (MultiNode *) parent;
}
/* Sets the given child node as a right child of the given parent node. */
void
SetRightChild(MultiBinaryNode *parent, MultiNode *rightChild)
{
parent->rightChildNode = rightChild;
rightChild->parentNode = (MultiNode *) parent;
}
/* Returns true if the given node is a unary operator. */
bool
UnaryOperator(MultiNode *node)
{
bool unaryOperator = false;
if (CitusIsA(node, MultiTreeRoot) || CitusIsA(node, MultiTable) ||
CitusIsA(node, MultiCollect) || CitusIsA(node, MultiSelect) ||
CitusIsA(node, MultiProject) || CitusIsA(node, MultiPartition) ||
CitusIsA(node, MultiExtendedOp))
{
unaryOperator = true;
}
return unaryOperator;
}
/* Returns true if the given node is a binary operator. */
bool
BinaryOperator(MultiNode *node)
{
bool binaryOperator = false;
if (CitusIsA(node, MultiJoin) || CitusIsA(node, MultiCartesianProduct))
{
binaryOperator = true;
}
return binaryOperator;
}
/*
* OutputTableIdList finds all table identifiers that are output by the given
* multi node, and returns these identifiers in a new list.
*/
List *
OutputTableIdList(MultiNode *multiNode)
{
List *tableIdList = NIL;
List *tableNodeList = FindNodesOfType(multiNode, T_MultiTable);
ListCell *tableNodeCell = NULL;
foreach(tableNodeCell, tableNodeList)
{
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
int tableId = (int) tableNode->rangeTableId;
if (tableId != SUBQUERY_RANGE_TABLE_ID)
{
tableIdList = lappend_int(tableIdList, tableId);
}
}
return tableIdList;
}
/*
* FindNodesOfType takes in a given logical plan tree, and recursively traverses
* the tree in preorder. The function finds all nodes of requested type during
* the traversal, and returns them in a list.
*/
List *
FindNodesOfType(MultiNode *node, int type)
{
List *nodeList = NIL;
int nodeType = T_Invalid;
/* terminal condition for recursion */
if (node == NULL)
{
return NIL;
}
/* current node has expected node type */
nodeType = CitusNodeTag(node);
if (nodeType == type)
{
nodeList = lappend(nodeList, node);
}
if (UnaryOperator(node))
{
MultiNode *childNode = ((MultiUnaryNode *) node)->childNode;
List *childNodeList = FindNodesOfType(childNode, type);
nodeList = list_concat(nodeList, childNodeList);
}
else if (BinaryOperator(node))
{
MultiNode *leftChildNode = ((MultiBinaryNode *) node)->leftChildNode;
MultiNode *rightChildNode = ((MultiBinaryNode *) node)->rightChildNode;
List *leftChildNodeList = FindNodesOfType(leftChildNode, type);
List *rightChildNodeList = FindNodesOfType(rightChildNode, type);
nodeList = list_concat(nodeList, leftChildNodeList);
nodeList = list_concat(nodeList, rightChildNodeList);
}
return nodeList;
}
/*
* NeedsDistributedPlanning checks if the passed in query is a query running
* on a distributed table. If it is, we start distributed planning.
*
* For distributed relations it also assigns identifiers to the relevant RTEs.
*/
bool
NeedsDistributedPlanning(Query *queryTree)
{
CmdType commandType = queryTree->commandType;
List *rangeTableList = NIL;
ListCell *rangeTableCell = NULL;
bool hasLocalRelation = false;
bool hasDistributedRelation = false;
if (commandType != CMD_SELECT && commandType != CMD_INSERT &&
commandType != CMD_UPDATE && commandType != CMD_DELETE)
{
return false;
}
/*
* We can handle INSERT INTO distributed_table SELECT ... even if the SELECT
* part references local tables, so skip the remaining checks.
*/
if (InsertSelectIntoDistributedTable(queryTree))
{
return true;
}
/* extract range table entries for simple relations only */
ExtractRangeTableRelationWalker((Node *) queryTree, &rangeTableList);
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
/* check if relation is local or distributed */
Oid relationId = rangeTableEntry->relid;
if (IsDistributedTable(relationId))
{
hasDistributedRelation = true;
}
else
{
hasLocalRelation = true;
}
}
if (hasLocalRelation && hasDistributedRelation)
{
if (InsertSelectIntoLocalTable(queryTree))
{
ereport(ERROR, (errmsg("cannot INSERT rows from a distributed query into a "
"local table")));
}
ereport(ERROR, (errmsg("cannot plan queries which include both local and "
"distributed relations")));
}
return hasDistributedRelation;
}
/*
* ExtractRangeTableRelationWalker gathers all range table relation entries
* in a query.
*/
bool
ExtractRangeTableRelationWalker(Node *node, List **rangeTableRelationList)
{
bool walkIsComplete = false;
if (node == NULL)
{
return false;
}
if (IsA(node, RangeTblEntry))
{
RangeTblEntry *rangeTable = (RangeTblEntry *) node;
if (rangeTable->rtekind == RTE_RELATION && rangeTable->relkind != RELKIND_VIEW)
{
(*rangeTableRelationList) = lappend(*rangeTableRelationList, rangeTable);
walkIsComplete = false;
}
else
{
walkIsComplete = range_table_walker(list_make1(rangeTable),
ExtractRangeTableRelationWalker,
rangeTableRelationList, 0);
}
}
else if (IsA(node, Query))
{
walkIsComplete = query_tree_walker((Query *) node,
ExtractRangeTableRelationWalker,
rangeTableRelationList, QTW_EXAMINE_RTES);
}
else
{
walkIsComplete = expression_tree_walker(node, ExtractRangeTableRelationWalker,
rangeTableRelationList);
}
return walkIsComplete;
}
/*
* ExtractRangeTableEntryWalker walks over a query tree, and finds all range
* table entries. For recursing into the query tree, this function uses the
* query tree walker since the expression tree walker doesn't recurse into
* sub-queries.
*/
bool
ExtractRangeTableEntryWalker(Node *node, List **rangeTableList)
{
bool walkIsComplete = false;
if (node == NULL)
{
return false;
}
if (IsA(node, RangeTblEntry))
{
RangeTblEntry *rangeTable = (RangeTblEntry *) node;
(*rangeTableList) = lappend(*rangeTableList, rangeTable);
}
else if (IsA(node, Query))
{
walkIsComplete = query_tree_walker((Query *) node,
ExtractRangeTableEntryWalker,
rangeTableList, QTW_EXAMINE_RTES);
}
else
{
walkIsComplete = expression_tree_walker(node, ExtractRangeTableEntryWalker,
rangeTableList);
}
return walkIsComplete;
}
/*
* pull_var_clause_default calls pull_var_clause with the most commonly used
* arguments for distributed planning.
*/
List *
pull_var_clause_default(Node *node)
{
/*
* PVC_REJECT_PLACEHOLDERS is implicit if PVC_INCLUDE_PLACEHOLDERS
* isn't specified.
*/
List *columnList = pull_var_clause(node, PVC_RECURSE_AGGREGATES);
return columnList;
}
/*
* ApplyJoinRule finds the join rule application function that corresponds to
* the given join rule, and calls this function to create a new join node that
* joins the left and right nodes together.
*/
static MultiNode *
ApplyJoinRule(MultiNode *leftNode, MultiNode *rightNode, JoinRuleType ruleType,
Var *partitionColumn, JoinType joinType, List *joinClauseList)
{
RuleApplyFunction ruleApplyFunction = NULL;
MultiNode *multiNode = NULL;
List *applicableJoinClauses = NIL;
List *leftTableIdList = OutputTableIdList(leftNode);
List *rightTableIdList = OutputTableIdList(rightNode);
int rightTableIdCount PG_USED_FOR_ASSERTS_ONLY = 0;
uint32 rightTableId = 0;
rightTableIdCount = list_length(rightTableIdList);
Assert(rightTableIdCount == 1);
/* find applicable join clauses between the left and right data sources */
rightTableId = (uint32) linitial_int(rightTableIdList);
applicableJoinClauses = ApplicableJoinClauses(leftTableIdList, rightTableId,
joinClauseList);
/* call the join rule application function to create the new join node */
ruleApplyFunction = JoinRuleApplyFunction(ruleType);
multiNode = (*ruleApplyFunction)(leftNode, rightNode, partitionColumn,
joinType, applicableJoinClauses);
if (joinType != JOIN_INNER && CitusIsA(multiNode, MultiJoin))
{
MultiJoin *joinNode = (MultiJoin *) multiNode;
/* preserve non-join clauses for OUTER joins */
joinNode->joinClauseList = list_copy(joinClauseList);
}
return multiNode;
}
/*
* JoinRuleApplyFunction returns a function pointer for the rule application
* function; this rule application function corresponds to the given rule type.
* This function also initializes the rule application function array in a
* static code block, if the array has not been initialized.
*/
static RuleApplyFunction
JoinRuleApplyFunction(JoinRuleType ruleType)
{
static bool ruleApplyFunctionInitialized = false;
RuleApplyFunction ruleApplyFunction = NULL;
if (!ruleApplyFunctionInitialized)
{
RuleApplyFunctionArray[BROADCAST_JOIN] = &ApplyBroadcastJoin;
RuleApplyFunctionArray[LOCAL_PARTITION_JOIN] = &ApplyLocalJoin;
RuleApplyFunctionArray[SINGLE_PARTITION_JOIN] = &ApplySinglePartitionJoin;
RuleApplyFunctionArray[DUAL_PARTITION_JOIN] = &ApplyDualPartitionJoin;
RuleApplyFunctionArray[CARTESIAN_PRODUCT] = &ApplyCartesianProduct;
ruleApplyFunctionInitialized = true;
}
ruleApplyFunction = RuleApplyFunctionArray[ruleType];
Assert(ruleApplyFunction != NULL);
return ruleApplyFunction;
}
/*
* ApplyBroadcastJoin creates a new MultiJoin node that joins the left and the
* right node. The new node uses the broadcast join rule to perform the join.
*/
static MultiNode *
ApplyBroadcastJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
joinNode->joinRuleType = BROADCAST_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
return (MultiNode *) joinNode;
}
/*
* ApplyLocalJoin creates a new MultiJoin node that joins the left and the right
* node. The new node uses the local join rule to perform the join.
*/
static MultiNode *
ApplyLocalJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
joinNode->joinRuleType = LOCAL_PARTITION_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
return (MultiNode *) joinNode;
}
/*
* ApplySinglePartitionJoin creates a new MultiJoin node that joins the left and
* right node. The function also adds a MultiPartition node on top of the node
* (left or right) that is not partitioned on the join column.
*/
static MultiNode *
ApplySinglePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
OpExpr *joinClause = NULL;
Var *leftColumn = NULL;
Var *rightColumn = NULL;
List *rightTableIdList = NIL;
uint32 rightTableId = 0;
uint32 partitionTableId = partitionColumn->varno;
/* create all operator structures up front */
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
MultiCollect *collectNode = CitusMakeNode(MultiCollect);
MultiPartition *partitionNode = CitusMakeNode(MultiPartition);
/*
* We first find the appropriate join clause. Then, we compare the partition
* column against the join clause's columns. If one of the columns matches,
* we introduce a (re-)partition operator for the other column.
*/
joinClause = SinglePartitionJoinClause(partitionColumn, applicableJoinClauses);
Assert(joinClause != NULL);
leftColumn = LeftColumn(joinClause);
rightColumn = RightColumn(joinClause);
if (equal(partitionColumn, leftColumn))
{
partitionNode->partitionColumn = rightColumn;
partitionNode->splitPointTableId = partitionTableId;
}
else if (equal(partitionColumn, rightColumn))
{
partitionNode->partitionColumn = leftColumn;
partitionNode->splitPointTableId = partitionTableId;
}
/* determine the node the partition operator goes on top of */
rightTableIdList = OutputTableIdList(rightNode);
rightTableId = (uint32) linitial_int(rightTableIdList);
Assert(list_length(rightTableIdList) == 1);
/*
* If the right child node is partitioned on the partition key column, we
* add the partition operator on the left child node; and vice versa. Then,
* we add a collect operator on top of the partition operator, and always
* make sure that we have at most one relation on the right-hand side.
*/
if (partitionTableId == rightTableId)
{
SetChild((MultiUnaryNode *) partitionNode, leftNode);
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) partitionNode);
SetLeftChild((MultiBinaryNode *) joinNode, (MultiNode *) collectNode);
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
}
else
{
SetChild((MultiUnaryNode *) partitionNode, rightNode);
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) partitionNode);
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
SetRightChild((MultiBinaryNode *) joinNode, (MultiNode *) collectNode);
}
/* finally set join operator fields */
joinNode->joinRuleType = SINGLE_PARTITION_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
return (MultiNode *) joinNode;
}
/*
* ApplyDualPartitionJoin creates a new MultiJoin node that joins the left and
* right node. The function also adds two MultiPartition operators on top of
* both nodes to repartition these nodes' data on the join clause columns.
*/
static MultiNode *
ApplyDualPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiJoin *joinNode = NULL;
OpExpr *joinClause = NULL;
MultiPartition *leftPartitionNode = NULL;
MultiPartition *rightPartitionNode = NULL;
MultiCollect *leftCollectNode = NULL;
MultiCollect *rightCollectNode = NULL;
Var *leftColumn = NULL;
Var *rightColumn = NULL;
List *rightTableIdList = NIL;
uint32 rightTableId = 0;
/* find the appropriate join clause */
joinClause = DualPartitionJoinClause(applicableJoinClauses);
Assert(joinClause != NULL);
leftColumn = LeftColumn(joinClause);
rightColumn = RightColumn(joinClause);
rightTableIdList = OutputTableIdList(rightNode);
rightTableId = (uint32) linitial_int(rightTableIdList);
Assert(list_length(rightTableIdList) == 1);
leftPartitionNode = CitusMakeNode(MultiPartition);
rightPartitionNode = CitusMakeNode(MultiPartition);
/* find the partition node each join clause column belongs to */
if (leftColumn->varno == rightTableId)
{
leftPartitionNode->partitionColumn = rightColumn;
rightPartitionNode->partitionColumn = leftColumn;
}
else
{
leftPartitionNode->partitionColumn = leftColumn;
rightPartitionNode->partitionColumn = rightColumn;
}
/* add partition operators on top of left and right nodes */
SetChild((MultiUnaryNode *) leftPartitionNode, leftNode);
SetChild((MultiUnaryNode *) rightPartitionNode, rightNode);
/* add collect operators on top of the two partition operators */
leftCollectNode = CitusMakeNode(MultiCollect);
rightCollectNode = CitusMakeNode(MultiCollect);
SetChild((MultiUnaryNode *) leftCollectNode, (MultiNode *) leftPartitionNode);
SetChild((MultiUnaryNode *) rightCollectNode, (MultiNode *) rightPartitionNode);
/* add join operator on top of the two collect operators */
joinNode = CitusMakeNode(MultiJoin);
joinNode->joinRuleType = DUAL_PARTITION_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
SetLeftChild((MultiBinaryNode *) joinNode, (MultiNode *) leftCollectNode);
SetRightChild((MultiBinaryNode *) joinNode, (MultiNode *) rightCollectNode);
return (MultiNode *) joinNode;
}
/* Creates a cartesian product node that joins the left and the right node. */
static MultiNode *
ApplyCartesianProduct(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiCartesianProduct *cartesianNode = CitusMakeNode(MultiCartesianProduct);
SetLeftChild((MultiBinaryNode *) cartesianNode, leftNode);
SetRightChild((MultiBinaryNode *) cartesianNode, rightNode);
return (MultiNode *) cartesianNode;
}
/*
* SubqueryPushdownMultiNodeTree creates logical plan for subquery pushdown logic.
* Note that this logic will be changed in next iterations, so we decoupled it
* from other parts of code although it causes some code duplication.
*
* Current subquery pushdown support in MultiTree logic requires a single range
* table entry in the top most from clause. Therefore we inject an synthetic
* query derived from the top level query and make it the only range table
* entry for the top level query. This way we can push down any subquery joins
* down to workers without invoking join order planner.
*/
static MultiNode *
SubqueryPushdownMultiNodeTree(Query *queryTree)
{
List *targetEntryList = queryTree->targetList;
List *columnList = NIL;
List *targetColumnList = NIL;
MultiCollect *subqueryCollectNode = CitusMakeNode(MultiCollect);
MultiTable *subqueryNode = NULL;
MultiProject *projectNode = NULL;
MultiExtendedOp *extendedOpNode = NULL;
MultiNode *currentTopNode = NULL;
Query *pushedDownQuery = NULL;
List *subqueryTargetEntryList = NIL;
List *havingClauseColumnList = NIL;
/* verify we can perform distributed planning on this query */
ErrorIfQueryNotSupported(queryTree);
/*
* We would be creating a new Query and pushing down top level query's
* contents down to it. Join and filter clauses in higher level query would
* be transferred to lower query. Therefore after this function we would
* only have a single range table entry in the top level query. We need to
* create a target list entry in lower query for each column reference in
* upper level query's target list and having clauses. Any column reference
* in the upper query will be updated to have varno=1, and varattno=<resno>
* of matching target entry in pushed down query.
* Consider query
* SELECT s1.a, sum(s2.c)
* FROM (some subquery) s1, (some subquery) s2
* WHERE s1.a = s2.a
* GROUP BY s1.a
* HAVING avg(s2.b);
*
* We want to prepare a multi tree to avoid subquery joins at top level,
* therefore above query is converted to an equivalent
* SELECT worker_column_0, sum(worker_column_1)
* FROM (
* SELECT
* s1.a AS worker_column_0,
* s2.c AS worker_column_1,
* s2.b AS as worker_column_2
* FROM (some subquery) s1, (some subquery) s2
* WHERE s1.a = s2.a) worker_subquery
* GROUP BY worker_column_0
* HAVING avg(worker_column_2);
* After this conversion MultiTree is created as follows
*
* MultiExtendedOpNode(
* targetList : worker_column_0, sum(worker_column_1)
* groupBy : worker_column_0
* having : avg(worker_column_2))
* --->MultiProject (worker_column_0, worker_column_1, worker_column_2)
* --->---> MultiTable (subquery : worker_subquery)
*
* Master and worker queries will be created out of this MultiTree at later stages.
*/
/*
* uniqueColumnList contains all columns returned by subquery. Subquery target
* entry list, subquery range table entry's column name list are derived from
* uniqueColumnList. Columns mentioned in multiProject node and multiExtendedOp
* node are indexed with their respective position in uniqueColumnList.
*/
targetColumnList = pull_var_clause_default((Node *) targetEntryList);
havingClauseColumnList = pull_var_clause_default(queryTree->havingQual);
columnList = list_concat(targetColumnList, havingClauseColumnList);
/* create a target entry for each unique column */
subqueryTargetEntryList = CreateSubqueryTargetEntryList(columnList);
/*
* Update varno/varattno fields of columns in columnList to
* point to corresponding target entry in subquery target entry list.
*/
UpdateVarMappingsForExtendedOpNode(columnList, subqueryTargetEntryList);
/* new query only has target entries, join tree, and rtable*/
pushedDownQuery = makeNode(Query);
pushedDownQuery->commandType = queryTree->commandType;
pushedDownQuery->targetList = subqueryTargetEntryList;
pushedDownQuery->jointree = copyObject(queryTree->jointree);
pushedDownQuery->rtable = copyObject(queryTree->rtable);
pushedDownQuery->setOperations = copyObject(queryTree->setOperations);
pushedDownQuery->querySource = queryTree->querySource;
subqueryNode = MultiSubqueryPushdownTable(pushedDownQuery);
SetChild((MultiUnaryNode *) subqueryCollectNode, (MultiNode *) subqueryNode);
currentTopNode = (MultiNode *) subqueryCollectNode;
/* build project node for the columns to project */
projectNode = MultiProjectNode(targetEntryList);
SetChild((MultiUnaryNode *) projectNode, currentTopNode);
currentTopNode = (MultiNode *) projectNode;
/*
* We build the extended operator node to capture aggregate functions, group
* clauses, sort clauses, limit/offset clauses, and expressions. We need to
* distinguish between aggregates and expressions; and we address this later
* in the logical optimizer.
*/
extendedOpNode = MultiExtendedOpNode(queryTree);
/*
* Postgres standard planner converts having qual node to a list of and
* clauses and expects havingQual to be of type List when executing the
* query later. This function is called on an original query, therefore
* havingQual has not been converted yet. Perform conversion here.
*/
if (extendedOpNode->havingQual != NULL &&
!IsA(extendedOpNode->havingQual, List))
{
extendedOpNode->havingQual =
(Node *) make_ands_implicit((Expr *) extendedOpNode->havingQual);
}
/*
* Postgres standard planner evaluates expressions in the LIMIT/OFFSET clauses.
* Since we're using original query here, we should manually evaluate the
* expression on the LIMIT and OFFSET clauses. Note that logical optimizer
* expects those clauses to be already evaluated.
*/
extendedOpNode->limitCount =
PartiallyEvaluateExpression(extendedOpNode->limitCount, NULL);
extendedOpNode->limitOffset =
PartiallyEvaluateExpression(extendedOpNode->limitOffset, NULL);
SetChild((MultiUnaryNode *) extendedOpNode, currentTopNode);
currentTopNode = (MultiNode *) extendedOpNode;
return currentTopNode;
}
/*
* CreateSubqueryTargetEntryList creates a target entry for each unique column
* in the column list and returns the target entry list.
*/
static List *
CreateSubqueryTargetEntryList(List *columnList)
{
AttrNumber resNo = 1;
ListCell *columnCell = NULL;
List *uniqueColumnList = NIL;
List *subqueryTargetEntryList = NIL;
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
uniqueColumnList = list_append_unique(uniqueColumnList, copyObject(column));
}
foreach(columnCell, uniqueColumnList)
{
Var *column = (Var *) lfirst(columnCell);
TargetEntry *newTargetEntry = makeNode(TargetEntry);
StringInfo columnNameString = makeStringInfo();
newTargetEntry->expr = (Expr *) copyObject(column);
appendStringInfo(columnNameString, WORKER_COLUMN_FORMAT, resNo);
newTargetEntry->resname = columnNameString->data;
newTargetEntry->resjunk = false;
newTargetEntry->resno = resNo;
subqueryTargetEntryList = lappend(subqueryTargetEntryList, newTargetEntry);
resNo++;
}
return subqueryTargetEntryList;
}
/*
* UpdateVarMappingsForExtendedOpNode updates varno/varattno fields of columns
* in columnList to point to corresponding target in subquery target entry
* list.
*/
static void
UpdateVarMappingsForExtendedOpNode(List *columnList, List *subqueryTargetEntryList)
{
ListCell *columnCell = NULL;
foreach(columnCell, columnList)
{
Var *columnOnTheExtendedNode = (Var *) lfirst(columnCell);
ListCell *targetEntryCell = NULL;
foreach(targetEntryCell, subqueryTargetEntryList)
{
TargetEntry *targetEntry = (TargetEntry *) lfirst(targetEntryCell);
Var *targetColumn = NULL;
Assert(IsA(targetEntry->expr, Var));
targetColumn = (Var *) targetEntry->expr;
if (columnOnTheExtendedNode->varno == targetColumn->varno &&
columnOnTheExtendedNode->varattno == targetColumn->varattno)
{
columnOnTheExtendedNode->varno = 1;
columnOnTheExtendedNode->varattno = targetEntry->resno;
break;
}
}
}
}
/*
* MultiSubqueryPushdownTable creates a MultiTable from the given subquery,
* populates column list and returns the multitable.
*/
static MultiTable *
MultiSubqueryPushdownTable(Query *subquery)
{
MultiTable *subqueryTableNode = NULL;
StringInfo rteName = makeStringInfo();
List *columnNamesList = NIL;
ListCell *targetEntryCell = NULL;
appendStringInfo(rteName, "worker_subquery");
foreach(targetEntryCell, subquery->targetList)
{
TargetEntry *targetEntry = (TargetEntry *) lfirst(targetEntryCell);
columnNamesList = lappend(columnNamesList, makeString(targetEntry->resname));
}
subqueryTableNode = CitusMakeNode(MultiTable);
subqueryTableNode->subquery = subquery;
subqueryTableNode->relationId = SUBQUERY_PUSHDOWN_RELATION_ID;
subqueryTableNode->rangeTableId = SUBQUERY_RANGE_TABLE_ID;
subqueryTableNode->partitionColumn = NULL;
subqueryTableNode->alias = makeNode(Alias);
subqueryTableNode->alias->aliasname = rteName->data;
subqueryTableNode->referenceNames = makeNode(Alias);
subqueryTableNode->referenceNames->aliasname = rteName->data;
subqueryTableNode->referenceNames->colnames = columnNamesList;
return subqueryTableNode;
}
/*
* OperatorImplementsEquality returns true if the given opno represents an
* equality operator. The function retrieves btree interpretation list for this
* opno and check if BTEqualStrategyNumber strategy is present.
*/
bool
OperatorImplementsEquality(Oid opno)
{
bool equalityOperator = false;
List *btreeIntepretationList = get_op_btree_interpretation(opno);
ListCell *btreeInterpretationCell = NULL;
foreach(btreeInterpretationCell, btreeIntepretationList)
{
OpBtreeInterpretation *btreeIntepretation = (OpBtreeInterpretation *)
lfirst(btreeInterpretationCell);
if (btreeIntepretation->strategy == BTEqualStrategyNumber)
{
equalityOperator = true;
break;
}
}
return equalityOperator;
}