citus/src/backend/distributed/executor/multi_router_executor.c

1859 lines
55 KiB
C

/*
* multi_router_executor.c
*
* Routines for executing remote tasks as part of a distributed execution plan
* with synchronous connections. The routines utilize the connection cache.
* Therefore, only a single connection is opened for each worker. Also, router
* executor does not require a master table and a master query. In other words,
* the results that are fetched from a single worker is sent to the output console
* directly. Lastly, router executor can only execute a single task.
*
* Copyright (c) 2012-2016, Citus Data, Inc.
*/
#include "postgres.h" /* IWYU pragma: keep */
#include "c.h"
#include "fmgr.h" /* IWYU pragma: keep */
#include "funcapi.h"
#include "libpq-fe.h"
#include "miscadmin.h"
#include <string.h>
#include "access/htup.h"
#include "access/sdir.h"
#include "access/transam.h"
#include "access/tupdesc.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "distributed/citus_clauses.h"
#include "distributed/citus_ruleutils.h"
#include "distributed/commit_protocol.h"
#include "distributed/connection_cache.h"
#include "distributed/connection_management.h"
#include "distributed/deparse_shard_query.h"
#include "distributed/listutils.h"
#include "distributed/master_metadata_utility.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_executor.h"
#include "distributed/multi_physical_planner.h"
#include "distributed/multi_planner.h"
#include "distributed/multi_router_executor.h"
#include "distributed/multi_router_planner.h"
#include "distributed/multi_shard_transaction.h"
#include "distributed/relay_utility.h"
#include "distributed/remote_commands.h"
#include "distributed/remote_transaction.h"
#include "distributed/resource_lock.h"
#include "executor/execdesc.h"
#include "executor/executor.h"
#include "executor/instrument.h"
#include "executor/tuptable.h"
#include "lib/stringinfo.h"
#include "nodes/execnodes.h"
#include "nodes/nodes.h"
#include "nodes/params.h"
#include "nodes/parsenodes.h"
#include "nodes/pg_list.h"
#include "nodes/plannodes.h"
#include "storage/ipc.h"
#include "storage/lock.h"
#include "tcop/dest.h"
#include "utils/elog.h"
#include "utils/errcodes.h"
#include "utils/hsearch.h"
#include "utils/int8.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/palloc.h"
#include "utils/tuplestore.h"
/* controls use of locks to enforce safe commutativity */
bool AllModificationsCommutative = false;
/*
* The following static variables are necessary to track the progression of
* multi-statement transactions managed by the router executor. After the first
* modification within a transaction, the executor populates a hash with the
* transaction's initial participants (nodes hit by that initial modification).
*
* To keep track of the reverse mapping (from shards to nodes), we have a list
* of XactShardConnSets, which map a shard identifier to a set of connection
* hash entries. This list is walked by MarkRemainingInactivePlacements to
* ensure we mark placements as failed if they reject a COMMIT.
*/
static HTAB *xactParticipantHash = NULL;
static List *xactShardConnSetList = NIL;
/* functions needed during start phase */
static void InitTransactionStateForTask(Task *task);
static HTAB * CreateXactParticipantHash(void);
/* functions needed during run phase */
static void ReacquireMetadataLocks(List *taskList);
static bool ExecuteSingleTask(QueryDesc *queryDesc, Task *task,
bool isModificationQuery, bool expectResults);
static void GetPlacementConnectionsReadyForTwoPhaseCommit(List *taskPlacementList);
static void ExecuteMultipleTasks(QueryDesc *queryDesc, List *taskList,
bool isModificationQuery, bool expectResults);
static int64 ExecuteModifyTasks(List *taskList, bool expectResults,
ParamListInfo paramListInfo,
MaterialState *routerState,
TupleDesc tupleDescriptor);
static List * TaskShardIntervalList(List *taskList);
static void AcquireExecutorShardLock(Task *task, CmdType commandType);
static void AcquireExecutorMultiShardLocks(List *taskList);
static bool RequiresConsistentSnapshot(Task *task);
static uint64 ReturnRowsFromTuplestore(uint64 tupleCount, TupleDesc tupleDescriptor,
DestReceiver *destination,
Tuplestorestate *tupleStore);
static PGconn * GetConnectionForPlacement(ShardPlacement *placement,
bool isModificationQuery);
static void PurgeConnectionForPlacement(PGconn *connection, ShardPlacement *placement);
static void RemoveXactConnection(PGconn *connection);
static void ExtractParametersFromParamListInfo(ParamListInfo paramListInfo,
Oid **parameterTypes,
const char ***parameterValues);
static bool SendQueryInSingleRowMode(PGconn *connection, char *query,
ParamListInfo paramListInfo);
static bool StoreQueryResult(MaterialState *routerState, PGconn *connection,
TupleDesc tupleDescriptor, bool failOnError, int64 *rows);
static bool ConsumeQueryResult(PGconn *connection, bool failOnError, int64 *rows);
static void RecordShardIdParticipant(uint64 affectedShardId,
NodeConnectionEntry *participantEntry);
/* to verify the health of shards after a transactional modification command */
static void MarkRemainingInactivePlacements(void);
/*
* RouterExecutorStart sets up the executor state and queryDesc for router
* execution.
*/
void
RouterExecutorStart(QueryDesc *queryDesc, int eflags, List *taskList)
{
EState *executorState = NULL;
CmdType commandType = queryDesc->operation;
/*
* If we are executing a prepared statement, then we may not yet have obtained
* the metadata locks in this transaction. To prevent a concurrent shard copy,
* we re-obtain them here or error out if a shard copy has already started.
*
* If a shard copy finishes in between fetching a plan from cache and
* re-acquiring the locks, then we might still run a stale plan, which could
* cause shard placements to diverge. To minimize this window, we take the
* locks as early as possible.
*/
ReacquireMetadataLocks(taskList);
/* disallow triggers during distributed modify commands */
if (commandType != CMD_SELECT)
{
eflags |= EXEC_FLAG_SKIP_TRIGGERS;
}
/* signal that it is a router execution */
eflags |= EXEC_FLAG_CITUS_ROUTER_EXECUTOR;
/* build empty executor state to obtain per-query memory context */
executorState = CreateExecutorState();
executorState->es_top_eflags = eflags;
executorState->es_instrument = queryDesc->instrument_options;
queryDesc->estate = executorState;
/*
* As it's similar to what we're doing, use a MaterialState node to store
* our state. This is used to store our tuplestore, so cursors etc. can
* work.
*/
queryDesc->planstate = (PlanState *) makeNode(MaterialState);
}
/*
* ReacquireMetadataLocks re-acquires the metadata locks that are normally
* acquired during planning.
*
* If we are executing a prepared statement, then planning might have
* happened in a separate transaction and advisory locks are no longer
* held. If a shard is currently being repaired/copied/moved, then
* obtaining the locks will fail and this function throws an error to
* prevent executing a stale plan.
*
* If we are executing a non-prepared statement or planning happened in
* the same transaction, then we already have the locks and obtain them
* again here. Since we always release these locks at the end of the
* transaction, this is effectively a no-op.
*/
static void
ReacquireMetadataLocks(List *taskList)
{
ListCell *taskCell = NULL;
/*
* Note: to avoid the overhead of additional sorting, we assume tasks
* to be already sorted by shard ID such that deadlocks are avoided.
* This is true for INSERT/SELECT, which is the only multi-shard
* command right now.
*/
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
/*
* Only obtain metadata locks for modifications to allow reads to
* proceed during shard copy.
*/
if (task->taskType == MODIFY_TASK &&
!TryLockShardDistributionMetadata(task->anchorShardId, ShareLock))
{
/*
* We could error out immediately to give quick feedback to the
* client, but this might complicate flow control and our default
* behaviour during shard copy is to block.
*
* Block until the lock becomes available such that the next command
* will likely succeed and use the serialization failure error code
* to signal to the client that it should retry the current command.
*/
LockShardDistributionMetadata(task->anchorShardId, ShareLock);
ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("prepared modifications cannot be executed on "
"a shard while it is being copied")));
}
}
}
/*
* InitTransactionStateForTask is called during executor start with the first
* modifying (INSERT/UPDATE/DELETE) task during a transaction. It creates the
* transaction participant hash, opens connections to this task's nodes, and
* populates the hash with those connections after sending BEGIN commands to
* each. If a node fails to respond, its connection is set to NULL to prevent
* further interaction with it during the transaction.
*/
static void
InitTransactionStateForTask(Task *task)
{
ListCell *placementCell = NULL;
BeginOrContinueCoordinatedTransaction();
xactParticipantHash = CreateXactParticipantHash();
foreach(placementCell, task->taskPlacementList)
{
ShardPlacement *placement = (ShardPlacement *) lfirst(placementCell);
NodeConnectionKey participantKey;
NodeConnectionEntry *participantEntry = NULL;
bool entryFound = false;
int connectionFlags = SESSION_LIFESPAN;
MultiConnection *connection =
GetNodeConnection(connectionFlags, placement->nodeName, placement->nodePort);
MemSet(&participantKey, 0, sizeof(participantKey));
strlcpy(participantKey.nodeName, placement->nodeName,
MAX_NODE_LENGTH + 1);
participantKey.nodePort = placement->nodePort;
participantEntry = hash_search(xactParticipantHash, &participantKey,
HASH_ENTER, &entryFound);
Assert(!entryFound);
/* issue BEGIN if necessary */
RemoteTransactionBeginIfNecessary(connection);
participantEntry->connection = connection;
}
XactModificationLevel = XACT_MODIFICATION_DATA;
}
/*
* AcquireExecutorShardLock acquires a lock on the shard for the given task and
* command type if necessary to avoid divergence between multiple replicas of
* the same shard. No lock is obtained when there is only one replica.
*
* The function determines the appropriate lock mode based on the commutativity
* rule of the command. In each case, it uses a lock mode that enforces the
* commutativity rule.
*
* The mapping is overridden when all_modifications_commutative is set to true.
* In that case, all modifications are treated as commutative, which can be used
* to communicate that the application is only generating commutative
* UPDATE/DELETE/UPSERT commands and exclusive locks are unnecessary.
*/
static void
AcquireExecutorShardLock(Task *task, CmdType commandType)
{
LOCKMODE lockMode = NoLock;
int64 shardId = task->anchorShardId;
if (commandType == CMD_SELECT || list_length(task->taskPlacementList) == 1)
{
/*
* The executor shard lock is used to maintain consistency between
* replicas and therefore no lock is required for read-only queries
* or in general when there is only one replica.
*/
lockMode = NoLock;
}
else if (AllModificationsCommutative)
{
/*
* Bypass commutativity checks when citus.all_modifications_commutative
* is enabled.
*
* A RowExclusiveLock does not conflict with itself and therefore allows
* multiple commutative commands to proceed concurrently. It does
* conflict with ExclusiveLock, which may still be obtained by another
* session that executes an UPDATE/DELETE/UPSERT command with
* citus.all_modifications_commutative disabled.
*/
lockMode = RowExclusiveLock;
}
else if (task->upsertQuery || commandType == CMD_UPDATE || commandType == CMD_DELETE)
{
/*
* UPDATE/DELETE/UPSERT commands do not commute with other modifications
* since the rows modified by one command may be affected by the outcome
* of another command.
*
* We need to handle upsert before INSERT, because PostgreSQL models
* upsert commands as INSERT with an ON CONFLICT section.
*
* ExclusiveLock conflicts with all lock types used by modifications
* and therefore prevents other modifications from running
* concurrently.
*/
lockMode = ExclusiveLock;
}
else if (commandType == CMD_INSERT)
{
/*
* An INSERT commutes with other INSERT commands, since performing them
* out-of-order only affects the table order on disk, but not the
* contents.
*
* When a unique constraint exists, INSERTs are not strictly commutative,
* but whichever INSERT comes last will error out and thus has no effect.
* INSERT is not commutative with UPDATE/DELETE/UPSERT, since the
* UPDATE/DELETE/UPSERT may consider the INSERT, depending on execution
* order.
*
* A RowExclusiveLock does not conflict with itself and therefore allows
* multiple INSERT commands to proceed concurrently. It conflicts with
* ExclusiveLock obtained by UPDATE/DELETE/UPSERT, ensuring those do
* not run concurrently with INSERT.
*/
lockMode = RowExclusiveLock;
}
else
{
ereport(ERROR, (errmsg("unrecognized operation code: %d", (int) commandType)));
}
if (shardId != INVALID_SHARD_ID && lockMode != NoLock)
{
LockShardResource(shardId, lockMode);
}
/*
* If the task has a subselect, then we may need to lock the shards from which
* the query selects as well to prevent the subselects from seeing different
* results on different replicas. In particular this prevents INSERT.. SELECT
* commands from having a different effect on different placements.
*/
if (RequiresConsistentSnapshot(task))
{
/*
* ExclusiveLock conflicts with all lock types used by modifications
* and therefore prevents other modifications from running
* concurrently.
*/
LockRelationShardResources(task->relationShardList, ExclusiveLock);
}
}
/*
* AcquireExecutorMultiShardLocks acquires shard locks needed for execution
* of writes on multiple shards. In addition to honouring commutativity
* rules, we currently only allow a single multi-shard command on a shard at
* a time. Otherwise, concurrent multi-shard commands may take row-level
* locks on the shard placements in a different order and create a distributed
* deadlock. This applies even when writes are commutative and/or there is
* no replication.
*
* 1. If citus.all_modifications_commutative is set to true, then all locks
* are acquired as ShareUpdateExclusiveLock.
*
* 2. If citus.all_modifications_commutative is false, then only the shards
* with 2 or more replicas are locked with ExclusiveLock. Otherwise, the
* lock is acquired with ShareUpdateExclusiveLock.
*
* ShareUpdateExclusiveLock conflicts with itself such that only one
* multi-shard modification at a time is allowed on a shard. It also conflicts
* with ExclusiveLock, which ensures that updates/deletes/upserts are applied
* in the same order on all placements. It does not conflict with
* RowExclusiveLock, which is normally obtained by single-shard, commutative
* writes.
*/
static void
AcquireExecutorMultiShardLocks(List *taskList)
{
ListCell *taskCell = NULL;
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
LOCKMODE lockMode = NoLock;
if (AllModificationsCommutative || list_length(task->taskPlacementList) == 1)
{
/*
* When all writes are commutative then we only need to prevent multi-shard
* commands from running concurrently with each other and with commands
* that are explicitly non-commutative. When there is no replication then
* we only need to prevent concurrent multi-shard commands.
*
* In either case, ShareUpdateExclusive has the desired effect, since
* it conflicts with itself and ExclusiveLock (taken by non-commutative
* writes).
*/
lockMode = ShareUpdateExclusiveLock;
}
else
{
/*
* When there is replication, prevent all concurrent writes to the same
* shards to ensure the writes are ordered.
*/
lockMode = ExclusiveLock;
}
LockShardResource(task->anchorShardId, lockMode);
/*
* If the task has a subselect, then we may need to lock the shards from which
* the query selects as well to prevent the subselects from seeing different
* results on different replicas. In particular this prevents INSERT..SELECT
* commands from having different effects on different placements.
*/
if (RequiresConsistentSnapshot(task))
{
/*
* ExclusiveLock conflicts with all lock types used by modifications
* and therefore prevents other modifications from running
* concurrently.
*/
LockRelationShardResources(task->relationShardList, ExclusiveLock);
}
}
}
/*
* RequiresConsistentSnapshot returns true if the given task need to take
* the necessary locks to ensure that a subquery in the INSERT ... SELECT
* query returns the same output for all task placements.
*/
static bool
RequiresConsistentSnapshot(Task *task)
{
bool requiresIsolation = false;
if (!task->insertSelectQuery)
{
/*
* Only INSERT/SELECT commands currently require SELECT isolation.
* Other commands do not read from other shards.
*/
requiresIsolation = false;
}
else if (list_length(task->taskPlacementList) == 1)
{
/*
* If there is only one replica then we fully rely on PostgreSQL to
* provide SELECT isolation. In this case, we do not provide isolation
* across the shards, but that was never our intention.
*/
requiresIsolation = false;
}
else if (AllModificationsCommutative)
{
/*
* An INSERT/SELECT is commutative with other writes if it excludes
* any ongoing writes based on the filter conditions. Without knowing
* whether this is true, we assume the user took this into account
* when enabling citus.all_modifications_commutative. This option
* gives users an escape from aggressive locking during INSERT/SELECT.
*/
requiresIsolation = false;
}
else
{
/*
* If this is a non-commutative write, then we need to block ongoing
* writes to make sure that the subselect returns the same result
* on all placements.
*/
requiresIsolation = true;
}
return requiresIsolation;
}
/*
* CreateXactParticipantHash initializes the map used to store the connections
* needed to process distributed transactions. Unlike the connection cache, we
* permit NULL connections here to signify that a participant has seen an error
* and is no longer receiving commands during a transaction. This hash should
* be walked at transaction end to send final COMMIT or ABORT commands.
*/
static HTAB *
CreateXactParticipantHash(void)
{
HTAB *xactParticipantHash = NULL;
HASHCTL info;
int hashFlags = 0;
MemSet(&info, 0, sizeof(info));
info.keysize = sizeof(NodeConnectionKey);
info.entrysize = sizeof(NodeConnectionEntry);
info.hcxt = TopTransactionContext;
hashFlags = (HASH_ELEM | HASH_CONTEXT | HASH_BLOBS);
xactParticipantHash = hash_create("citus xact participant hash", 32, &info,
hashFlags);
return xactParticipantHash;
}
/*
* RouterExecutorRun actually executes a single task on a worker.
*/
void
RouterExecutorRun(QueryDesc *queryDesc, ScanDirection direction, long count)
{
PlannedStmt *planStatement = queryDesc->plannedstmt;
MultiPlan *multiPlan = GetMultiPlan(planStatement);
Job *workerJob = multiPlan->workerJob;
List *taskList = workerJob->taskList;
EState *estate = queryDesc->estate;
CmdType operation = queryDesc->operation;
MemoryContext oldcontext = NULL;
DestReceiver *destination = queryDesc->dest;
MaterialState *routerState = (MaterialState *) queryDesc->planstate;
bool sendTuples = operation == CMD_SELECT || queryDesc->plannedstmt->hasReturning;
Assert(estate != NULL);
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
if (queryDesc->totaltime != NULL)
{
InstrStartNode(queryDesc->totaltime);
}
estate->es_processed = 0;
/* startup the tuple receiver */
if (sendTuples)
{
(*destination->rStartup)(destination, operation, queryDesc->tupDesc);
}
/* we only support returning nothing or scanning forward */
if (ScanDirectionIsNoMovement(direction))
{
/* comments in PortalRunSelect() explain the reason for this case */
goto out;
}
else if (!ScanDirectionIsForward(direction))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("scan directions other than forward scans "
"are unsupported")));
}
/*
* If query has not yet been executed, do so now. The main reason why the
* query might already have been executed is cursors.
*/
if (!routerState->eof_underlying)
{
bool isModificationQuery = false;
bool requiresMasterEvaluation = workerJob->requiresMasterEvaluation;
if (operation == CMD_INSERT || operation == CMD_UPDATE ||
operation == CMD_DELETE)
{
isModificationQuery = true;
}
else if (operation != CMD_SELECT)
{
ereport(ERROR, (errmsg("unrecognized operation code: %d",
(int) operation)));
}
if (requiresMasterEvaluation)
{
Query *jobQuery = workerJob->jobQuery;
ExecuteMasterEvaluableFunctions(jobQuery);
RebuildQueryStrings(jobQuery, taskList);
}
if (list_length(taskList) == 1)
{
Task *task = (Task *) linitial(taskList);
bool resultsOK = false;
resultsOK = ExecuteSingleTask(queryDesc, task, isModificationQuery,
sendTuples);
if (!resultsOK)
{
ereport(ERROR, (errmsg("could not receive query results")));
}
}
else
{
ExecuteMultipleTasks(queryDesc, taskList, isModificationQuery,
sendTuples);
}
/* mark underlying query as having executed */
routerState->eof_underlying = true;
}
/* if the underlying query produced output, return it */
if (routerState->tuplestorestate != NULL)
{
TupleDesc resultTupleDescriptor = queryDesc->tupDesc;
int64 returnedRows = 0;
/* return rows from the tuplestore */
returnedRows = ReturnRowsFromTuplestore(count, resultTupleDescriptor,
destination,
routerState->tuplestorestate);
/*
* Count tuples processed, if this is a SELECT. (For modifications
* it'll already have been increased, as we want the number of
* modified tuples, not the number of RETURNed tuples.)
*/
if (operation == CMD_SELECT)
{
estate->es_processed += returnedRows;
}
}
out:
/* shutdown tuple receiver, if we started it */
if (sendTuples)
{
(*destination->rShutdown)(destination);
}
if (queryDesc->totaltime != NULL)
{
InstrStopNode(queryDesc->totaltime, estate->es_processed);
}
MemoryContextSwitchTo(oldcontext);
}
/*
* ExecuteSingleTask executes the task on the remote node, retrieves the
* results and stores them, if SELECT or RETURNING is used, in a tuple
* store.
*
* If the task fails on one of the placements, the function retries it on
* other placements (SELECT), reraises the remote error (constraint violation
* in DML), marks the affected placement as invalid (DML on some placement
* failed), or errors out (DML failed on all placements).
*/
static bool
ExecuteSingleTask(QueryDesc *queryDesc, Task *task,
bool isModificationQuery,
bool expectResults)
{
CmdType operation = queryDesc->operation;
TupleDesc tupleDescriptor = queryDesc->tupDesc;
EState *executorState = queryDesc->estate;
MaterialState *routerState = (MaterialState *) queryDesc->planstate;
ParamListInfo paramListInfo = queryDesc->params;
bool resultsOK = false;
List *taskPlacementList = task->taskPlacementList;
ListCell *taskPlacementCell = NULL;
List *failedPlacementList = NIL;
int64 affectedTupleCount = -1;
bool gotResults = false;
char *queryString = task->queryString;
bool taskRequiresTwoPhaseCommit = (task->replicationModel == REPLICATION_MODEL_2PC);
if (XactModificationLevel == XACT_MODIFICATION_MULTI_SHARD)
{
ereport(ERROR, (errcode(ERRCODE_ACTIVE_SQL_TRANSACTION),
errmsg("single-shard DML commands must not appear in "
"transaction blocks which contain multi-shard data "
"modifications")));
}
/*
* Firstly ensure that distributed transaction is started. Then, force
* the transaction manager to use 2PC while running the task on the placements.
*/
if (taskRequiresTwoPhaseCommit)
{
BeginOrContinueCoordinatedTransaction();
CoordinatedTransactionUse2PC();
/*
* Mark connections for all placements as critical and establish connections
* to all placements at once.
*/
GetPlacementConnectionsReadyForTwoPhaseCommit(taskPlacementList);
}
/*
* We could naturally handle function-based transactions (i.e. those
* using PL/pgSQL or similar) by checking the type of queryDesc->dest,
* but some customers already use functions that touch multiple shards
* from within a function, so we'll ignore functions for now.
*/
if (operation != CMD_SELECT && xactParticipantHash == NULL && IsTransactionBlock())
{
InitTransactionStateForTask(task);
}
/* prevent replicas of the same shard from diverging */
AcquireExecutorShardLock(task, operation);
/*
* Try to run the query to completion on one placement. If the query fails
* attempt the query on the next placement.
*/
foreach(taskPlacementCell, taskPlacementList)
{
ShardPlacement *taskPlacement = (ShardPlacement *) lfirst(taskPlacementCell);
bool queryOK = false;
bool failOnError = false;
int64 currentAffectedTupleCount = 0;
PGconn *connection = GetConnectionForPlacement(taskPlacement,
isModificationQuery);
if (connection == NULL)
{
failedPlacementList = lappend(failedPlacementList, taskPlacement);
continue;
}
queryOK = SendQueryInSingleRowMode(connection, queryString, paramListInfo);
if (!queryOK)
{
PurgeConnectionForPlacement(connection, taskPlacement);
failedPlacementList = lappend(failedPlacementList, taskPlacement);
continue;
}
/* if we're running a 2PC, the query should fail on error */
failOnError = taskRequiresTwoPhaseCommit;
/*
* If caller is interested, store query results the first time
* through. The output of the query's execution on other shards is
* discarded if we run there (because it's a modification query).
*/
if (!gotResults && expectResults)
{
queryOK = StoreQueryResult(routerState, connection, tupleDescriptor,
failOnError, &currentAffectedTupleCount);
}
else
{
queryOK = ConsumeQueryResult(connection, failOnError,
&currentAffectedTupleCount);
}
if (queryOK)
{
if ((affectedTupleCount == -1) ||
(affectedTupleCount == currentAffectedTupleCount))
{
affectedTupleCount = currentAffectedTupleCount;
}
else
{
ereport(WARNING,
(errmsg("modified "INT64_FORMAT " tuples, but expected "
"to modify "INT64_FORMAT,
currentAffectedTupleCount, affectedTupleCount),
errdetail("modified placement on %s:%d",
taskPlacement->nodeName, taskPlacement->nodePort)));
}
#if (PG_VERSION_NUM < 90600)
/* before 9.6, PostgreSQL used a uint32 for this field, so check */
Assert(currentAffectedTupleCount <= 0xFFFFFFFF);
#endif
resultsOK = true;
gotResults = true;
/*
* Modifications have to be executed on all placements, but for
* read queries we can stop here.
*/
if (!isModificationQuery)
{
break;
}
}
else
{
PurgeConnectionForPlacement(connection, taskPlacement);
failedPlacementList = lappend(failedPlacementList, taskPlacement);
continue;
}
}
if (isModificationQuery)
{
ListCell *failedPlacementCell = NULL;
/* if all placements failed, error out */
if (list_length(failedPlacementList) == list_length(task->taskPlacementList))
{
ereport(ERROR, (errmsg("could not modify any active placements")));
}
/*
* Otherwise, mark failed placements as inactive: they're stale. Note that
* connections for tasks that require 2PC has already failed the whole transaction
* and there is no way that they're marked stale here.
*/
foreach(failedPlacementCell, failedPlacementList)
{
ShardPlacement *failedPlacement =
(ShardPlacement *) lfirst(failedPlacementCell);
Assert(!taskRequiresTwoPhaseCommit);
UpdateShardPlacementState(failedPlacement->placementId, FILE_INACTIVE);
}
executorState->es_processed = affectedTupleCount;
}
return resultsOK;
}
/*
* GetPlacementConnectionsReadyForTwoPhaseCommit iterates over the task placement list,
* starts the connections to the nodes and marks them critical. In the second iteration,
* the connection establishments are finished. Finally, BEGIN commands are sent,
* if necessary.
*/
static void
GetPlacementConnectionsReadyForTwoPhaseCommit(List *taskPlacementList)
{
ListCell *taskPlacementCell = NULL;
List *multiConnectionList = NIL;
/* in the first iteration start the connections */
foreach(taskPlacementCell, taskPlacementList)
{
ShardPlacement *taskPlacement = (ShardPlacement *) lfirst(taskPlacementCell);
int connectionFlags = SESSION_LIFESPAN;
MultiConnection *multiConnection = StartNodeConnection(connectionFlags,
taskPlacement->nodeName,
taskPlacement->nodePort);
MarkRemoteTransactionCritical(multiConnection);
multiConnectionList = lappend(multiConnectionList, multiConnection);
}
FinishConnectionListEstablishment(multiConnectionList);
RemoteTransactionsBeginIfNecessary(multiConnectionList);
}
/*
* ExecuteMultipleTasks executes a list of tasks on remote nodes, retrieves
* the results and, if RETURNING is used, stores them in a tuple store.
*
* If a task fails on one of the placements, the transaction rolls back.
* Otherwise, the changes are committed using 2PC when the local transaction
* commits.
*/
static void
ExecuteMultipleTasks(QueryDesc *queryDesc, List *taskList,
bool isModificationQuery, bool expectResults)
{
TupleDesc tupleDescriptor = queryDesc->tupDesc;
EState *executorState = queryDesc->estate;
MaterialState *routerState = (MaterialState *) queryDesc->planstate;
ParamListInfo paramListInfo = queryDesc->params;
int64 affectedTupleCount = -1;
/* can only support modifications right now */
Assert(isModificationQuery);
affectedTupleCount = ExecuteModifyTasks(taskList, expectResults, paramListInfo,
routerState, tupleDescriptor);
executorState->es_processed = affectedTupleCount;
}
/*
* ExecuteModifyTasksWithoutResults provides a wrapper around ExecuteModifyTasks
* for calls that do not require results. In this case, the expectResults flag
* is set to false and arguments related to result sets and query parameters are
* NULL. This function is primarily intended to allow DDL and
* master_modify_multiple_shards to use the router executor infrastructure.
*/
int64
ExecuteModifyTasksWithoutResults(List *taskList)
{
return ExecuteModifyTasks(taskList, false, NULL, NULL, NULL);
}
/*
* ExecuteModifyTasks executes a list of tasks on remote nodes, and
* optionally retrieves the results and stores them in a tuple store.
*
* If a task fails on one of the placements, the transaction rolls back.
* Otherwise, the changes are committed using 2PC when the local transaction
* commits.
*/
static int64
ExecuteModifyTasks(List *taskList, bool expectResults, ParamListInfo paramListInfo,
MaterialState *routerState, TupleDesc tupleDescriptor)
{
int64 totalAffectedTupleCount = 0;
ListCell *taskCell = NULL;
char *userName = CurrentUserName();
List *shardIntervalList = NIL;
List *affectedTupleCountList = NIL;
bool tasksPending = true;
int placementIndex = 0;
if (XactModificationLevel == XACT_MODIFICATION_DATA)
{
ereport(ERROR, (errcode(ERRCODE_ACTIVE_SQL_TRANSACTION),
errmsg("multi-shard data modifications must not appear in "
"transaction blocks which contain single-shard DML "
"commands")));
}
shardIntervalList = TaskShardIntervalList(taskList);
/* ensure that there are no concurrent modifications on the same shards */
AcquireExecutorMultiShardLocks(taskList);
/* open connection to all relevant placements, if not already open */
OpenTransactionsToAllShardPlacements(shardIntervalList, userName);
XactModificationLevel = XACT_MODIFICATION_MULTI_SHARD;
/* iterate over placements in rounds, to ensure in-order execution */
while (tasksPending)
{
int taskIndex = 0;
tasksPending = false;
/* send command to all shard placements with the current index in parallel */
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
int64 shardId = task->anchorShardId;
char *queryString = task->queryString;
bool shardConnectionsFound = false;
ShardConnections *shardConnections = NULL;
List *connectionList = NIL;
MultiConnection *multiConnection = NULL;
PGconn *connection = NULL;
bool queryOK = false;
shardConnections = GetShardConnections(shardId, &shardConnectionsFound);
connectionList = shardConnections->connectionList;
if (placementIndex >= list_length(connectionList))
{
/* no more active placements for this task */
continue;
}
multiConnection =
(MultiConnection *) list_nth(connectionList, placementIndex);
connection = multiConnection->pgConn;
queryOK = SendQueryInSingleRowMode(connection, queryString, paramListInfo);
if (!queryOK)
{
ReraiseRemoteError(connection, NULL);
}
}
/* collects results from all relevant shard placements */
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
int64 shardId = task->anchorShardId;
bool shardConnectionsFound = false;
ShardConnections *shardConnections = NULL;
List *connectionList = NIL;
MultiConnection *multiConnection = NULL;
PGconn *connection = NULL;
int64 currentAffectedTupleCount = 0;
bool failOnError = true;
bool queryOK PG_USED_FOR_ASSERTS_ONLY = false;
/* abort in case of cancellation */
CHECK_FOR_INTERRUPTS();
shardConnections = GetShardConnections(shardId, &shardConnectionsFound);
connectionList = shardConnections->connectionList;
if (placementIndex >= list_length(connectionList))
{
/* no more active placements for this task */
taskIndex++;
continue;
}
multiConnection =
(MultiConnection *) list_nth(connectionList, placementIndex);
connection = multiConnection->pgConn;
/*
* If caller is interested, store query results the first time
* through. The output of the query's execution on other shards is
* discarded if we run there (because it's a modification query).
*/
if (placementIndex == 0 && expectResults)
{
Assert(routerState != NULL && tupleDescriptor != NULL);
queryOK = StoreQueryResult(routerState, connection, tupleDescriptor,
failOnError, &currentAffectedTupleCount);
}
else
{
queryOK = ConsumeQueryResult(connection, failOnError,
&currentAffectedTupleCount);
}
/* should have rolled back on error */
Assert(queryOK);
if (placementIndex == 0)
{
totalAffectedTupleCount += currentAffectedTupleCount;
/* keep track of the initial affected tuple count */
affectedTupleCountList = lappend_int(affectedTupleCountList,
currentAffectedTupleCount);
}
else
{
/* warn the user if shard placements have diverged */
int64 previousAffectedTupleCount = list_nth_int(affectedTupleCountList,
taskIndex);
if (currentAffectedTupleCount != previousAffectedTupleCount)
{
char *nodeName = ConnectionGetOptionValue(connection, "host");
char *nodePort = ConnectionGetOptionValue(connection, "port");
ereport(WARNING,
(errmsg("modified "INT64_FORMAT " tuples of shard "
UINT64_FORMAT ", but expected to modify "INT64_FORMAT,
currentAffectedTupleCount, shardId,
previousAffectedTupleCount),
errdetail("modified placement on %s:%s", nodeName,
nodePort)));
}
}
if (!tasksPending && placementIndex + 1 < list_length(connectionList))
{
/* more tasks to be done after thise one */
tasksPending = true;
}
taskIndex++;
}
placementIndex++;
}
CHECK_FOR_INTERRUPTS();
return totalAffectedTupleCount;
}
/*
* TaskShardIntervalList returns a list of shard intervals for a given list of
* tasks.
*/
static List *
TaskShardIntervalList(List *taskList)
{
ListCell *taskCell = NULL;
List *shardIntervalList = NIL;
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
int64 shardId = task->anchorShardId;
ShardInterval *shardInterval = LoadShardInterval(shardId);
shardIntervalList = lappend(shardIntervalList, shardInterval);
}
return shardIntervalList;
}
/*
* ReturnRowsFromTuplestore moves rows from a given tuplestore into a
* receiver. It performs the necessary limiting to support cursors.
*/
static uint64
ReturnRowsFromTuplestore(uint64 tupleCount, TupleDesc tupleDescriptor,
DestReceiver *destination, Tuplestorestate *tupleStore)
{
TupleTableSlot *tupleTableSlot = NULL;
uint64 currentTupleCount = 0;
tupleTableSlot = MakeSingleTupleTableSlot(tupleDescriptor);
/* iterate over tuples in tuple store, and send them to destination */
for (;;)
{
bool nextTuple = tuplestore_gettupleslot(tupleStore, true, false, tupleTableSlot);
if (!nextTuple)
{
break;
}
(*destination->receiveSlot)(tupleTableSlot, destination);
ExecClearTuple(tupleTableSlot);
currentTupleCount++;
/*
* If numberTuples is zero fetch all tuples, otherwise stop after
* count tuples.
*/
if (tupleCount > 0 && tupleCount == currentTupleCount)
{
break;
}
}
ExecDropSingleTupleTableSlot(tupleTableSlot);
return currentTupleCount;
}
/*
* GetConnectionForPlacement is the main entry point for acquiring a connection
* within the router executor. By using placements (rather than node names and
* ports) to identify connections, the router executor can keep track of shards
* used by multi-statement transactions and error out if a transaction tries
* to reach a new node altogether). In the single-statement commands context,
* GetConnectionForPlacement simply falls through to GetOrEstablishConnection.
*/
static PGconn *
GetConnectionForPlacement(ShardPlacement *placement, bool isModificationQuery)
{
NodeConnectionKey participantKey;
NodeConnectionEntry *participantEntry = NULL;
bool entryFound = false;
/* if not in a transaction, fall through to connection cache */
if (xactParticipantHash == NULL)
{
PGconn *connection = GetOrEstablishConnection(placement->nodeName,
placement->nodePort);
return connection;
}
Assert(IsTransactionBlock());
MemSet(&participantKey, 0, sizeof(participantKey));
strlcpy(participantKey.nodeName, placement->nodeName, MAX_NODE_LENGTH + 1);
participantKey.nodePort = placement->nodePort;
participantEntry = hash_search(xactParticipantHash, &participantKey, HASH_FIND,
&entryFound);
if (entryFound)
{
if (isModificationQuery)
{
RecordShardIdParticipant(placement->shardId, participantEntry);
}
return participantEntry->connection->pgConn;
}
else
{
ereport(ERROR, (errcode(ERRCODE_CONNECTION_DOES_NOT_EXIST),
errmsg("no transaction participant matches %s:%d",
placement->nodeName, placement->nodePort),
errdetail("Transactions which modify distributed tables may only "
"target nodes affected by the modification command "
"which began the transaction.")));
}
}
/*
* PurgeConnectionForPlacement provides a way to purge an invalid connection
* from all relevant connection hashes using the placement involved in the
* query at the time of the error. If a transaction is ongoing, this function
* ensures the right node's connection is set to NULL in the participant map
* for the transaction in addition to purging the connection cache's entry.
*/
static void
PurgeConnectionForPlacement(PGconn *connection, ShardPlacement *placement)
{
CloseConnectionByPGconn(connection);
/*
* The following is logically identical to RemoveXactConnection, but since
* we have a ShardPlacement to help build a NodeConnectionKey, we avoid
* any penalty incurred by calling BuildKeyForConnection, which must ex-
* tract host, port, and user from the connection options list.
*/
if (xactParticipantHash != NULL)
{
NodeConnectionEntry *participantEntry = NULL;
bool entryFound = false;
NodeConnectionKey nodeKey;
char *currentUser = CurrentUserName();
MemSet(&nodeKey, 0, sizeof(NodeConnectionKey));
strlcpy(nodeKey.nodeName, placement->nodeName, MAX_NODE_LENGTH + 1);
nodeKey.nodePort = placement->nodePort;
strlcpy(nodeKey.nodeUser, currentUser, NAMEDATALEN);
Assert(IsTransactionBlock());
/* the participant hash doesn't use the user field */
MemSet(&nodeKey.nodeUser, 0, sizeof(nodeKey.nodeUser));
participantEntry = hash_search(xactParticipantHash, &nodeKey, HASH_FIND,
&entryFound);
Assert(entryFound);
participantEntry->connection = NULL;
}
}
/*
* Removes a given connection from the transaction participant hash, based on
* the host and port of the provided connection. If the hash is not NULL, it
* MUST contain the provided connection, or a FATAL error is raised.
*/
static void
RemoveXactConnection(PGconn *connection)
{
NodeConnectionKey nodeKey;
NodeConnectionEntry *participantEntry = NULL;
bool entryFound = false;
if (xactParticipantHash == NULL)
{
return;
}
BuildKeyForConnection(connection, &nodeKey);
/* the participant hash doesn't use the user field */
MemSet(&nodeKey.nodeUser, 0, sizeof(nodeKey.nodeUser));
participantEntry = hash_search(xactParticipantHash, &nodeKey, HASH_FIND,
&entryFound);
if (!entryFound)
{
ereport(FATAL, (errmsg("could not find specified transaction connection")));
}
participantEntry->connection = NULL;
}
/*
* SendQueryInSingleRowMode sends the given query on the connection in an
* asynchronous way. The function also sets the single-row mode on the
* connection so that we receive results a row at a time.
*/
static bool
SendQueryInSingleRowMode(PGconn *connection, char *query, ParamListInfo paramListInfo)
{
int querySent = 0;
int singleRowMode = 0;
if (paramListInfo != NULL)
{
int parameterCount = paramListInfo->numParams;
Oid *parameterTypes = NULL;
const char **parameterValues = NULL;
ExtractParametersFromParamListInfo(paramListInfo, &parameterTypes,
&parameterValues);
querySent = PQsendQueryParams(connection, query, parameterCount, parameterTypes,
parameterValues, NULL, NULL, 0);
}
else
{
querySent = PQsendQuery(connection, query);
}
if (querySent == 0)
{
WarnRemoteError(connection, NULL);
return false;
}
singleRowMode = PQsetSingleRowMode(connection);
if (singleRowMode == 0)
{
WarnRemoteError(connection, NULL);
return false;
}
return true;
}
/*
* ExtractParametersFromParamListInfo extracts parameter types and values from
* the given ParamListInfo structure, and fills parameter type and value arrays.
*/
static void
ExtractParametersFromParamListInfo(ParamListInfo paramListInfo, Oid **parameterTypes,
const char ***parameterValues)
{
int parameterIndex = 0;
int parameterCount = paramListInfo->numParams;
*parameterTypes = (Oid *) palloc0(parameterCount * sizeof(Oid));
*parameterValues = (const char **) palloc0(parameterCount * sizeof(char *));
/* get parameter types and values */
for (parameterIndex = 0; parameterIndex < parameterCount; parameterIndex++)
{
ParamExternData *parameterData = &paramListInfo->params[parameterIndex];
Oid typeOutputFunctionId = InvalidOid;
bool variableLengthType = false;
/*
* Use 0 for data types where the oid values can be different on
* the master and worker nodes. Therefore, the worker nodes can
* infer the correct oid.
*/
if (parameterData->ptype >= FirstNormalObjectId)
{
(*parameterTypes)[parameterIndex] = 0;
}
else
{
(*parameterTypes)[parameterIndex] = parameterData->ptype;
}
/*
* If the parameter is not referenced / used (ptype == 0) and
* would otherwise have errored out inside standard_planner()),
* don't pass a value to the remote side, and pass text oid to prevent
* undetermined data type errors on workers.
*/
if (parameterData->ptype == 0)
{
(*parameterValues)[parameterIndex] = NULL;
(*parameterTypes)[parameterIndex] = TEXTOID;
continue;
}
/*
* If the parameter is NULL then we preserve its type, but
* don't need to evaluate its value.
*/
if (parameterData->isnull)
{
(*parameterValues)[parameterIndex] = NULL;
continue;
}
getTypeOutputInfo(parameterData->ptype, &typeOutputFunctionId,
&variableLengthType);
(*parameterValues)[parameterIndex] = OidOutputFunctionCall(typeOutputFunctionId,
parameterData->value);
}
}
/*
* StoreQueryResult gets the query results from the given connection, builds
* tuples from the results, and stores them in the a newly created
* tuple-store. If the function can't receive query results, it returns
* false. Note that this function assumes the query has already been sent on
* the connection.
*/
static bool
StoreQueryResult(MaterialState *routerState, PGconn *connection,
TupleDesc tupleDescriptor, bool failOnError, int64 *rows)
{
AttInMetadata *attributeInputMetadata = TupleDescGetAttInMetadata(tupleDescriptor);
Tuplestorestate *tupleStore = NULL;
uint32 expectedColumnCount = tupleDescriptor->natts;
char **columnArray = (char **) palloc0(expectedColumnCount * sizeof(char *));
bool commandFailed = false;
MemoryContext ioContext = AllocSetContextCreate(CurrentMemoryContext,
"StoreQueryResult",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
*rows = 0;
if (routerState->tuplestorestate == NULL)
{
routerState->tuplestorestate = tuplestore_begin_heap(false, false, work_mem);
}
else if (!failOnError)
{
/* might have failed query execution on another placement before */
tuplestore_clear(routerState->tuplestorestate);
}
tupleStore = routerState->tuplestorestate;
for (;;)
{
uint32 rowIndex = 0;
uint32 columnIndex = 0;
uint32 rowCount = 0;
uint32 columnCount = 0;
ExecStatusType resultStatus = 0;
PGresult *result = PQgetResult(connection);
if (result == NULL)
{
break;
}
resultStatus = PQresultStatus(result);
if ((resultStatus != PGRES_SINGLE_TUPLE) && (resultStatus != PGRES_TUPLES_OK))
{
char *sqlStateString = PQresultErrorField(result, PG_DIAG_SQLSTATE);
int category = 0;
bool isConstraintViolation = false;
/*
* If the error code is in constraint violation class, we want to
* fail fast because we must get the same error from all shard
* placements.
*/
category = ERRCODE_TO_CATEGORY(ERRCODE_INTEGRITY_CONSTRAINT_VIOLATION);
isConstraintViolation = SqlStateMatchesCategory(sqlStateString, category);
if (isConstraintViolation || failOnError)
{
RemoveXactConnection(connection);
ReraiseRemoteError(connection, result);
}
else
{
WarnRemoteError(connection, result);
}
PQclear(result);
commandFailed = true;
/* continue, there could be other lingering results due to row mode */
continue;
}
rowCount = PQntuples(result);
columnCount = PQnfields(result);
Assert(columnCount == expectedColumnCount);
for (rowIndex = 0; rowIndex < rowCount; rowIndex++)
{
HeapTuple heapTuple = NULL;
MemoryContext oldContext = NULL;
memset(columnArray, 0, columnCount * sizeof(char *));
for (columnIndex = 0; columnIndex < columnCount; columnIndex++)
{
if (PQgetisnull(result, rowIndex, columnIndex))
{
columnArray[columnIndex] = NULL;
}
else
{
columnArray[columnIndex] = PQgetvalue(result, rowIndex, columnIndex);
}
}
/*
* Switch to a temporary memory context that we reset after each tuple. This
* protects us from any memory leaks that might be present in I/O functions
* called by BuildTupleFromCStrings.
*/
oldContext = MemoryContextSwitchTo(ioContext);
heapTuple = BuildTupleFromCStrings(attributeInputMetadata, columnArray);
MemoryContextSwitchTo(oldContext);
tuplestore_puttuple(tupleStore, heapTuple);
MemoryContextReset(ioContext);
(*rows)++;
}
PQclear(result);
}
pfree(columnArray);
return !commandFailed;
}
/*
* ConsumeQueryResult gets a query result from a connection, counting the rows
* and checking for errors, but otherwise discarding potentially returned
* rows. Returns true if a non-error result has been returned, false if there
* has been an error.
*/
static bool
ConsumeQueryResult(PGconn *connection, bool failOnError, int64 *rows)
{
bool commandFailed = false;
bool gotResponse = false;
*rows = 0;
/*
* Due to single row mode we have to do multiple PQgetResult() to finish
* processing of this query, even without RETURNING. For single-row mode
* we have to loop until all rows are consumed.
*/
while (true)
{
PGresult *result = PQgetResult(connection);
ExecStatusType status = PGRES_COMMAND_OK;
if (result == NULL)
{
break;
}
status = PQresultStatus(result);
if (status != PGRES_COMMAND_OK &&
status != PGRES_SINGLE_TUPLE &&
status != PGRES_TUPLES_OK)
{
char *sqlStateString = PQresultErrorField(result, PG_DIAG_SQLSTATE);
int category = 0;
bool isConstraintViolation = false;
/*
* If the error code is in constraint violation class, we want to
* fail fast because we must get the same error from all shard
* placements.
*/
category = ERRCODE_TO_CATEGORY(ERRCODE_INTEGRITY_CONSTRAINT_VIOLATION);
isConstraintViolation = SqlStateMatchesCategory(sqlStateString, category);
if (isConstraintViolation || failOnError)
{
RemoveXactConnection(connection);
ReraiseRemoteError(connection, result);
}
else
{
WarnRemoteError(connection, result);
}
PQclear(result);
commandFailed = true;
/* continue, there could be other lingering results due to row mode */
continue;
}
if (status == PGRES_COMMAND_OK)
{
char *currentAffectedTupleString = PQcmdTuples(result);
int64 currentAffectedTupleCount = 0;
if (*currentAffectedTupleString != '\0')
{
scanint8(currentAffectedTupleString, false, &currentAffectedTupleCount);
Assert(currentAffectedTupleCount >= 0);
}
#if (PG_VERSION_NUM < 90600)
/* before 9.6, PostgreSQL used a uint32 for this field, so check */
Assert(currentAffectedTupleCount <= 0xFFFFFFFF);
#endif
*rows += currentAffectedTupleCount;
}
else
{
*rows += PQntuples(result);
}
PQclear(result);
gotResponse = true;
}
return gotResponse && !commandFailed;
}
/*
* RecordShardIdParticipant registers a connection as being involved with a
* particular shard during a multi-statement transaction.
*/
static void
RecordShardIdParticipant(uint64 affectedShardId, NodeConnectionEntry *participantEntry)
{
XactShardConnSet *shardConnSetMatch = NULL;
ListCell *listCell = NULL;
MemoryContext oldContext = NULL;
List *connectionEntryList = NIL;
/* check whether an entry already exists for this shard */
foreach(listCell, xactShardConnSetList)
{
XactShardConnSet *shardConnSet = (XactShardConnSet *) lfirst(listCell);
if (shardConnSet->shardId == affectedShardId)
{
shardConnSetMatch = shardConnSet;
}
}
/* entries must last through the whole top-level transaction */
oldContext = MemoryContextSwitchTo(TopTransactionContext);
/* if no entry found, make one */
if (shardConnSetMatch == NULL)
{
shardConnSetMatch = (XactShardConnSet *) palloc0(sizeof(XactShardConnSet));
shardConnSetMatch->shardId = affectedShardId;
xactShardConnSetList = lappend(xactShardConnSetList, shardConnSetMatch);
}
/* add connection, avoiding duplicates */
connectionEntryList = shardConnSetMatch->connectionEntryList;
shardConnSetMatch->connectionEntryList = list_append_unique_ptr(connectionEntryList,
participantEntry);
MemoryContextSwitchTo(oldContext);
}
/*
* RouterExecutorFinish cleans up after a distributed execution.
*/
void
RouterExecutorFinish(QueryDesc *queryDesc)
{
EState *estate = queryDesc->estate;
Assert(estate != NULL);
estate->es_finished = true;
}
/*
* RouterExecutorEnd cleans up the executor state after a distributed
* execution.
*/
void
RouterExecutorEnd(QueryDesc *queryDesc)
{
EState *estate = queryDesc->estate;
MaterialState *routerState = (MaterialState *) queryDesc->planstate;
if (routerState->tuplestorestate)
{
tuplestore_end(routerState->tuplestorestate);
}
Assert(estate != NULL);
FreeExecutorState(estate);
queryDesc->estate = NULL;
queryDesc->totaltime = NULL;
}
/*
* RouterExecutorPreCommitCheck() gets called after remote transactions have
* committed, so it can invalidate failed shards and perform related checks.
*/
void
RouterExecutorPreCommitCheck(void)
{
/* no transactional router modification were issued, nothing to do */
if (xactParticipantHash == NULL)
{
return;
}
MarkRemainingInactivePlacements();
}
/*
* Cleanup callback called after a transaction commits or aborts.
*/
void
RouterExecutorPostCommit(void)
{
/* reset transaction state */
xactParticipantHash = NULL;
xactShardConnSetList = NIL;
}
/*
* MarkRemainingInactivePlacements takes care of marking placements of a shard
* inactive after some of the placements rejected the final COMMIT phase of a
* transaction.
*
* Failures are detected by checking the connection & transaction state for
* each of the entries in the connection set for each shard.
*/
static void
MarkRemainingInactivePlacements(void)
{
ListCell *shardConnSetCell = NULL;
int totalSuccesses = 0;
if (xactParticipantHash == NULL)
{
return;
}
foreach(shardConnSetCell, xactShardConnSetList)
{
XactShardConnSet *shardConnSet = (XactShardConnSet *) lfirst(shardConnSetCell);
List *participantList = shardConnSet->connectionEntryList;
ListCell *participantCell = NULL;
int successes = list_length(participantList); /* assume full success */
/* determine how many actual successes there were: subtract failures */
foreach(participantCell, participantList)
{
NodeConnectionEntry *participant =
(NodeConnectionEntry *) lfirst(participantCell);
MultiConnection *connection = participant->connection;
/*
* Fail if the connection has been set to NULL after an error, or
* if the transaction failed for other reasons (e.g. COMMIT
* failed).
*/
if (connection == NULL || connection->remoteTransaction.transactionFailed)
{
successes--;
}
}
/* if no nodes succeeded for this shard, don't do anything */
if (successes == 0)
{
continue;
}
/* otherwise, ensure failed placements are marked inactive */
foreach(participantCell, participantList)
{
NodeConnectionEntry *participant = NULL;
participant = (NodeConnectionEntry *) lfirst(participantCell);
if (participant->connection == NULL ||
participant->connection->remoteTransaction.transactionFailed)
{
uint64 shardId = shardConnSet->shardId;
NodeConnectionKey *nodeKey = &participant->cacheKey;
uint64 shardLength = 0;
uint64 placementId = INVALID_PLACEMENT_ID;
placementId = DeleteShardPlacementRow(shardId, nodeKey->nodeName,
nodeKey->nodePort);
InsertShardPlacementRow(shardId, placementId, FILE_INACTIVE, shardLength,
nodeKey->nodeName, nodeKey->nodePort);
}
}
totalSuccesses++;
}
/* If no shards could be modified at all, error out. */
if (totalSuccesses == 0)
{
ereport(ERROR, (errmsg("could not commit transaction on any active nodes")));
}
}