citus/src/backend/distributed/operations/shard_transfer.c

2134 lines
67 KiB
C

/*-------------------------------------------------------------------------
*
* shard_transfer.c
*
* This file contains functions to transfer shards between nodes.
*
* Copyright (c) Citus Data, Inc.
*
*-------------------------------------------------------------------------
*/
#include <string.h>
#include <sys/statvfs.h>
#include "postgres.h"
#include "fmgr.h"
#include "miscadmin.h"
#include "access/htup_details.h"
#include "catalog/pg_class.h"
#include "catalog/pg_enum.h"
#include "lib/stringinfo.h"
#include "nodes/pg_list.h"
#include "storage/lmgr.h"
#include "storage/lock.h"
#include "utils/builtins.h"
#include "utils/elog.h"
#include "utils/errcodes.h"
#include "utils/lsyscache.h"
#include "utils/palloc.h"
#include "utils/rel.h"
#include "utils/syscache.h"
#include "distributed/adaptive_executor.h"
#include "distributed/backend_data.h"
#include "distributed/citus_ruleutils.h"
#include "distributed/colocation_utils.h"
#include "distributed/commands.h"
#include "distributed/connection_management.h"
#include "distributed/coordinator_protocol.h"
#include "distributed/deparse_shard_query.h"
#include "distributed/distributed_planner.h"
#include "distributed/listutils.h"
#include "distributed/metadata_cache.h"
#include "distributed/metadata_sync.h"
#include "distributed/multi_join_order.h"
#include "distributed/multi_logical_replication.h"
#include "distributed/multi_partitioning_utils.h"
#include "distributed/multi_progress.h"
#include "distributed/reference_table_utils.h"
#include "distributed/remote_commands.h"
#include "distributed/resource_lock.h"
#include "distributed/shard_cleaner.h"
#include "distributed/shard_rebalancer.h"
#include "distributed/shard_split.h"
#include "distributed/shard_transfer.h"
#include "distributed/worker_manager.h"
#include "distributed/worker_protocol.h"
#include "distributed/worker_transaction.h"
/* local type declarations */
/*
* ShardInterval along with to be executed
* DDL command list.
*/
typedef struct ShardCommandList
{
ShardInterval *shardInterval;
List *ddlCommandList;
} ShardCommandList;
static const char *ShardTransferTypeNames[] = {
[SHARD_TRANSFER_INVALID_FIRST] = "unknown",
[SHARD_TRANSFER_MOVE] = "move",
[SHARD_TRANSFER_COPY] = "copy",
};
static const char *ShardTransferTypeNamesCapitalized[] = {
[SHARD_TRANSFER_INVALID_FIRST] = "unknown",
[SHARD_TRANSFER_MOVE] = "Move",
[SHARD_TRANSFER_COPY] = "Copy",
};
static const char *ShardTransferTypeNamesContinuous[] = {
[SHARD_TRANSFER_INVALID_FIRST] = "unknown",
[SHARD_TRANSFER_MOVE] = "Moving",
[SHARD_TRANSFER_COPY] = "Copying",
};
static const char *ShardTransferTypeFunctionNames[] = {
[SHARD_TRANSFER_INVALID_FIRST] = "unknown",
[SHARD_TRANSFER_MOVE] = "citus_move_shard_placement",
[SHARD_TRANSFER_COPY] = "citus_copy_shard_placement",
};
/* local function forward declarations */
static bool CanUseLogicalReplication(Oid relationId, char shardReplicationMode);
static void ErrorIfTableCannotBeReplicated(Oid relationId);
static void ErrorIfTargetNodeIsNotSafeForTransfer(const char *targetNodeName,
int targetNodePort,
ShardTransferType transferType);
static void ErrorIfSameNode(char *sourceNodeName, int sourceNodePort,
char *targetNodeName, int targetNodePort,
const char *operationName);
static void CopyShardTables(List *shardIntervalList, char *sourceNodeName,
int32 sourceNodePort, char *targetNodeName,
int32 targetNodePort, bool useLogicalReplication,
const char *operationName);
static void CopyShardTablesViaLogicalReplication(List *shardIntervalList,
char *sourceNodeName,
int32 sourceNodePort,
char *targetNodeName,
int32 targetNodePort);
static void CopyShardTablesViaBlockWrites(List *shardIntervalList, char *sourceNodeName,
int32 sourceNodePort,
char *targetNodeName, int32 targetNodePort);
static void EnsureShardCanBeCopied(int64 shardId, const char *sourceNodeName,
int32 sourceNodePort, const char *targetNodeName,
int32 targetNodePort);
static List * RecreateTableDDLCommandList(Oid relationId);
static void EnsureTableListOwner(List *tableIdList);
static void ErrorIfReplicatingDistributedTableWithFKeys(List *tableIdList);
static void DropShardPlacementsFromMetadata(List *shardList,
char *nodeName,
int32 nodePort);
static void UpdateColocatedShardPlacementMetadataOnWorkers(int64 shardId,
char *sourceNodeName,
int32 sourceNodePort,
char *targetNodeName,
int32 targetNodePort);
static bool IsShardListOnNode(List *colocatedShardList, char *targetNodeName,
uint32 targetPort);
static void SetupRebalanceMonitorForShardTransfer(uint64 shardId, Oid distributedTableId,
char *sourceNodeName,
uint32 sourceNodePort,
char *targetNodeName,
uint32 targetNodePort,
ShardTransferType transferType);
static void CheckSpaceConstraints(MultiConnection *connection,
uint64 colocationSizeInBytes);
static void EnsureAllShardsCanBeCopied(List *colocatedShardList,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort);
static void EnsureEnoughDiskSpaceForShardMove(List *colocatedShardList,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort,
ShardTransferType transferType);
static bool TransferAlreadyCompleted(List *colocatedShardList,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort,
ShardTransferType transferType);
static void LockColocatedRelationsForMove(List *colocatedTableList);
static void ErrorIfForeignTableForShardTransfer(List *colocatedTableList,
ShardTransferType transferType);
static List * RecreateShardDDLCommandList(ShardInterval *shardInterval,
const char *sourceNodeName,
int32 sourceNodePort);
static List * PostLoadShardCreationCommandList(ShardInterval *shardInterval,
const char *sourceNodeName,
int32 sourceNodePort);
static ShardCommandList * CreateShardCommandList(ShardInterval *shardInterval,
List *ddlCommandList);
static char * CreateShardCopyCommand(ShardInterval *shard, WorkerNode *targetNode);
/* declarations for dynamic loading */
PG_FUNCTION_INFO_V1(citus_copy_shard_placement);
PG_FUNCTION_INFO_V1(citus_copy_shard_placement_with_nodeid);
PG_FUNCTION_INFO_V1(master_copy_shard_placement);
PG_FUNCTION_INFO_V1(citus_move_shard_placement);
PG_FUNCTION_INFO_V1(citus_move_shard_placement_with_nodeid);
PG_FUNCTION_INFO_V1(master_move_shard_placement);
double DesiredPercentFreeAfterMove = 10;
bool CheckAvailableSpaceBeforeMove = true;
/*
* citus_copy_shard_placement implements a user-facing UDF to copy a placement
* from a source node to a target node, including all co-located placements.
*/
Datum
citus_copy_shard_placement(PG_FUNCTION_ARGS)
{
CheckCitusVersion(ERROR);
EnsureCoordinator();
int64 shardId = PG_GETARG_INT64(0);
text *sourceNodeNameText = PG_GETARG_TEXT_P(1);
int32 sourceNodePort = PG_GETARG_INT32(2);
text *targetNodeNameText = PG_GETARG_TEXT_P(3);
int32 targetNodePort = PG_GETARG_INT32(4);
Oid shardReplicationModeOid = PG_GETARG_OID(5);
char *sourceNodeName = text_to_cstring(sourceNodeNameText);
char *targetNodeName = text_to_cstring(targetNodeNameText);
char shardReplicationMode = LookupShardTransferMode(shardReplicationModeOid);
TransferShards(shardId, sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort,
shardReplicationMode, SHARD_TRANSFER_COPY);
PG_RETURN_VOID();
}
/*
* citus_copy_shard_placement_with_nodeid implements a user-facing UDF to copy a placement
* from a source node to a target node, including all co-located placements.
*/
Datum
citus_copy_shard_placement_with_nodeid(PG_FUNCTION_ARGS)
{
CheckCitusVersion(ERROR);
EnsureCoordinator();
int64 shardId = PG_GETARG_INT64(0);
uint32 sourceNodeId = PG_GETARG_INT32(1);
uint32 targetNodeId = PG_GETARG_INT32(2);
Oid shardReplicationModeOid = PG_GETARG_OID(3);
bool missingOk = false;
WorkerNode *sourceNode = FindNodeWithNodeId(sourceNodeId, missingOk);
WorkerNode *targetNode = FindNodeWithNodeId(targetNodeId, missingOk);
char shardReplicationMode = LookupShardTransferMode(shardReplicationModeOid);
TransferShards(shardId, sourceNode->workerName, sourceNode->workerPort,
targetNode->workerName, targetNode->workerPort,
shardReplicationMode, SHARD_TRANSFER_COPY);
PG_RETURN_VOID();
}
/*
* master_copy_shard_placement is a wrapper function for old UDF name.
*/
Datum
master_copy_shard_placement(PG_FUNCTION_ARGS)
{
CheckCitusVersion(ERROR);
EnsureCoordinator();
int64 shardId = PG_GETARG_INT64(0);
text *sourceNodeNameText = PG_GETARG_TEXT_P(1);
int32 sourceNodePort = PG_GETARG_INT32(2);
text *targetNodeNameText = PG_GETARG_TEXT_P(3);
int32 targetNodePort = PG_GETARG_INT32(4);
bool doRepair = PG_GETARG_BOOL(5);
Oid shardReplicationModeOid = PG_GETARG_OID(6);
char *sourceNodeName = text_to_cstring(sourceNodeNameText);
char *targetNodeName = text_to_cstring(targetNodeNameText);
char shardReplicationMode = LookupShardTransferMode(shardReplicationModeOid);
if (doRepair)
{
ereport(WARNING, (errmsg("do_repair argument is deprecated")));
}
TransferShards(shardId, sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort,
shardReplicationMode, SHARD_TRANSFER_COPY);
PG_RETURN_VOID();
}
/*
* citus_move_shard_placement moves given shard (and its co-located shards) from one
* node to the other node. To accomplish this it entirely recreates the table structure
* before copying all data.
*
* After that, there are two different paths. First one is blocking shard move in the
* sense that during shard move all modifications are paused to the shard. The second
* one relies on logical replication meaning that the writes blocked only for a very
* short duration almost only when the metadata is actually being updated.
*
* After successful move operation, shards in the source node gets deleted. If the move
* fails at any point, this function throws an error, leaving the cluster without doing
* any changes in source node or target node.
*/
Datum
citus_move_shard_placement(PG_FUNCTION_ARGS)
{
CheckCitusVersion(ERROR);
EnsureCoordinator();
List *referenceTableIdList = NIL;
if (HasNodesWithMissingReferenceTables(&referenceTableIdList))
{
ereport(ERROR, (errmsg("there are missing reference tables on some nodes"),
errhint("Copy reference tables first with "
"replicate_reference_tables() or use "
"citus_rebalance_start() that will do it automatically."
)));
}
int64 shardId = PG_GETARG_INT64(0);
char *sourceNodeName = text_to_cstring(PG_GETARG_TEXT_P(1));
int32 sourceNodePort = PG_GETARG_INT32(2);
char *targetNodeName = text_to_cstring(PG_GETARG_TEXT_P(3));
int32 targetNodePort = PG_GETARG_INT32(4);
Oid shardReplicationModeOid = PG_GETARG_OID(5);
char shardReplicationMode = LookupShardTransferMode(shardReplicationModeOid);
TransferShards(shardId, sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort,
shardReplicationMode, SHARD_TRANSFER_MOVE);
PG_RETURN_VOID();
}
/*
* citus_move_shard_placement_with_nodeid does the same as citus_move_shard_placement,
* but accepts node ids as parameters, instead of hostname and port.
*/
Datum
citus_move_shard_placement_with_nodeid(PG_FUNCTION_ARGS)
{
CheckCitusVersion(ERROR);
EnsureCoordinator();
int64 shardId = PG_GETARG_INT64(0);
uint32 sourceNodeId = PG_GETARG_INT32(1);
uint32 targetNodeId = PG_GETARG_INT32(2);
Oid shardReplicationModeOid = PG_GETARG_OID(3);
bool missingOk = false;
WorkerNode *sourceNode = FindNodeWithNodeId(sourceNodeId, missingOk);
WorkerNode *targetNode = FindNodeWithNodeId(targetNodeId, missingOk);
char shardReplicationMode = LookupShardTransferMode(shardReplicationModeOid);
TransferShards(shardId, sourceNode->workerName,
sourceNode->workerPort, targetNode->workerName,
targetNode->workerPort, shardReplicationMode, SHARD_TRANSFER_MOVE);
PG_RETURN_VOID();
}
/*
* TransferShards is the function for shard transfers.
*/
void
TransferShards(int64 shardId, char *sourceNodeName,
int32 sourceNodePort, char *targetNodeName,
int32 targetNodePort, char shardReplicationMode,
ShardTransferType transferType)
{
/* strings to be used in log messages */
const char *operationName = ShardTransferTypeNames[transferType];
const char *operationNameCapitalized =
ShardTransferTypeNamesCapitalized[transferType];
const char *operationFunctionName = ShardTransferTypeFunctionNames[transferType];
/* cannot transfer shard to the same node */
ErrorIfSameNode(sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort,
operationName);
ShardInterval *shardInterval = LoadShardInterval(shardId);
Oid distributedTableId = shardInterval->relationId;
/* error if unsupported shard transfer */
if (transferType == SHARD_TRANSFER_MOVE)
{
ErrorIfMoveUnsupportedTableType(distributedTableId);
}
else if (transferType == SHARD_TRANSFER_COPY)
{
ErrorIfTableCannotBeReplicated(distributedTableId);
EnsureNoModificationsHaveBeenDone();
}
ErrorIfTargetNodeIsNotSafeForTransfer(targetNodeName, targetNodePort, transferType);
AcquirePlacementColocationLock(distributedTableId, ExclusiveLock, operationName);
List *colocatedTableList = ColocatedTableList(distributedTableId);
List *colocatedShardList = ColocatedShardIntervalList(shardInterval);
EnsureTableListOwner(colocatedTableList);
if (transferType == SHARD_TRANSFER_MOVE)
{
/*
* Block concurrent DDL / TRUNCATE commands on the relation. Similarly,
* block concurrent citus_move_shard_placement() on any shard of
* the same relation. This is OK for now since we're executing shard
* moves sequentially anyway.
*/
LockColocatedRelationsForMove(colocatedTableList);
}
ErrorIfForeignTableForShardTransfer(colocatedTableList, transferType);
if (transferType == SHARD_TRANSFER_COPY)
{
ErrorIfReplicatingDistributedTableWithFKeys(colocatedTableList);
}
/*
* We sort shardIntervalList so that lock operations will not cause any
* deadlocks.
*/
colocatedShardList = SortList(colocatedShardList, CompareShardIntervalsById);
if (TransferAlreadyCompleted(colocatedShardList,
sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort,
transferType))
{
/* if the transfer is already completed, we can return right away */
ereport(WARNING, (errmsg("shard is already present on node %s:%d",
targetNodeName, targetNodePort),
errdetail("%s may have already completed.",
operationNameCapitalized)));
return;
}
EnsureAllShardsCanBeCopied(colocatedShardList, sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort);
if (shardReplicationMode == TRANSFER_MODE_AUTOMATIC)
{
VerifyTablesHaveReplicaIdentity(colocatedTableList);
}
EnsureEnoughDiskSpaceForShardMove(colocatedShardList,
sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort, transferType);
SetupRebalanceMonitorForShardTransfer(shardId, distributedTableId,
sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort,
transferType);
UpdatePlacementUpdateStatusForShardIntervalList(
colocatedShardList,
sourceNodeName,
sourceNodePort,
PLACEMENT_UPDATE_STATUS_SETTING_UP);
/*
* At this point of the shard moves, we don't need to block the writes to
* shards when logical replication is used.
*/
bool useLogicalReplication = CanUseLogicalReplication(distributedTableId,
shardReplicationMode);
if (!useLogicalReplication)
{
BlockWritesToShardList(colocatedShardList);
}
else if (transferType == SHARD_TRANSFER_MOVE)
{
/*
* We prevent multiple shard moves in a transaction that use logical
* replication. That's because the first call opens a transaction block
* on the worker to drop the old shard placement and replication slot
* creation waits for pending transactions to finish, which will not
* happen ever. In other words, we prevent a self-deadlock if both
* source shard placements are on the same node.
*/
if (PlacementMovedUsingLogicalReplicationInTX)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("moving multiple shard placements via logical "
"replication in the same transaction is currently "
"not supported"),
errhint("If you wish to move multiple shard placements "
"in a single transaction set the shard_transfer_mode "
"to 'block_writes'.")));
}
PlacementMovedUsingLogicalReplicationInTX = true;
}
if (transferType == SHARD_TRANSFER_COPY &&
!IsCitusTableType(distributedTableId, REFERENCE_TABLE))
{
/*
* When copying a shard to a new node, we should first ensure that reference
* tables are present such that joins work immediately after copying the shard.
* When copying a reference table, we are probably trying to achieve just that.
*
* Since this a long-running operation we do this after the error checks, but
* before taking metadata locks.
*/
EnsureReferenceTablesExistOnAllNodesExtended(shardReplicationMode);
}
DropOrphanedResourcesInSeparateTransaction();
ShardInterval *colocatedShard = NULL;
foreach_declared_ptr(colocatedShard, colocatedShardList)
{
/*
* This is to prevent any race condition possibility among the shard moves.
* We don't allow the move to happen if the shard we are going to move has an
* orphaned placement somewhere that is not cleanup up yet.
*/
char *qualifiedShardName = ConstructQualifiedShardName(colocatedShard);
ErrorIfCleanupRecordForShardExists(qualifiedShardName);
}
CopyShardTables(colocatedShardList, sourceNodeName, sourceNodePort, targetNodeName,
targetNodePort, useLogicalReplication, operationFunctionName);
if (transferType == SHARD_TRANSFER_MOVE)
{
/* delete old shards metadata and mark the shards as to be deferred drop */
int32 sourceGroupId = GroupForNode(sourceNodeName, sourceNodePort);
InsertCleanupRecordsForShardPlacementsOnNode(colocatedShardList,
sourceGroupId);
}
/*
* Finally insert the placements to pg_dist_placement and sync it to the
* metadata workers.
*/
colocatedShard = NULL;
foreach_declared_ptr(colocatedShard, colocatedShardList)
{
uint64 colocatedShardId = colocatedShard->shardId;
uint32 groupId = GroupForNode(targetNodeName, targetNodePort);
uint64 placementId = GetNextPlacementId();
InsertShardPlacementRow(colocatedShardId, placementId,
ShardLength(colocatedShardId),
groupId);
if (transferType == SHARD_TRANSFER_COPY &&
ShouldSyncTableMetadata(colocatedShard->relationId))
{
char *placementCommand = PlacementUpsertCommand(colocatedShardId, placementId,
0, groupId);
SendCommandToWorkersWithMetadata(placementCommand);
}
}
if (transferType == SHARD_TRANSFER_MOVE)
{
/*
* Since this is move operation, we remove the placements from the metadata
* for the source node after copy.
*/
DropShardPlacementsFromMetadata(colocatedShardList,
sourceNodeName, sourceNodePort);
UpdateColocatedShardPlacementMetadataOnWorkers(shardId, sourceNodeName,
sourceNodePort, targetNodeName,
targetNodePort);
}
UpdatePlacementUpdateStatusForShardIntervalList(
colocatedShardList,
sourceNodeName,
sourceNodePort,
PLACEMENT_UPDATE_STATUS_COMPLETED);
FinalizeCurrentProgressMonitor();
}
/*
* Insert deferred cleanup records.
* The shards will be dropped by background cleaner later.
*/
void
InsertDeferredDropCleanupRecordsForShards(List *shardIntervalList)
{
ListCell *shardIntervalCell = NULL;
foreach(shardIntervalCell, shardIntervalList)
{
ShardInterval *shardInterval = (ShardInterval *) lfirst(shardIntervalCell);
ListCell *shardPlacementCell = NULL;
uint64 oldShardId = shardInterval->shardId;
/* mark for deferred drop */
List *shardPlacementList = ActiveShardPlacementList(oldShardId);
foreach(shardPlacementCell, shardPlacementList)
{
ShardPlacement *placement = (ShardPlacement *) lfirst(shardPlacementCell);
/* get shard name */
char *qualifiedShardName = ConstructQualifiedShardName(shardInterval);
/* Log shard in pg_dist_cleanup.
* Parent shards are to be dropped only on sucess after split workflow is complete,
* so mark the policy as 'CLEANUP_DEFERRED_ON_SUCCESS'.
* We also log cleanup record in the current transaction. If the current transaction rolls back,
* we do not generate a record at all.
*/
InsertCleanupOnSuccessRecordInCurrentTransaction(
CLEANUP_OBJECT_SHARD_PLACEMENT,
qualifiedShardName,
placement->groupId);
}
}
}
/*
* InsertCleanupRecordsForShardPlacementsOnNode inserts deferred cleanup records.
* The shards will be dropped by background cleaner later.
* This function does this only for the placements on the given node.
*/
void
InsertCleanupRecordsForShardPlacementsOnNode(List *shardIntervalList,
int32 groupId)
{
ShardInterval *shardInterval = NULL;
foreach_declared_ptr(shardInterval, shardIntervalList)
{
/* get shard name */
char *qualifiedShardName = ConstructQualifiedShardName(shardInterval);
/* Log shard in pg_dist_cleanup.
* Parent shards are to be dropped only on sucess after split workflow is complete,
* so mark the policy as 'CLEANUP_DEFERRED_ON_SUCCESS'.
* We also log cleanup record in the current transaction. If the current transaction rolls back,
* we do not generate a record at all.
*/
InsertCleanupOnSuccessRecordInCurrentTransaction(CLEANUP_OBJECT_SHARD_PLACEMENT,
qualifiedShardName,
groupId);
}
}
/*
* IsShardListOnNode determines whether a co-located shard list has
* active placements on a given node.
*/
static bool
IsShardListOnNode(List *colocatedShardList, char *targetNodeName, uint32 targetNodePort)
{
WorkerNode *workerNode = FindWorkerNode(targetNodeName, targetNodePort);
if (workerNode == NULL)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("Moving shards to a non-existing node is not supported")));
}
/*
* We exhaustively search all co-located shards
*/
ShardInterval *shardInterval = NULL;
foreach_declared_ptr(shardInterval, colocatedShardList)
{
uint64 shardId = shardInterval->shardId;
List *placementList = ActiveShardPlacementListOnGroup(shardId,
workerNode->groupId);
if (placementList == NIL)
{
return false;
}
}
return true;
}
/*
* LockColocatedRelationsForMove takes a list of relations, locks all of them
* using ShareUpdateExclusiveLock
*/
static void
LockColocatedRelationsForMove(List *colocatedTableList)
{
Oid colocatedTableId = InvalidOid;
foreach_declared_oid(colocatedTableId, colocatedTableList)
{
LockRelationOid(colocatedTableId, ShareUpdateExclusiveLock);
}
}
/*
* ErrorIfForeignTableForShardTransfer takes a list of relations, errors out if
* there's a foreign table in the list.
*/
static void
ErrorIfForeignTableForShardTransfer(List *colocatedTableList,
ShardTransferType transferType)
{
Oid colocatedTableId = InvalidOid;
foreach_declared_oid(colocatedTableId, colocatedTableList)
{
if (IsForeignTable(colocatedTableId))
{
char *relationName = get_rel_name(colocatedTableId);
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot %s shard",
ShardTransferTypeNames[transferType]),
errdetail("Table %s is a foreign table. "
"%s shards backed by foreign tables is "
"not supported.", relationName,
ShardTransferTypeNamesContinuous[transferType])));
}
}
}
/*
* EnsureAllShardsCanBeCopied is a wrapper around EnsureShardCanBeCopied.
*/
static void
EnsureAllShardsCanBeCopied(List *colocatedShardList,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort)
{
ShardInterval *colocatedShard = NULL;
foreach_declared_ptr(colocatedShard, colocatedShardList)
{
uint64 colocatedShardId = colocatedShard->shardId;
/*
* To transfer shard, there should be healthy placement in source node and no
* placement in the target node.
*/
EnsureShardCanBeCopied(colocatedShardId, sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort);
}
}
/*
* EnsureEnoughDiskSpaceForShardMove checks that there is enough space for
* shard moves of the given colocated shard list from source node to target node.
* It tries to clean up old shard placements to ensure there is enough space.
*/
static void
EnsureEnoughDiskSpaceForShardMove(List *colocatedShardList,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort,
ShardTransferType transferType)
{
if (!CheckAvailableSpaceBeforeMove || transferType != SHARD_TRANSFER_MOVE)
{
return;
}
uint64 colocationSizeInBytes = ShardListSizeInBytes(colocatedShardList,
sourceNodeName,
sourceNodePort);
uint32 connectionFlag = 0;
MultiConnection *connection = GetNodeConnection(connectionFlag, targetNodeName,
targetNodePort);
CheckSpaceConstraints(connection, colocationSizeInBytes);
}
/*
* TransferAlreadyCompleted returns true if the given shard transfer is already done.
* Returns false otherwise.
*/
static bool
TransferAlreadyCompleted(List *colocatedShardList,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort,
ShardTransferType transferType)
{
if (transferType == SHARD_TRANSFER_MOVE &&
IsShardListOnNode(colocatedShardList, targetNodeName, targetNodePort) &&
!IsShardListOnNode(colocatedShardList, sourceNodeName, sourceNodePort))
{
return true;
}
if (transferType == SHARD_TRANSFER_COPY &&
IsShardListOnNode(colocatedShardList, targetNodeName, targetNodePort) &&
IsShardListOnNode(colocatedShardList, sourceNodeName, sourceNodePort))
{
return true;
}
return false;
}
/*
* ShardListSizeInBytes returns the size in bytes of a set of shard tables.
*/
uint64
ShardListSizeInBytes(List *shardList, char *workerNodeName, uint32
workerNodePort)
{
uint32 connectionFlag = 0;
/* we skip child tables of a partitioned table if this boolean variable is true */
bool optimizePartitionCalculations = true;
/* we're interested in whole table, not a particular index */
Oid indexId = InvalidOid;
StringInfo tableSizeQuery = GenerateSizeQueryOnMultiplePlacements(shardList,
indexId,
TOTAL_RELATION_SIZE,
optimizePartitionCalculations);
MultiConnection *connection = GetNodeConnection(connectionFlag, workerNodeName,
workerNodePort);
PGresult *result = NULL;
int queryResult = ExecuteOptionalRemoteCommand(connection, tableSizeQuery->data,
&result);
if (queryResult != RESPONSE_OKAY)
{
ereport(ERROR, (errcode(ERRCODE_CONNECTION_FAILURE),
errmsg("cannot get the size because of a connection error")));
}
List *sizeList = ReadFirstColumnAsText(result);
if (list_length(sizeList) != 1)
{
ereport(ERROR, (errmsg(
"received wrong number of rows from worker, expected 1 received %d",
list_length(sizeList))));
}
StringInfo totalSizeStringInfo = (StringInfo) linitial(sizeList);
char *totalSizeString = totalSizeStringInfo->data;
uint64 totalSize = SafeStringToUint64(totalSizeString);
PQclear(result);
ForgetResults(connection);
return totalSize;
}
/*
* SetupRebalanceMonitorForShardTransfer prepares the parameters and
* calls SetupRebalanceMonitor, unless the current transfer is a move
* initiated by the rebalancer.
* See comments on SetupRebalanceMonitor
*/
static void
SetupRebalanceMonitorForShardTransfer(uint64 shardId, Oid distributedTableId,
char *sourceNodeName, uint32 sourceNodePort,
char *targetNodeName, uint32 targetNodePort,
ShardTransferType transferType)
{
if (transferType == SHARD_TRANSFER_MOVE && IsRebalancerInternalBackend())
{
/*
* We want to be able to track progress of shard moves using
* get_rebalancer_progress. If this move is initiated by the rebalancer,
* then the rebalancer call has already set up the shared memory that is
* used to do that, so we should return here.
* But if citus_move_shard_placement is called directly by the user
* (or through any other mechanism), then the shared memory is not
* set up yet. In that case we do it here.
*/
return;
}
WorkerNode *sourceNode = FindWorkerNode(sourceNodeName, sourceNodePort);
WorkerNode *targetNode = FindWorkerNode(targetNodeName, targetNodePort);
PlacementUpdateEvent *placementUpdateEvent = palloc0(
sizeof(PlacementUpdateEvent));
placementUpdateEvent->updateType =
transferType == SHARD_TRANSFER_COPY ? PLACEMENT_UPDATE_COPY :
PLACEMENT_UPDATE_MOVE;
placementUpdateEvent->shardId = shardId;
placementUpdateEvent->sourceNode = sourceNode;
placementUpdateEvent->targetNode = targetNode;
SetupRebalanceMonitor(list_make1(placementUpdateEvent), distributedTableId,
REBALANCE_PROGRESS_MOVING,
PLACEMENT_UPDATE_STATUS_SETTING_UP);
}
/*
* CheckSpaceConstraints checks there is enough space to place the colocation
* on the node that the connection is connected to.
*/
static void
CheckSpaceConstraints(MultiConnection *connection, uint64 colocationSizeInBytes)
{
uint64 diskAvailableInBytes = 0;
uint64 diskSizeInBytes = 0;
bool success =
GetNodeDiskSpaceStatsForConnection(connection, &diskAvailableInBytes,
&diskSizeInBytes);
if (!success)
{
ereport(ERROR, (errmsg("Could not fetch disk stats for node: %s-%d",
connection->hostname, connection->port)));
}
uint64 diskAvailableInBytesAfterShardMove = 0;
if (diskAvailableInBytes < colocationSizeInBytes)
{
/*
* even though the space will be less than "0", we set it to 0 for convenience.
*/
diskAvailableInBytes = 0;
}
else
{
diskAvailableInBytesAfterShardMove = diskAvailableInBytes - colocationSizeInBytes;
}
uint64 desiredNewDiskAvailableInBytes = diskSizeInBytes *
(DesiredPercentFreeAfterMove / 100);
if (diskAvailableInBytesAfterShardMove < desiredNewDiskAvailableInBytes)
{
ereport(ERROR, (errmsg("not enough empty space on node if the shard is moved, "
"actual available space after move will be %ld bytes, "
"desired available space after move is %ld bytes, "
"estimated size increase on node after move is %ld bytes.",
diskAvailableInBytesAfterShardMove,
desiredNewDiskAvailableInBytes, colocationSizeInBytes),
errhint(
"consider lowering citus.desired_percent_disk_available_after_move.")));
}
}
/*
* ErrorIfTargetNodeIsNotSafeForTransfer throws error if the target node is not
* eligible for shard transfers.
*/
static void
ErrorIfTargetNodeIsNotSafeForTransfer(const char *targetNodeName, int targetNodePort,
ShardTransferType transferType)
{
WorkerNode *workerNode = FindWorkerNode(targetNodeName, targetNodePort);
if (workerNode == NULL)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("%s shards to a non-existing node is not supported",
ShardTransferTypeNamesContinuous[transferType]),
errhint(
"Add the target node via SELECT citus_add_node('%s', %d);",
targetNodeName, targetNodePort)));
}
if (!workerNode->isActive)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("%s shards to a non-active node is not supported",
ShardTransferTypeNamesContinuous[transferType]),
errhint(
"Activate the target node via SELECT citus_activate_node('%s', %d);",
targetNodeName, targetNodePort)));
}
if (transferType == SHARD_TRANSFER_MOVE && !workerNode->shouldHaveShards)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("Moving shards to a node that shouldn't have a shard is "
"not supported"),
errhint("Allow shards on the target node via "
"SELECT * FROM citus_set_node_property('%s', %d, 'shouldhaveshards', true);",
targetNodeName, targetNodePort)));
}
if (!NodeIsPrimary(workerNode))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("%s shards to a secondary (e.g., replica) node is "
"not supported",
ShardTransferTypeNamesContinuous[transferType])));
}
}
/*
* ErrorIfSameNode throws an error if the two host:port combinations
* are the same.
*/
static void
ErrorIfSameNode(char *sourceNodeName, int sourceNodePort,
char *targetNodeName, int targetNodePort,
const char *operationName)
{
if (strncmp(sourceNodeName, targetNodeName, MAX_NODE_LENGTH) == 0 &&
sourceNodePort == targetNodePort)
{
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("cannot %s shard to the same node",
operationName)));
}
}
/*
* master_move_shard_placement is a wrapper around citus_move_shard_placement.
*/
Datum
master_move_shard_placement(PG_FUNCTION_ARGS)
{
return citus_move_shard_placement(fcinfo);
}
/*
* ErrorIfMoveUnsupportedTableType is a helper function for rebalance_table_shards
* and citus_move_shard_placement udf's to error out if relation with relationId
* is not a distributed table.
*/
void
ErrorIfMoveUnsupportedTableType(Oid relationId)
{
if (IsCitusTableType(relationId, DISTRIBUTED_TABLE))
{
return;
}
char *qualifiedRelationName = generate_qualified_relation_name(relationId);
if (!IsCitusTable(relationId))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("table %s is a regular postgres table, you can "
"only move shards of a citus table",
qualifiedRelationName)));
}
else if (IsCitusTableType(relationId, CITUS_LOCAL_TABLE))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("table %s is a local table, moving shard of "
"a local table added to metadata is currently "
"not supported", qualifiedRelationName)));
}
else if (IsCitusTableType(relationId, REFERENCE_TABLE))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("table %s is a reference table, moving shard of "
"a reference table is not supported",
qualifiedRelationName)));
}
}
/*
* VerifyTablesHaveReplicaIdentity throws an error if any of the tables
* do not have a replica identity, which is required for logical replication
* to replicate UPDATE and DELETE commands.
*/
void
VerifyTablesHaveReplicaIdentity(List *colocatedTableList)
{
ListCell *colocatedTableCell = NULL;
foreach(colocatedTableCell, colocatedTableList)
{
Oid colocatedTableId = lfirst_oid(colocatedTableCell);
if (!RelationCanPublishAllModifications(colocatedTableId))
{
char *colocatedRelationName = get_rel_name(colocatedTableId);
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot use logical replication to transfer shards of "
"the relation %s since it doesn't have a REPLICA "
"IDENTITY or PRIMARY KEY", colocatedRelationName),
errdetail("UPDATE and DELETE commands on the shard will "
"error out during logical replication unless "
"there is a REPLICA IDENTITY or PRIMARY KEY."),
errhint("If you wish to continue without a replica "
"identity set the shard_transfer_mode to "
"'force_logical' or 'block_writes'.")));
}
}
}
/*
* RelationCanPublishAllModifications returns true if the relation is safe to publish
* all modification while being replicated via logical replication.
*/
bool
RelationCanPublishAllModifications(Oid relationId)
{
Relation relation = RelationIdGetRelation(relationId);
bool canPublish = false;
if (relation == NULL)
{
ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("could not open relation with OID %u", relationId)));
}
/* if relation has replica identity we are always good */
if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL ||
OidIsValid(RelationGetReplicaIndex(relation)))
{
canPublish = true;
}
/* partitioned tables do not contain any data themselves, can always replicate */
if (PartitionedTable(relationId))
{
canPublish = true;
}
RelationClose(relation);
return canPublish;
}
/*
* BlockWritesToShardList blocks writes to all shards in the given shard
* list. The function assumes that all the shards in the list are colocated.
*/
void
BlockWritesToShardList(List *shardList)
{
ShardInterval *shard = NULL;
foreach_declared_ptr(shard, shardList)
{
/*
* We need to lock the referenced reference table metadata to avoid
* asynchronous shard copy in case of cascading DML operations.
*/
LockReferencedReferenceShardDistributionMetadata(shard->shardId,
ExclusiveLock);
LockShardDistributionMetadata(shard->shardId, ExclusiveLock);
}
/* following code relies on the list to have at least one shard */
if (list_length(shardList) == 0)
{
return;
}
/*
* Since the function assumes that the input shards are colocated,
* calculating shouldSyncMetadata for a single table is sufficient.
*/
ShardInterval *firstShardInterval = (ShardInterval *) linitial(shardList);
Oid firstDistributedTableId = firstShardInterval->relationId;
bool shouldSyncMetadata = ShouldSyncTableMetadata(firstDistributedTableId);
if (shouldSyncMetadata || !IsCoordinator())
{
/*
* Even if users disable metadata sync, we cannot allow them not to
* acquire the remote locks. Hence, we have !IsCoordinator() check.
*/
LockShardListMetadataOnWorkers(ExclusiveLock, shardList);
}
}
/*
* CanUseLogicalReplication returns true if the given table can be logically replicated.
*/
static bool
CanUseLogicalReplication(Oid relationId, char shardReplicationMode)
{
if (shardReplicationMode == TRANSFER_MODE_BLOCK_WRITES)
{
/* user explicitly chose not to use logical replication */
return false;
}
/*
* Logical replication doesn't support replicating foreign tables and views.
*/
if (!RegularTable(relationId))
{
ereport(LOG, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("Cannot use logical replication for "
"shard move since the relation %s is not "
"a regular relation",
get_rel_name(relationId))));
return false;
}
/* Logical replication doesn't support inherited tables */
if (IsParentTable(relationId))
{
ereport(LOG, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("Cannot use logical replication for "
"shard move since the relation %s is an "
"inherited relation",
get_rel_name(relationId))));
return false;
}
return true;
}
/*
* ErrorIfTableCannotBeReplicated function errors out if the given table is not suitable
* for its shard being replicated. There are 2 cases in which shard replication is not
* allowed:
*
* 1) MX tables, since RF=1 is a must MX tables
* 2) Reference tables, since the shard should already exist in all workers
*/
static void
ErrorIfTableCannotBeReplicated(Oid relationId)
{
/*
* Note that ShouldSyncTableMetadata() returns true for both MX tables
* and reference tables.
*/
bool shouldSyncMetadata = ShouldSyncTableMetadata(relationId);
if (!shouldSyncMetadata)
{
return;
}
CitusTableCacheEntry *tableEntry = GetCitusTableCacheEntry(relationId);
char *relationName = get_rel_name(relationId);
if (IsCitusTableTypeCacheEntry(tableEntry, CITUS_LOCAL_TABLE))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
(errmsg("Table %s is a local table. Replicating "
"shard of a local table added to metadata "
"currently is not supported",
quote_literal_cstr(relationName)))));
}
/*
* ShouldSyncTableMetadata() returns true also for reference table,
* we don't want to error in that case since reference tables aren't
* automatically replicated to active nodes with no shards, and
* master_copy_shard_placement() can be used to create placements in
* such nodes.
*/
if (tableEntry->replicationModel == REPLICATION_MODEL_STREAMING)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
(errmsg("Table %s is streaming replicated. Shards "
"of streaming replicated tables cannot "
"be copied", quote_literal_cstr(relationName)))));
}
}
/*
* LookupShardTransferMode maps the oids of citus.shard_transfer_mode enum
* values to a char.
*/
char
LookupShardTransferMode(Oid shardReplicationModeOid)
{
char shardReplicationMode = 0;
Datum enumLabelDatum = DirectFunctionCall1(enum_out, shardReplicationModeOid);
char *enumLabel = DatumGetCString(enumLabelDatum);
if (strncmp(enumLabel, "auto", NAMEDATALEN) == 0)
{
shardReplicationMode = TRANSFER_MODE_AUTOMATIC;
}
else if (strncmp(enumLabel, "force_logical", NAMEDATALEN) == 0)
{
shardReplicationMode = TRANSFER_MODE_FORCE_LOGICAL;
}
else if (strncmp(enumLabel, "block_writes", NAMEDATALEN) == 0)
{
shardReplicationMode = TRANSFER_MODE_BLOCK_WRITES;
}
else
{
ereport(ERROR, (errmsg("invalid label for enum: %s", enumLabel)));
}
return shardReplicationMode;
}
/*
* EnsureTableListOwner ensures current user owns given tables. Superusers
* are regarded as owners.
*/
static void
EnsureTableListOwner(List *tableIdList)
{
Oid tableId = InvalidOid;
foreach_declared_oid(tableId, tableIdList)
{
EnsureTableOwner(tableId);
}
}
/*
* ErrorIfReplicatingDistributedTableWithFKeys errors out if given tables are not
* suitable for replication.
*/
static void
ErrorIfReplicatingDistributedTableWithFKeys(List *tableIdList)
{
Oid tableId = InvalidOid;
foreach_declared_oid(tableId, tableIdList)
{
List *foreignConstraintCommandList =
GetReferencingForeignConstaintCommands(tableId);
if (foreignConstraintCommandList != NIL &&
IsCitusTableType(tableId, DISTRIBUTED_TABLE))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot replicate shards with foreign keys")));
}
}
}
/*
* CopyShardTables copies a shard along with its co-located shards from a source
* node to target node. It does not make any checks about state of the shards.
* It is caller's responsibility to make those checks if they are necessary.
*/
static void
CopyShardTables(List *shardIntervalList, char *sourceNodeName, int32 sourceNodePort,
char *targetNodeName, int32 targetNodePort, bool useLogicalReplication,
const char *operationName)
{
if (list_length(shardIntervalList) < 1)
{
return;
}
/* Start operation to prepare for generating cleanup records */
RegisterOperationNeedingCleanup();
if (useLogicalReplication)
{
CopyShardTablesViaLogicalReplication(shardIntervalList, sourceNodeName,
sourceNodePort, targetNodeName,
targetNodePort);
}
else
{
CopyShardTablesViaBlockWrites(shardIntervalList, sourceNodeName, sourceNodePort,
targetNodeName, targetNodePort);
}
/*
* Drop temporary objects that were marked as CLEANUP_ALWAYS.
*/
FinalizeOperationNeedingCleanupOnSuccess(operationName);
}
/*
* CopyShardTablesViaLogicalReplication copies a shard along with its co-located shards
* from a source node to target node via logical replication.
*/
static void
CopyShardTablesViaLogicalReplication(List *shardIntervalList, char *sourceNodeName,
int32 sourceNodePort, char *targetNodeName,
int32 targetNodePort)
{
MemoryContext localContext = AllocSetContextCreate(CurrentMemoryContext,
"CopyShardTablesViaLogicalReplication",
ALLOCSET_DEFAULT_SIZES);
MemoryContext oldContext = MemoryContextSwitchTo(localContext);
/*
* Iterate through the colocated shards and create them on the
* target node. We do not create the indexes yet.
*/
ShardInterval *shardInterval = NULL;
foreach_declared_ptr(shardInterval, shardIntervalList)
{
Oid relationId = shardInterval->relationId;
uint64 shardId = shardInterval->shardId;
List *tableRecreationCommandList = RecreateTableDDLCommandList(relationId);
tableRecreationCommandList =
WorkerApplyShardDDLCommandList(tableRecreationCommandList, shardId);
char *tableOwner = TableOwner(shardInterval->relationId);
/* drop the shard we created on the target, in case of failure */
InsertCleanupRecordOutsideTransaction(CLEANUP_OBJECT_SHARD_PLACEMENT,
ConstructQualifiedShardName(shardInterval),
GroupForNode(targetNodeName,
targetNodePort),
CLEANUP_ON_FAILURE);
SendCommandListToWorkerOutsideTransaction(targetNodeName, targetNodePort,
tableOwner,
tableRecreationCommandList);
MemoryContextReset(localContext);
}
MemoryContextSwitchTo(oldContext);
/* data copy is done seperately when logical replication is used */
LogicallyReplicateShards(shardIntervalList, sourceNodeName,
sourceNodePort, targetNodeName, targetNodePort);
}
/*
* CreateShardCommandList creates a struct for shard interval
* along with DDL commands to be executed.
*/
static ShardCommandList *
CreateShardCommandList(ShardInterval *shardInterval, List *ddlCommandList)
{
ShardCommandList *shardCommandList = palloc0(
sizeof(ShardCommandList));
shardCommandList->shardInterval = shardInterval;
shardCommandList->ddlCommandList = ddlCommandList;
return shardCommandList;
}
/*
* CopyShardTablesViaBlockWrites copies a shard along with its co-located shards
* from a source node to target node via COPY command. While the command is in
* progress, the modifications on the source node is blocked.
*/
static void
CopyShardTablesViaBlockWrites(List *shardIntervalList, char *sourceNodeName,
int32 sourceNodePort, char *targetNodeName,
int32 targetNodePort)
{
MemoryContext localContext = AllocSetContextCreate(CurrentMemoryContext,
"CopyShardTablesViaBlockWrites",
ALLOCSET_DEFAULT_SIZES);
MemoryContext oldContext = MemoryContextSwitchTo(localContext);
WorkerNode *sourceNode = FindWorkerNode(sourceNodeName, sourceNodePort);
WorkerNode *targetNode = FindWorkerNode(targetNodeName, targetNodePort);
/* iterate through the colocated shards and copy each */
ShardInterval *shardInterval = NULL;
foreach_declared_ptr(shardInterval, shardIntervalList)
{
/*
* For each shard we first create the shard table in a separate
* transaction and then we copy the data and create the indexes in a
* second separate transaction. The reason we don't do both in a single
* transaction is so we can see the size of the new shard growing
* during the copy when we run get_rebalance_progress in another
* session. If we wouldn't split these two phases up, then the table
* wouldn't be visible in the session that get_rebalance_progress uses.
* So get_rebalance_progress would always report its size as 0.
*/
List *ddlCommandList = RecreateShardDDLCommandList(shardInterval, sourceNodeName,
sourceNodePort);
char *tableOwner = TableOwner(shardInterval->relationId);
/* drop the shard we created on the target, in case of failure */
InsertCleanupRecordOutsideTransaction(CLEANUP_OBJECT_SHARD_PLACEMENT,
ConstructQualifiedShardName(shardInterval),
GroupForNode(targetNodeName,
targetNodePort),
CLEANUP_ON_FAILURE);
SendCommandListToWorkerOutsideTransaction(targetNodeName, targetNodePort,
tableOwner, ddlCommandList);
}
UpdatePlacementUpdateStatusForShardIntervalList(
shardIntervalList,
sourceNodeName,
sourceNodePort,
PLACEMENT_UPDATE_STATUS_COPYING_DATA);
ConflictWithIsolationTestingBeforeCopy();
CopyShardsToNode(sourceNode, targetNode, shardIntervalList, NULL);
ConflictWithIsolationTestingAfterCopy();
UpdatePlacementUpdateStatusForShardIntervalList(
shardIntervalList,
sourceNodeName,
sourceNodePort,
PLACEMENT_UPDATE_STATUS_CREATING_CONSTRAINTS);
foreach_declared_ptr(shardInterval, shardIntervalList)
{
List *ddlCommandList =
PostLoadShardCreationCommandList(shardInterval, sourceNodeName,
sourceNodePort);
char *tableOwner = TableOwner(shardInterval->relationId);
SendCommandListToWorkerOutsideTransaction(targetNodeName, targetNodePort,
tableOwner, ddlCommandList);
MemoryContextReset(localContext);
}
/*
* Once all shards are copied, we can recreate relationships between shards.
* Create DDL commands to Attach child tables to their parents in a partitioning hierarchy.
*/
List *shardIntervalWithDDCommandsList = NIL;
foreach_declared_ptr(shardInterval, shardIntervalList)
{
if (PartitionTable(shardInterval->relationId))
{
char *attachPartitionCommand =
GenerateAttachShardPartitionCommand(shardInterval);
ShardCommandList *shardCommandList = CreateShardCommandList(
shardInterval,
list_make1(attachPartitionCommand));
shardIntervalWithDDCommandsList = lappend(shardIntervalWithDDCommandsList,
shardCommandList);
}
}
UpdatePlacementUpdateStatusForShardIntervalList(
shardIntervalList,
sourceNodeName,
sourceNodePort,
PLACEMENT_UPDATE_STATUS_CREATING_FOREIGN_KEYS);
/*
* Iterate through the colocated shards and create DDL commamnds
* to create the foreign constraints.
*/
foreach_declared_ptr(shardInterval, shardIntervalList)
{
List *shardForeignConstraintCommandList = NIL;
List *referenceTableForeignConstraintList = NIL;
CopyShardForeignConstraintCommandListGrouped(shardInterval,
&shardForeignConstraintCommandList,
&referenceTableForeignConstraintList);
ShardCommandList *shardCommandList = CreateShardCommandList(
shardInterval,
list_concat(shardForeignConstraintCommandList,
referenceTableForeignConstraintList));
shardIntervalWithDDCommandsList = lappend(shardIntervalWithDDCommandsList,
shardCommandList);
}
/* Now execute the Partitioning & Foreign constraints creation commads. */
ShardCommandList *shardCommandList = NULL;
foreach_declared_ptr(shardCommandList, shardIntervalWithDDCommandsList)
{
char *tableOwner = TableOwner(shardCommandList->shardInterval->relationId);
SendCommandListToWorkerOutsideTransaction(targetNodeName, targetNodePort,
tableOwner,
shardCommandList->ddlCommandList);
}
UpdatePlacementUpdateStatusForShardIntervalList(
shardIntervalList,
sourceNodeName,
sourceNodePort,
PLACEMENT_UPDATE_STATUS_COMPLETING);
MemoryContextReset(localContext);
MemoryContextSwitchTo(oldContext);
}
/*
* CopyShardsToNode copies the list of shards from the source to the target.
* When snapshotName is not NULL it will do the COPY using this snapshot name.
*/
void
CopyShardsToNode(WorkerNode *sourceNode, WorkerNode *targetNode, List *shardIntervalList,
char *snapshotName)
{
int taskId = 0;
List *copyTaskList = NIL;
ShardInterval *shardInterval = NULL;
foreach_declared_ptr(shardInterval, shardIntervalList)
{
/*
* Skip copying data for partitioned tables, because they contain no
* data themselves. Their partitions do contain data, but those are
* different colocated shards that will be copied seperately.
*/
if (PartitionedTable(shardInterval->relationId))
{
continue;
}
List *ddlCommandList = NIL;
/*
* This uses repeatable read because we want to read the table in
* the state exactly as it was when the snapshot was created. This
* is needed when using this code for the initial data copy when
* using logical replication. The logical replication catchup might
* fail otherwise, because some of the updates that it needs to do
* have already been applied on the target.
*/
StringInfo beginTransaction = makeStringInfo();
appendStringInfo(beginTransaction,
"BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;");
ddlCommandList = lappend(ddlCommandList, beginTransaction->data);
/* Set snapshot for non-blocking shard split. */
if (snapshotName != NULL)
{
StringInfo snapShotString = makeStringInfo();
appendStringInfo(snapShotString, "SET TRANSACTION SNAPSHOT %s;",
quote_literal_cstr(
snapshotName));
ddlCommandList = lappend(ddlCommandList, snapShotString->data);
}
char *copyCommand = CreateShardCopyCommand(
shardInterval, targetNode);
ddlCommandList = lappend(ddlCommandList, copyCommand);
StringInfo commitCommand = makeStringInfo();
appendStringInfo(commitCommand, "COMMIT;");
ddlCommandList = lappend(ddlCommandList, commitCommand->data);
Task *task = CitusMakeNode(Task);
task->jobId = shardInterval->shardId;
task->taskId = taskId;
task->taskType = READ_TASK;
task->replicationModel = REPLICATION_MODEL_INVALID;
SetTaskQueryStringList(task, ddlCommandList);
ShardPlacement *taskPlacement = CitusMakeNode(ShardPlacement);
SetPlacementNodeMetadata(taskPlacement, sourceNode);
task->taskPlacementList = list_make1(taskPlacement);
copyTaskList = lappend(copyTaskList, task);
taskId++;
}
ExecuteTaskListOutsideTransaction(ROW_MODIFY_NONE, copyTaskList,
MaxAdaptiveExecutorPoolSize,
NULL /* jobIdList (ignored by API implementation) */);
}
/*
* CreateShardCopyCommand constructs the command to copy a shard to another
* worker node. This command needs to be run on the node wher you want to copy
* the shard from.
*/
static char *
CreateShardCopyCommand(ShardInterval *shard,
WorkerNode *targetNode)
{
char *shardName = ConstructQualifiedShardName(shard);
StringInfo query = makeStringInfo();
appendStringInfo(query,
"SELECT pg_catalog.worker_copy_table_to_node(%s::regclass, %u);",
quote_literal_cstr(shardName),
targetNode->nodeId);
return query->data;
}
/*
* EnsureShardCanBeCopied checks if the given shard has a healthy placement in the source
* node and no placements in the target node.
*/
static void
EnsureShardCanBeCopied(int64 shardId, const char *sourceNodeName, int32 sourceNodePort,
const char *targetNodeName, int32 targetNodePort)
{
List *shardPlacementList = ShardPlacementList(shardId);
/* error if the source shard placement does not exist */
SearchShardPlacementInListOrError(shardPlacementList, sourceNodeName, sourceNodePort);
ShardPlacement *targetPlacement = SearchShardPlacementInList(shardPlacementList,
targetNodeName,
targetNodePort);
if (targetPlacement != NULL)
{
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg(
"shard " INT64_FORMAT " already exists in the target node",
shardId)));
}
/*
* Make sure the relation exists. In some cases the relation is actually dropped but
* the metadata remains, such as dropping table while citus.enable_ddl_propagation
* is set to off.
*/
ShardInterval *shardInterval = LoadShardInterval(shardId);
Oid distributedTableId = shardInterval->relationId;
EnsureRelationExists(distributedTableId);
}
/*
* SearchShardPlacementInList searches a provided list for a shard placement with the
* specified node name and port. This function returns NULL if no such
* placement exists in the provided list.
*/
ShardPlacement *
SearchShardPlacementInList(List *shardPlacementList, const char *nodeName,
uint32 nodePort)
{
ShardPlacement *shardPlacement = NULL;
foreach_declared_ptr(shardPlacement, shardPlacementList)
{
if (strncmp(nodeName, shardPlacement->nodeName, MAX_NODE_LENGTH) == 0 &&
nodePort == shardPlacement->nodePort)
{
return shardPlacement;
}
}
return NULL;
}
/*
* SearchShardPlacementInListOrError searches a provided list for a shard
* placement with the specified node name and port. This function throws an
* error if no such placement exists in the provided list.
*
* This is a separate function (instead of using missingOk), so static analysis
* reasons about NULL returns correctly.
*/
ShardPlacement *
SearchShardPlacementInListOrError(List *shardPlacementList, const char *nodeName,
uint32 nodePort)
{
ShardPlacement *placement = SearchShardPlacementInList(shardPlacementList, nodeName,
nodePort);
if (placement == NULL)
{
ereport(ERROR, (errcode(ERRCODE_DATA_EXCEPTION),
errmsg("could not find placement matching \"%s:%d\"",
nodeName, nodePort),
errhint("Confirm the placement still exists and try again.")));
}
return placement;
}
/*
* RecreateShardDDLCommandList generates a command list to recreate a shard,
* but without any data init and without the post-load table creation commands.
*/
static List *
RecreateShardDDLCommandList(ShardInterval *shardInterval, const char *sourceNodeName,
int32 sourceNodePort)
{
int64 shardId = shardInterval->shardId;
Oid relationId = shardInterval->relationId;
List *tableRecreationCommandList = RecreateTableDDLCommandList(relationId);
return WorkerApplyShardDDLCommandList(tableRecreationCommandList, shardId);
}
/*
* PostLoadShardCreationCommandList generates a command list to finalize the
* creation of a shard after the data has been loaded. This creates stuff like
* the indexes on the table.
*/
static List *
PostLoadShardCreationCommandList(ShardInterval *shardInterval, const char *sourceNodeName,
int32 sourceNodePort)
{
int64 shardId = shardInterval->shardId;
Oid relationId = shardInterval->relationId;
bool includeReplicaIdentity = true;
List *indexCommandList =
GetPostLoadTableCreationCommands(relationId, true, includeReplicaIdentity);
return WorkerApplyShardDDLCommandList(indexCommandList, shardId);
}
/*
* CopyShardForeignConstraintCommandList generates command list to create foreign
* constraints existing in source shard after copying it to the other node.
*/
List *
CopyShardForeignConstraintCommandList(ShardInterval *shardInterval)
{
List *colocatedShardForeignConstraintCommandList = NIL;
List *referenceTableForeignConstraintList = NIL;
CopyShardForeignConstraintCommandListGrouped(
shardInterval,
&colocatedShardForeignConstraintCommandList,
&referenceTableForeignConstraintList);
return list_concat(colocatedShardForeignConstraintCommandList,
referenceTableForeignConstraintList);
}
/*
* CopyShardForeignConstraintCommandListGrouped generates command lists
* to create foreign constraints existing in source shard after copying it to other
* node in separate groups for foreign constraints in between hash distributed tables
* and from a hash distributed to reference tables.
*/
void
CopyShardForeignConstraintCommandListGrouped(ShardInterval *shardInterval,
List **
colocatedShardForeignConstraintCommandList,
List **referenceTableForeignConstraintList)
{
Oid relationId = shardInterval->relationId;
Oid schemaId = get_rel_namespace(relationId);
char *schemaName = get_namespace_name(schemaId);
char *escapedSchemaName = quote_literal_cstr(schemaName);
int shardIndex = 0;
List *commandList = GetReferencingForeignConstaintCommands(relationId);
/* we will only use shardIndex if there is a foreign constraint */
if (commandList != NIL)
{
shardIndex = ShardIndex(shardInterval);
}
*colocatedShardForeignConstraintCommandList = NIL;
*referenceTableForeignConstraintList = NIL;
const char *command = NULL;
foreach_declared_ptr(command, commandList)
{
char *escapedCommand = quote_literal_cstr(command);
uint64 referencedShardId = INVALID_SHARD_ID;
bool colocatedForeignKey = false;
StringInfo applyForeignConstraintCommand = makeStringInfo();
/* we need to parse the foreign constraint command to get referenced table id */
Oid referencedRelationId = ForeignConstraintGetReferencedTableId(command);
if (referencedRelationId == InvalidOid)
{
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("cannot create foreign key constraint"),
errdetail("Referenced relation cannot be found.")));
}
Oid referencedSchemaId = get_rel_namespace(referencedRelationId);
char *referencedSchemaName = get_namespace_name(referencedSchemaId);
char *escapedReferencedSchemaName = quote_literal_cstr(referencedSchemaName);
if (relationId == referencedRelationId)
{
referencedShardId = shardInterval->shardId;
}
else if (IsCitusTableType(referencedRelationId, REFERENCE_TABLE))
{
referencedShardId = GetFirstShardId(referencedRelationId);
}
else if (IsCitusTableType(referencedRelationId, CITUS_LOCAL_TABLE))
{
/*
* Only reference tables and citus local tables can have foreign
* keys to citus local tables but we already do not allow copying
* citus local table shards and we don't try to replicate citus
* local table shards. So, the referencing table must be a reference
* table in this context.
*/
Assert(IsCitusTableType(relationId, REFERENCE_TABLE));
/*
* We don't set foreign keys from reference tables to citus local
* tables in worker shard placements of reference tables because
* we don't have the shard placement for citus local table in worker
* nodes.
*/
continue;
}
else
{
referencedShardId = ColocatedShardIdInRelation(referencedRelationId,
shardIndex);
colocatedForeignKey = true;
}
appendStringInfo(applyForeignConstraintCommand,
WORKER_APPLY_INTER_SHARD_DDL_COMMAND, shardInterval->shardId,
escapedSchemaName, referencedShardId,
escapedReferencedSchemaName, escapedCommand);
if (colocatedForeignKey)
{
*colocatedShardForeignConstraintCommandList = lappend(
*colocatedShardForeignConstraintCommandList,
applyForeignConstraintCommand->data);
}
else
{
*referenceTableForeignConstraintList = lappend(
*referenceTableForeignConstraintList,
applyForeignConstraintCommand->data);
}
}
}
/*
* GetFirstShardId is a helper function which returns the first
* shardId of the given distributed relation. The function doesn't
* sort the shardIds, so it is mostly useful for reference tables.
*/
uint64
GetFirstShardId(Oid relationId)
{
List *shardList = LoadShardList(relationId);
uint64 *shardIdPointer = (uint64 *) linitial(shardList);
return (*shardIdPointer);
}
/*
* ConstuctQualifiedShardName creates the fully qualified name string of the
* given shard in <schema>.<table_name>_<shard_id> format.
*/
char *
ConstructQualifiedShardName(ShardInterval *shardInterval)
{
Oid schemaId = get_rel_namespace(shardInterval->relationId);
char *schemaName = get_namespace_name(schemaId);
char *tableName = get_rel_name(shardInterval->relationId);
char *shardName = pstrdup(tableName);
AppendShardIdToName(&shardName, shardInterval->shardId);
shardName = quote_qualified_identifier(schemaName, shardName);
return shardName;
}
/*
* RecreateTableDDLCommandList returns a list of DDL statements similar to that
* returned by GetTableCreationCommands except that the list begins with a "DROP TABLE"
* or "DROP FOREIGN TABLE" statement to facilitate idempotent recreation of a placement.
*/
static List *
RecreateTableDDLCommandList(Oid relationId)
{
const char *qualifiedRelationName = generate_qualified_relation_name(relationId);
StringInfo dropCommand = makeStringInfo();
IncludeSequenceDefaults includeSequenceDefaults = NO_SEQUENCE_DEFAULTS;
IncludeIdentities includeIdentityDefaults = NO_IDENTITY;
/* build appropriate DROP command based on relation kind */
if (RegularTable(relationId))
{
appendStringInfo(dropCommand, DROP_REGULAR_TABLE_COMMAND,
qualifiedRelationName);
}
else if (IsForeignTable(relationId))
{
appendStringInfo(dropCommand, DROP_FOREIGN_TABLE_COMMAND,
qualifiedRelationName);
}
else
{
ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("target is not a regular, foreign or partitioned "
"table")));
}
List *dropCommandList = list_make1(makeTableDDLCommandString(dropCommand->data));
List *createCommandList = GetPreLoadTableCreationCommands(relationId,
includeSequenceDefaults,
includeIdentityDefaults,
NULL);
List *recreateCommandList = list_concat(dropCommandList, createCommandList);
return recreateCommandList;
}
/*
* DropShardPlacementsFromMetadata drops the shard placement metadata for
* the shard placements of given shard interval list from pg_dist_placement.
*/
static void
DropShardPlacementsFromMetadata(List *shardList,
char *nodeName, int32 nodePort)
{
ShardInterval *shardInverval = NULL;
foreach_declared_ptr(shardInverval, shardList)
{
uint64 shardId = shardInverval->shardId;
List *shardPlacementList = ShardPlacementList(shardId);
ShardPlacement *placement =
SearchShardPlacementInListOrError(shardPlacementList, nodeName, nodePort);
DeleteShardPlacementRow(placement->placementId);
}
}
/*
* UpdateColocatedShardPlacementMetadataOnWorkers updates the metadata about the
* placements of the given shard and its colocated shards by changing the nodename and
* nodeport of the shards from the source nodename/port to target nodename/port.
*
* Note that the function does nothing if the given shard belongs to a non-mx table.
*/
static void
UpdateColocatedShardPlacementMetadataOnWorkers(int64 shardId,
char *sourceNodeName, int32 sourceNodePort,
char *targetNodeName, int32 targetNodePort)
{
ShardInterval *shardInterval = LoadShardInterval(shardId);
ListCell *colocatedShardCell = NULL;
bool shouldSyncMetadata = ShouldSyncTableMetadata(shardInterval->relationId);
if (!shouldSyncMetadata)
{
return;
}
uint32 sourceGroupId = GroupForNode(sourceNodeName, sourceNodePort);
uint32 targetGroupId = GroupForNode(targetNodeName, targetNodePort);
List *colocatedShardList = ColocatedShardIntervalList(shardInterval);
/* iterate through the colocated shards and copy each */
foreach(colocatedShardCell, colocatedShardList)
{
ShardInterval *colocatedShard = (ShardInterval *) lfirst(colocatedShardCell);
StringInfo updateCommand = makeStringInfo();
appendStringInfo(updateCommand,
"SELECT citus_internal.update_placement_metadata(%ld, %d, %d)",
colocatedShard->shardId,
sourceGroupId, targetGroupId);
SendCommandToWorkersWithMetadata(updateCommand->data);
}
}
/*
* WorkerApplyShardDDLCommandList wraps all DDL commands in ddlCommandList
* in a call to worker_apply_shard_ddl_command to apply the DDL command to
* the shard specified by shardId.
*/
List *
WorkerApplyShardDDLCommandList(List *ddlCommandList, int64 shardId)
{
List *applyDDLCommandList = NIL;
TableDDLCommand *ddlCommand = NULL;
foreach_declared_ptr(ddlCommand, ddlCommandList)
{
Assert(CitusIsA(ddlCommand, TableDDLCommand));
char *applyDDLCommand = GetShardedTableDDLCommand(ddlCommand, shardId, NULL);
applyDDLCommandList = lappend(applyDDLCommandList, applyDDLCommand);
}
return applyDDLCommandList;
}
/*
* UpdatePlacementUpdateStatusForShardIntervalList updates the status field for shards
* in the given shardInterval list.
*/
void
UpdatePlacementUpdateStatusForShardIntervalList(List *shardIntervalList,
char *sourceName, int sourcePort,
PlacementUpdateStatus status)
{
List *segmentList = NIL;
List *rebalanceMonitorList = NULL;
if (!HasProgressMonitor())
{
rebalanceMonitorList = ProgressMonitorList(REBALANCE_ACTIVITY_MAGIC_NUMBER,
&segmentList);
}
else
{
rebalanceMonitorList = list_make1(GetCurrentProgressMonitor());
}
ProgressMonitorData *monitor = NULL;
foreach_declared_ptr(monitor, rebalanceMonitorList)
{
PlacementUpdateEventProgress *steps = ProgressMonitorSteps(monitor);
for (int moveIndex = 0; moveIndex < monitor->stepCount; moveIndex++)
{
PlacementUpdateEventProgress *step = steps + moveIndex;
uint64 currentShardId = step->shardId;
bool foundInList = false;
ShardInterval *candidateShard = NULL;
foreach_declared_ptr(candidateShard, shardIntervalList)
{
if (candidateShard->shardId == currentShardId)
{
foundInList = true;
break;
}
}
if (foundInList &&
strcmp(step->sourceName, sourceName) == 0 &&
step->sourcePort == sourcePort)
{
pg_atomic_write_u64(&step->updateStatus, status);
}
}
}
DetachFromDSMSegments(segmentList);
}