mirror of https://github.com/citusdata/citus.git
2407 lines
71 KiB
C
2407 lines
71 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* multi_logical_planner.c
|
|
*
|
|
* Routines for constructing a logical plan tree from the given Query tree
|
|
* structure. This new logical plan is based on multi-relational algebra rules.
|
|
*
|
|
* Copyright (c) Citus Data, Inc.
|
|
*
|
|
* $Id$
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "distributed/pg_version_constants.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/nbtree.h"
|
|
#include "catalog/pg_am.h"
|
|
#include "catalog/pg_class.h"
|
|
#include "commands/defrem.h"
|
|
#include "distributed/citus_clauses.h"
|
|
#include "distributed/colocation_utils.h"
|
|
#include "distributed/metadata_cache.h"
|
|
#include "distributed/insert_select_planner.h"
|
|
#include "distributed/listutils.h"
|
|
#include "distributed/multi_logical_optimizer.h"
|
|
#include "distributed/multi_logical_planner.h"
|
|
#include "distributed/multi_physical_planner.h"
|
|
#include "distributed/reference_table_utils.h"
|
|
#include "distributed/relation_restriction_equivalence.h"
|
|
#include "distributed/query_pushdown_planning.h"
|
|
#include "distributed/query_utils.h"
|
|
#include "distributed/multi_router_planner.h"
|
|
#include "distributed/worker_protocol.h"
|
|
#include "distributed/version_compat.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#if PG_VERSION_NUM >= PG_VERSION_12
|
|
#include "nodes/pathnodes.h"
|
|
#include "optimizer/optimizer.h"
|
|
#else
|
|
#include "nodes/relation.h"
|
|
#include "optimizer/var.h"
|
|
#endif
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/prep.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "parser/parsetree.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/relcache.h"
|
|
|
|
|
|
/* Struct to differentiate different qualifier types in an expression tree walker */
|
|
typedef struct QualifierWalkerContext
|
|
{
|
|
List *baseQualifierList;
|
|
List *outerJoinQualifierList;
|
|
} QualifierWalkerContext;
|
|
|
|
|
|
/* Function pointer type definition for apply join rule functions */
|
|
typedef MultiNode *(*RuleApplyFunction) (MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *joinClauses);
|
|
|
|
static RuleApplyFunction RuleApplyFunctionArray[JOIN_RULE_LAST] = { 0 }; /* join rules */
|
|
|
|
/* Local functions forward declarations */
|
|
static bool AllTargetExpressionsAreColumnReferences(List *targetEntryList);
|
|
static FieldSelect * CompositeFieldRecursive(Expr *expression, Query *query);
|
|
static Oid NodeTryGetRteRelid(Node *node);
|
|
static bool FullCompositeFieldList(List *compositeFieldList);
|
|
static bool HasUnsupportedJoinWalker(Node *node, void *context);
|
|
static bool ErrorHintRequired(const char *errorHint, Query *queryTree);
|
|
static bool HasTablesample(Query *queryTree);
|
|
static bool HasComplexRangeTableType(Query *queryTree);
|
|
static bool IsReadIntermediateResultFunction(Node *node);
|
|
static bool IsReadIntermediateResultArrayFunction(Node *node);
|
|
static bool IsCitusExtraDataContainerFunc(Node *node);
|
|
static bool IsFunctionWithOid(Node *node, Oid funcOid);
|
|
static bool IsGroupingFunc(Node *node);
|
|
static bool ExtractFromExpressionWalker(Node *node,
|
|
QualifierWalkerContext *walkerContext);
|
|
static List * MultiTableNodeList(List *tableEntryList, List *rangeTableList);
|
|
static List * AddMultiCollectNodes(List *tableNodeList);
|
|
static MultiNode * MultiJoinTree(List *joinOrderList, List *collectTableList,
|
|
List *joinClauseList);
|
|
static MultiCollect * CollectNodeForTable(List *collectTableList, uint32 rangeTableId);
|
|
static MultiSelect * MultiSelectNode(List *whereClauseList);
|
|
static bool IsSelectClause(Node *clause);
|
|
|
|
/* Local functions forward declarations for applying joins */
|
|
static MultiNode * ApplyJoinRule(MultiNode *leftNode, MultiNode *rightNode,
|
|
JoinRuleType ruleType, List *partitionColumnList,
|
|
JoinType joinType, List *joinClauseList);
|
|
static RuleApplyFunction JoinRuleApplyFunction(JoinRuleType ruleType);
|
|
static MultiNode * ApplyReferenceJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *joinClauses);
|
|
static MultiNode * ApplyLocalJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *joinClauses);
|
|
static MultiNode * ApplySingleRangePartitionJoin(MultiNode *leftNode,
|
|
MultiNode *rightNode,
|
|
List *partitionColumnList,
|
|
JoinType joinType,
|
|
List *applicableJoinClauses);
|
|
static MultiNode * ApplySingleHashPartitionJoin(MultiNode *leftNode,
|
|
MultiNode *rightNode,
|
|
List *partitionColumnList,
|
|
JoinType joinType,
|
|
List *applicableJoinClauses);
|
|
static MultiJoin * ApplySinglePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *joinClauses);
|
|
static MultiNode * ApplyDualPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *joinClauses);
|
|
static MultiNode * ApplyCartesianProductReferenceJoin(MultiNode *leftNode,
|
|
MultiNode *rightNode,
|
|
List *partitionColumnList,
|
|
JoinType joinType,
|
|
List *joinClauses);
|
|
static MultiNode * ApplyCartesianProduct(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *joinClauses);
|
|
|
|
|
|
/*
|
|
* MultiLogicalPlanCreate takes in both the original query and its corresponding modified
|
|
* query tree yield by the standard planner. It uses helper functions to create logical
|
|
* plan and adds a root node to top of it. The original query is only used for subquery
|
|
* pushdown planning.
|
|
*
|
|
* We also pass queryTree and plannerRestrictionContext to the planner. They
|
|
* are primarily used to decide whether the subquery is safe to pushdown.
|
|
* If not, it helps to produce meaningful error messages for subquery
|
|
* pushdown planning.
|
|
*/
|
|
MultiTreeRoot *
|
|
MultiLogicalPlanCreate(Query *originalQuery, Query *queryTree,
|
|
PlannerRestrictionContext *plannerRestrictionContext)
|
|
{
|
|
MultiNode *multiQueryNode = NULL;
|
|
|
|
|
|
if (ShouldUseSubqueryPushDown(originalQuery, queryTree, plannerRestrictionContext))
|
|
{
|
|
multiQueryNode = SubqueryMultiNodeTree(originalQuery, queryTree,
|
|
plannerRestrictionContext);
|
|
}
|
|
else
|
|
{
|
|
multiQueryNode = MultiNodeTree(queryTree);
|
|
}
|
|
|
|
/* add a root node to serve as the permanent handle to the tree */
|
|
MultiTreeRoot *rootNode = CitusMakeNode(MultiTreeRoot);
|
|
SetChild((MultiUnaryNode *) rootNode, multiQueryNode);
|
|
|
|
return rootNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* FindNodeCheck finds a node for which the check function returns true.
|
|
*
|
|
* To call this function directly with an RTE, use:
|
|
* range_table_walker(rte, FindNodeCheck, check, QTW_EXAMINE_RTES_BEFORE)
|
|
*/
|
|
bool
|
|
FindNodeCheck(Node *node, bool (*check)(Node *))
|
|
{
|
|
if (node == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (check(node))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (IsA(node, RangeTblEntry))
|
|
{
|
|
/* query_tree_walker descends into RTEs */
|
|
return false;
|
|
}
|
|
else if (IsA(node, Query))
|
|
{
|
|
return query_tree_walker((Query *) node, FindNodeCheck, check,
|
|
QTW_EXAMINE_RTES_BEFORE);
|
|
}
|
|
|
|
return expression_tree_walker(node, FindNodeCheck, check);
|
|
}
|
|
|
|
|
|
/*
|
|
* SingleRelationRepartitionSubquery returns true if it is eligible single
|
|
* repartition query planning in the sense that:
|
|
* - None of the levels of the subquery contains a join
|
|
* - Only a single RTE_RELATION exists, which means only a single table
|
|
* name is specified on the whole query
|
|
* - No sublinks exists in the subquery
|
|
* - No window functions exists in the subquery
|
|
*
|
|
* Note that the caller should still call DeferErrorIfUnsupportedSubqueryRepartition()
|
|
* to ensure that Citus supports the subquery. Also, this function is designed to run
|
|
* on the original query.
|
|
*/
|
|
bool
|
|
SingleRelationRepartitionSubquery(Query *queryTree)
|
|
{
|
|
List *rangeTableIndexList = NULL;
|
|
List *rangeTableList = queryTree->rtable;
|
|
|
|
/* we don't support subqueries in WHERE */
|
|
if (queryTree->hasSubLinks)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* we don't support window functions */
|
|
if (queryTree->hasWindowFuncs)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Don't allow joins and set operations. If join appears in the queryTree, the
|
|
* length would be greater than 1. If only set operations exists, the length
|
|
* would be 0.
|
|
*/
|
|
ExtractRangeTableIndexWalker((Node *) queryTree->jointree,
|
|
&rangeTableIndexList);
|
|
if (list_length(rangeTableIndexList) != 1)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
int rangeTableIndex = linitial_int(rangeTableIndexList);
|
|
RangeTblEntry *rangeTableEntry = rt_fetch(rangeTableIndex, rangeTableList);
|
|
if (rangeTableEntry->rtekind == RTE_RELATION)
|
|
{
|
|
return true;
|
|
}
|
|
else if (rangeTableEntry->rtekind == RTE_SUBQUERY)
|
|
{
|
|
Query *subqueryTree = rangeTableEntry->subquery;
|
|
|
|
return SingleRelationRepartitionSubquery(subqueryTree);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* TargetListOnPartitionColumn checks if at least one target list entry is on
|
|
* partition column.
|
|
*/
|
|
bool
|
|
TargetListOnPartitionColumn(Query *query, List *targetEntryList)
|
|
{
|
|
bool targetListOnPartitionColumn = false;
|
|
List *compositeFieldList = NIL;
|
|
|
|
ListCell *targetEntryCell = NULL;
|
|
foreach(targetEntryCell, targetEntryList)
|
|
{
|
|
TargetEntry *targetEntry = (TargetEntry *) lfirst(targetEntryCell);
|
|
Expr *targetExpression = targetEntry->expr;
|
|
|
|
bool isPartitionColumn = IsPartitionColumn(targetExpression, query);
|
|
Oid relationId = InvalidOid;
|
|
Var *column = NULL;
|
|
|
|
FindReferencedTableColumn(targetExpression, NIL, query, &relationId, &column);
|
|
|
|
/*
|
|
* If the expression belongs to a reference table continue searching for
|
|
* other partition keys.
|
|
*/
|
|
if (IsCitusTable(relationId) && PartitionMethod(relationId) == DISTRIBUTE_BY_NONE)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (isPartitionColumn)
|
|
{
|
|
FieldSelect *compositeField = CompositeFieldRecursive(targetExpression,
|
|
query);
|
|
if (compositeField)
|
|
{
|
|
compositeFieldList = lappend(compositeFieldList, compositeField);
|
|
}
|
|
else
|
|
{
|
|
targetListOnPartitionColumn = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check composite fields */
|
|
if (!targetListOnPartitionColumn)
|
|
{
|
|
bool fullCompositeFieldList = FullCompositeFieldList(compositeFieldList);
|
|
if (fullCompositeFieldList)
|
|
{
|
|
targetListOnPartitionColumn = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We could still behave as if the target list is on partition column if
|
|
* all range table entries are reference tables or intermediate results,
|
|
* and all target expressions are column references to the given query level.
|
|
*/
|
|
if (!targetListOnPartitionColumn)
|
|
{
|
|
if (!FindNodeCheckInRangeTableList(query->rtable, IsDistributedTableRTE) &&
|
|
AllTargetExpressionsAreColumnReferences(targetEntryList))
|
|
{
|
|
targetListOnPartitionColumn = true;
|
|
}
|
|
}
|
|
|
|
return targetListOnPartitionColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
* AllTargetExpressionsAreColumnReferences returns true if none of the
|
|
* elements in the target entry list belong to an outer query (for
|
|
* example the query is a sublink and references to another query
|
|
* in the from list).
|
|
*
|
|
* The function also returns true if any of the target entries is not
|
|
* a column itself. This might be too restrictive, but, given that we're
|
|
* handling very specific type of queries, that seems acceptable for now.
|
|
*/
|
|
static bool
|
|
AllTargetExpressionsAreColumnReferences(List *targetEntryList)
|
|
{
|
|
ListCell *targetEntryCell = NULL;
|
|
|
|
foreach(targetEntryCell, targetEntryList)
|
|
{
|
|
TargetEntry *targetEntry = lfirst(targetEntryCell);
|
|
Var *candidateColumn = NULL;
|
|
Expr *strippedColumnExpression = (Expr *) strip_implicit_coercions(
|
|
(Node *) targetEntry->expr);
|
|
|
|
if (IsA(strippedColumnExpression, Var))
|
|
{
|
|
candidateColumn = (Var *) strippedColumnExpression;
|
|
}
|
|
else if (IsA(strippedColumnExpression, FieldSelect))
|
|
{
|
|
FieldSelect *compositeField = (FieldSelect *) strippedColumnExpression;
|
|
Expr *fieldExpression = compositeField->arg;
|
|
|
|
if (IsA(fieldExpression, Var))
|
|
{
|
|
candidateColumn = (Var *) fieldExpression;
|
|
}
|
|
}
|
|
|
|
/* we don't support target entries that are not columns */
|
|
if (candidateColumn == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (candidateColumn->varlevelsup > 0)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* FindNodeCheckInRangeTableList finds a node for which the check
|
|
* function returns true.
|
|
*
|
|
* FindNodeCheckInRangeTableList relies on FindNodeCheck() but only
|
|
* considers the range table entries.
|
|
*/
|
|
bool
|
|
FindNodeCheckInRangeTableList(List *rtable, bool (*check)(Node *))
|
|
{
|
|
return range_table_walker(rtable, FindNodeCheck, check, QTW_EXAMINE_RTES_BEFORE);
|
|
}
|
|
|
|
|
|
/*
|
|
* NodeTryGetRteRelid returns the relid of the given RTE_RELATION RangeTableEntry.
|
|
* Returns InvalidOid if any of these assumptions fail for given node.
|
|
*/
|
|
static Oid
|
|
NodeTryGetRteRelid(Node *node)
|
|
{
|
|
if (node == NULL)
|
|
{
|
|
return InvalidOid;
|
|
}
|
|
|
|
if (!IsA(node, RangeTblEntry))
|
|
{
|
|
return InvalidOid;
|
|
}
|
|
|
|
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) node;
|
|
if (rangeTableEntry->rtekind != RTE_RELATION)
|
|
{
|
|
return InvalidOid;
|
|
}
|
|
|
|
return rangeTableEntry->relid;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsCitusTableRTE gets a node and returns true if the node is a
|
|
* range table relation entry that points to a distributed relation.
|
|
*/
|
|
bool
|
|
IsCitusTableRTE(Node *node)
|
|
{
|
|
Oid relationId = NodeTryGetRteRelid(node);
|
|
return relationId != InvalidOid && IsCitusTable(relationId);
|
|
}
|
|
|
|
|
|
/*
|
|
* IsDistributedTableRTE gets a node and returns true if the node
|
|
* is a range table relation entry that points to a distributed relation,
|
|
* returning false still if the relation is a reference table.
|
|
*/
|
|
bool
|
|
IsDistributedTableRTE(Node *node)
|
|
{
|
|
Oid relationId = NodeTryGetRteRelid(node);
|
|
return relationId != InvalidOid && IsCitusTable(relationId) &&
|
|
PartitionMethod(relationId) != DISTRIBUTE_BY_NONE;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsReferenceTableRTE gets a node and returns true if the node
|
|
* is a range table relation entry that points to a reference table.
|
|
*/
|
|
bool
|
|
IsReferenceTableRTE(Node *node)
|
|
{
|
|
Oid relationId = NodeTryGetRteRelid(node);
|
|
return relationId != InvalidOid && IsCitusTable(relationId) &&
|
|
IsReferenceTable(relationId);
|
|
}
|
|
|
|
|
|
/*
|
|
* FullCompositeFieldList gets a composite field list, and checks if all fields
|
|
* of composite type are used in the list.
|
|
*/
|
|
static bool
|
|
FullCompositeFieldList(List *compositeFieldList)
|
|
{
|
|
bool fullCompositeFieldList = true;
|
|
bool *compositeFieldArray = NULL;
|
|
uint32 compositeFieldCount = 0;
|
|
|
|
ListCell *fieldSelectCell = NULL;
|
|
foreach(fieldSelectCell, compositeFieldList)
|
|
{
|
|
FieldSelect *fieldSelect = (FieldSelect *) lfirst(fieldSelectCell);
|
|
|
|
Expr *fieldExpression = fieldSelect->arg;
|
|
if (!IsA(fieldExpression, Var))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (compositeFieldArray == NULL)
|
|
{
|
|
Var *compositeColumn = (Var *) fieldExpression;
|
|
Oid compositeTypeId = compositeColumn->vartype;
|
|
Oid compositeRelationId = get_typ_typrelid(compositeTypeId);
|
|
|
|
/* get composite type attribute count */
|
|
Relation relation = relation_open(compositeRelationId, AccessShareLock);
|
|
compositeFieldCount = relation->rd_att->natts;
|
|
compositeFieldArray = palloc0(compositeFieldCount * sizeof(bool));
|
|
relation_close(relation, AccessShareLock);
|
|
|
|
for (uint32 compositeFieldIndex = 0;
|
|
compositeFieldIndex < compositeFieldCount;
|
|
compositeFieldIndex++)
|
|
{
|
|
compositeFieldArray[compositeFieldIndex] = false;
|
|
}
|
|
}
|
|
|
|
uint32 compositeFieldIndex = fieldSelect->fieldnum - 1;
|
|
compositeFieldArray[compositeFieldIndex] = true;
|
|
}
|
|
|
|
for (uint32 fieldIndex = 0; fieldIndex < compositeFieldCount; fieldIndex++)
|
|
{
|
|
if (!compositeFieldArray[fieldIndex])
|
|
{
|
|
fullCompositeFieldList = false;
|
|
}
|
|
}
|
|
|
|
if (compositeFieldCount == 0)
|
|
{
|
|
fullCompositeFieldList = false;
|
|
}
|
|
|
|
return fullCompositeFieldList;
|
|
}
|
|
|
|
|
|
/*
|
|
* CompositeFieldRecursive recursively finds composite field in the query tree
|
|
* referred by given expression. If expression does not refer to a composite
|
|
* field, then it returns NULL.
|
|
*
|
|
* If expression is a field select we directly return composite field. If it is
|
|
* a column is referenced from a subquery, then we recursively check that subquery
|
|
* until we reach the source of that column, and find composite field. If this
|
|
* column is referenced from join range table entry, then we resolve which join
|
|
* column it refers and recursively use this column with the same query.
|
|
*/
|
|
static FieldSelect *
|
|
CompositeFieldRecursive(Expr *expression, Query *query)
|
|
{
|
|
FieldSelect *compositeField = NULL;
|
|
List *rangetableList = query->rtable;
|
|
Var *candidateColumn = NULL;
|
|
|
|
if (IsA(expression, FieldSelect))
|
|
{
|
|
compositeField = (FieldSelect *) expression;
|
|
return compositeField;
|
|
}
|
|
|
|
if (IsA(expression, Var))
|
|
{
|
|
candidateColumn = (Var *) expression;
|
|
}
|
|
else
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
Index rangeTableEntryIndex = candidateColumn->varno - 1;
|
|
RangeTblEntry *rangeTableEntry = list_nth(rangetableList, rangeTableEntryIndex);
|
|
|
|
if (rangeTableEntry->rtekind == RTE_SUBQUERY)
|
|
{
|
|
Query *subquery = rangeTableEntry->subquery;
|
|
List *targetEntryList = subquery->targetList;
|
|
AttrNumber targetEntryIndex = candidateColumn->varattno - 1;
|
|
TargetEntry *subqueryTargetEntry = list_nth(targetEntryList, targetEntryIndex);
|
|
|
|
Expr *subqueryExpression = subqueryTargetEntry->expr;
|
|
compositeField = CompositeFieldRecursive(subqueryExpression, subquery);
|
|
}
|
|
else if (rangeTableEntry->rtekind == RTE_JOIN)
|
|
{
|
|
List *joinColumnList = rangeTableEntry->joinaliasvars;
|
|
AttrNumber joinColumnIndex = candidateColumn->varattno - 1;
|
|
Expr *joinColumn = list_nth(joinColumnList, joinColumnIndex);
|
|
|
|
compositeField = CompositeFieldRecursive(joinColumn, query);
|
|
}
|
|
|
|
return compositeField;
|
|
}
|
|
|
|
|
|
/*
|
|
* SubqueryEntryList finds the subquery nodes in the range table entry list, and
|
|
* builds a list of subquery range table entries from these subquery nodes. Range
|
|
* table entry list also includes subqueries which are pulled up. We don't want
|
|
* to add pulled up subqueries to list, so we walk over join tree indexes and
|
|
* check range table entries referenced in the join tree.
|
|
*/
|
|
List *
|
|
SubqueryEntryList(Query *queryTree)
|
|
{
|
|
List *rangeTableList = queryTree->rtable;
|
|
List *subqueryEntryList = NIL;
|
|
List *joinTreeTableIndexList = NIL;
|
|
ListCell *joinTreeTableIndexCell = NULL;
|
|
|
|
/*
|
|
* Extract all range table indexes from the join tree. Note that here we
|
|
* only walk over range table entries at this level and do not recurse into
|
|
* subqueries.
|
|
*/
|
|
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
|
|
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
|
|
{
|
|
/*
|
|
* Join tree's range table index starts from 1 in the query tree. But,
|
|
* list indexes start from 0.
|
|
*/
|
|
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
|
|
int rangeTableListIndex = joinTreeTableIndex - 1;
|
|
RangeTblEntry *rangeTableEntry =
|
|
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
|
|
|
|
if (rangeTableEntry->rtekind == RTE_SUBQUERY)
|
|
{
|
|
subqueryEntryList = lappend(subqueryEntryList, rangeTableEntry);
|
|
}
|
|
}
|
|
|
|
return subqueryEntryList;
|
|
}
|
|
|
|
|
|
/*
|
|
* MultiNodeTree takes in a parsed query tree and uses that tree to construct a
|
|
* logical plan. This plan is based on multi-relational algebra. This function
|
|
* creates the logical plan in several steps.
|
|
*
|
|
* First, the function checks if there is a subquery. If there is a subquery
|
|
* it recursively creates nested multi trees. If this query has a subquery, the
|
|
* function does not create any join trees and jumps to last step.
|
|
*
|
|
* If there is no subquery, the function calculates the join order using tables
|
|
* in the query and join clauses between the tables. Second, the function
|
|
* starts building the logical plan from the bottom-up, and begins with the table
|
|
* and collect nodes. Third, the function builds the join tree using the join
|
|
* order information and table nodes.
|
|
*
|
|
* In the last step, the function adds the select, project, aggregate, sort,
|
|
* group, and limit nodes if they appear in the original query tree.
|
|
*/
|
|
MultiNode *
|
|
MultiNodeTree(Query *queryTree)
|
|
{
|
|
List *rangeTableList = queryTree->rtable;
|
|
List *targetEntryList = queryTree->targetList;
|
|
List *joinClauseList = NIL;
|
|
List *joinOrderList = NIL;
|
|
List *tableEntryList = NIL;
|
|
List *tableNodeList = NIL;
|
|
List *collectTableList = NIL;
|
|
MultiNode *joinTreeNode = NULL;
|
|
MultiNode *currentTopNode = NULL;
|
|
|
|
/* verify we can perform distributed planning on this query */
|
|
DeferredErrorMessage *unsupportedQueryError = DeferErrorIfQueryNotSupported(
|
|
queryTree);
|
|
if (unsupportedQueryError != NULL)
|
|
{
|
|
RaiseDeferredError(unsupportedQueryError, ERROR);
|
|
}
|
|
|
|
/* extract where clause qualifiers and verify we can plan for them */
|
|
List *whereClauseList = WhereClauseList(queryTree->jointree);
|
|
unsupportedQueryError = DeferErrorIfUnsupportedClause(whereClauseList);
|
|
if (unsupportedQueryError)
|
|
{
|
|
RaiseDeferredErrorInternal(unsupportedQueryError, ERROR);
|
|
}
|
|
|
|
/*
|
|
* If we have a subquery, build a multi table node for the subquery and
|
|
* add a collect node on top of the multi table node.
|
|
*/
|
|
List *subqueryEntryList = SubqueryEntryList(queryTree);
|
|
if (subqueryEntryList != NIL)
|
|
{
|
|
MultiCollect *subqueryCollectNode = CitusMakeNode(MultiCollect);
|
|
ListCell *columnCell = NULL;
|
|
|
|
/* we only support single subquery in the entry list */
|
|
Assert(list_length(subqueryEntryList) == 1);
|
|
|
|
RangeTblEntry *subqueryRangeTableEntry = (RangeTblEntry *) linitial(
|
|
subqueryEntryList);
|
|
Query *subqueryTree = subqueryRangeTableEntry->subquery;
|
|
|
|
/* ensure if subquery satisfies preconditions */
|
|
Assert(DeferErrorIfUnsupportedSubqueryRepartition(subqueryTree) == NULL);
|
|
|
|
MultiTable *subqueryNode = CitusMakeNode(MultiTable);
|
|
subqueryNode->relationId = SUBQUERY_RELATION_ID;
|
|
subqueryNode->rangeTableId = SUBQUERY_RANGE_TABLE_ID;
|
|
subqueryNode->partitionColumn = NULL;
|
|
subqueryNode->alias = NULL;
|
|
subqueryNode->referenceNames = NULL;
|
|
|
|
/*
|
|
* We disregard pulled subqueries. This changes order of range table list.
|
|
* We do not allow subquery joins, so we will have only one range table
|
|
* entry in range table list after dropping pulled subquery. For this
|
|
* reason, here we are updating columns in the most outer query for where
|
|
* clause list and target list accordingly.
|
|
*/
|
|
Assert(list_length(subqueryEntryList) == 1);
|
|
|
|
List *whereClauseColumnList = pull_var_clause_default((Node *) whereClauseList);
|
|
List *targetListColumnList = pull_var_clause_default((Node *) targetEntryList);
|
|
|
|
List *columnList = list_concat(whereClauseColumnList, targetListColumnList);
|
|
foreach(columnCell, columnList)
|
|
{
|
|
Var *column = (Var *) lfirst(columnCell);
|
|
column->varno = 1;
|
|
}
|
|
|
|
/* recursively create child nested multitree */
|
|
MultiNode *subqueryExtendedNode = MultiNodeTree(subqueryTree);
|
|
|
|
SetChild((MultiUnaryNode *) subqueryCollectNode, (MultiNode *) subqueryNode);
|
|
SetChild((MultiUnaryNode *) subqueryNode, subqueryExtendedNode);
|
|
|
|
currentTopNode = (MultiNode *) subqueryCollectNode;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We calculate the join order using the list of tables in the query and
|
|
* the join clauses between them. Note that this function owns the table
|
|
* entry list's memory, and JoinOrderList() shallow copies the list's
|
|
* elements.
|
|
*/
|
|
joinClauseList = JoinClauseList(whereClauseList);
|
|
tableEntryList = UsedTableEntryList(queryTree);
|
|
|
|
/* build the list of multi table nodes */
|
|
tableNodeList = MultiTableNodeList(tableEntryList, rangeTableList);
|
|
|
|
/* add collect nodes on top of the multi table nodes */
|
|
collectTableList = AddMultiCollectNodes(tableNodeList);
|
|
|
|
/* find best join order for commutative inner joins */
|
|
joinOrderList = JoinOrderList(tableEntryList, joinClauseList);
|
|
|
|
/* build join tree using the join order and collected tables */
|
|
joinTreeNode = MultiJoinTree(joinOrderList, collectTableList, joinClauseList);
|
|
|
|
currentTopNode = joinTreeNode;
|
|
}
|
|
|
|
Assert(currentTopNode != NULL);
|
|
|
|
/* build select node if the query has selection criteria */
|
|
MultiSelect *selectNode = MultiSelectNode(whereClauseList);
|
|
if (selectNode != NULL)
|
|
{
|
|
SetChild((MultiUnaryNode *) selectNode, currentTopNode);
|
|
currentTopNode = (MultiNode *) selectNode;
|
|
}
|
|
|
|
/* build project node for the columns to project */
|
|
MultiProject *projectNode = MultiProjectNode(targetEntryList);
|
|
SetChild((MultiUnaryNode *) projectNode, currentTopNode);
|
|
currentTopNode = (MultiNode *) projectNode;
|
|
|
|
/*
|
|
* We build the extended operator node to capture aggregate functions, group
|
|
* clauses, sort clauses, limit/offset clauses, and expressions. We need to
|
|
* distinguish between aggregates and expressions; and we address this later
|
|
* in the logical optimizer.
|
|
*/
|
|
MultiExtendedOp *extendedOpNode = MultiExtendedOpNode(queryTree, queryTree);
|
|
SetChild((MultiUnaryNode *) extendedOpNode, currentTopNode);
|
|
currentTopNode = (MultiNode *) extendedOpNode;
|
|
|
|
return currentTopNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ContainsReadIntermediateResultFunction determines whether an expresion tree contains
|
|
* a call to the read_intermediate_result function.
|
|
*/
|
|
bool
|
|
ContainsReadIntermediateResultFunction(Node *node)
|
|
{
|
|
return FindNodeCheck(node, IsReadIntermediateResultFunction);
|
|
}
|
|
|
|
|
|
/*
|
|
* ContainsReadIntermediateResultArrayFunction determines whether an expresion
|
|
* tree contains a call to the read_intermediate_results(result_ids, format)
|
|
* function.
|
|
*/
|
|
bool
|
|
ContainsReadIntermediateResultArrayFunction(Node *node)
|
|
{
|
|
return FindNodeCheck(node, IsReadIntermediateResultArrayFunction);
|
|
}
|
|
|
|
|
|
/*
|
|
* IsReadIntermediateResultFunction determines whether a given node is a function call
|
|
* to the read_intermediate_result function.
|
|
*/
|
|
static bool
|
|
IsReadIntermediateResultFunction(Node *node)
|
|
{
|
|
return IsFunctionWithOid(node, CitusReadIntermediateResultFuncId());
|
|
}
|
|
|
|
|
|
/*
|
|
* IsReadIntermediateResultArrayFunction determines whether a given node is a
|
|
* function call to the read_intermediate_results(result_ids, format) function.
|
|
*/
|
|
static bool
|
|
IsReadIntermediateResultArrayFunction(Node *node)
|
|
{
|
|
return IsFunctionWithOid(node, CitusReadIntermediateResultArrayFuncId());
|
|
}
|
|
|
|
|
|
/*
|
|
* IsCitusExtraDataContainerRelation determines whether a range table entry contains a
|
|
* call to the citus_extradata_container function.
|
|
*/
|
|
bool
|
|
IsCitusExtraDataContainerRelation(RangeTblEntry *rte)
|
|
{
|
|
if (rte->rtekind != RTE_FUNCTION || list_length(rte->functions) != 1)
|
|
{
|
|
/* avoid more expensive checks below for non-functions */
|
|
return false;
|
|
}
|
|
|
|
if (!CitusHasBeenLoaded() || !CheckCitusVersion(DEBUG5))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return FindNodeCheck((Node *) rte->functions, IsCitusExtraDataContainerFunc);
|
|
}
|
|
|
|
|
|
/*
|
|
* IsCitusExtraDataContainerFunc determines whether a given node is a function call
|
|
* to the citus_extradata_container function.
|
|
*/
|
|
static bool
|
|
IsCitusExtraDataContainerFunc(Node *node)
|
|
{
|
|
return IsFunctionWithOid(node, CitusExtraDataContainerFuncId());
|
|
}
|
|
|
|
|
|
/*
|
|
* IsFunctionWithOid determines whether a given node is a function call
|
|
* to the read_intermediate_result function.
|
|
*/
|
|
static bool
|
|
IsFunctionWithOid(Node *node, Oid funcOid)
|
|
{
|
|
if (IsA(node, FuncExpr))
|
|
{
|
|
FuncExpr *funcExpr = (FuncExpr *) node;
|
|
|
|
if (funcExpr->funcid == funcOid)
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsGroupingFunc returns whether node is a GroupingFunc.
|
|
*/
|
|
static bool
|
|
IsGroupingFunc(Node *node)
|
|
{
|
|
return IsA(node, GroupingFunc);
|
|
}
|
|
|
|
|
|
/*
|
|
* FindIntermediateResultIdIfExists extracts the id of the intermediate result
|
|
* if the given RTE contains a read_intermediate_results function, NULL otherwise
|
|
*/
|
|
char *
|
|
FindIntermediateResultIdIfExists(RangeTblEntry *rte)
|
|
{
|
|
char *resultId = NULL;
|
|
|
|
Assert(rte->rtekind == RTE_FUNCTION);
|
|
|
|
List *functionList = rte->functions;
|
|
RangeTblFunction *rangeTblfunction = (RangeTblFunction *) linitial(functionList);
|
|
FuncExpr *funcExpr = (FuncExpr *) rangeTblfunction->funcexpr;
|
|
|
|
if (IsReadIntermediateResultFunction((Node *) funcExpr))
|
|
{
|
|
Const *resultIdConst = linitial(funcExpr->args);
|
|
|
|
if (!resultIdConst->constisnull)
|
|
{
|
|
resultId = TextDatumGetCString(resultIdConst->constvalue);
|
|
}
|
|
}
|
|
|
|
return resultId;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfQueryNotSupported checks that we can perform distributed planning for
|
|
* the given query. The checks in this function will be removed as we support
|
|
* more functionality in our distributed planning.
|
|
*/
|
|
DeferredErrorMessage *
|
|
DeferErrorIfQueryNotSupported(Query *queryTree)
|
|
{
|
|
char *errorMessage = NULL;
|
|
bool preconditionsSatisfied = true;
|
|
const char *errorHint = NULL;
|
|
const char *joinHint = "Consider joining tables on partition column and have "
|
|
"equal filter on joining columns.";
|
|
const char *filterHint = "Consider using an equality filter on the distributed "
|
|
"table's partition column.";
|
|
|
|
/*
|
|
* There could be Sublinks in the target list as well. To produce better
|
|
* error messages we're checking if that's the case.
|
|
*/
|
|
if (queryTree->hasSubLinks && TargetListContainsSubquery(queryTree))
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with subquery outside the "
|
|
"FROM, WHERE and HAVING clauses";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (queryTree->setOperations)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with UNION, INTERSECT, or "
|
|
"EXCEPT";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (queryTree->hasRecursive)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with RECURSIVE";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (queryTree->cteList)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with common table expressions";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (queryTree->hasForUpdate)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with FOR UPDATE/SHARE commands";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (queryTree->groupingSets)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with GROUPING SETS, CUBE, "
|
|
"or ROLLUP";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (FindNodeCheck((Node *) queryTree, IsGroupingFunc))
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with GROUPING";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
bool hasTablesample = HasTablesample(queryTree);
|
|
if (hasTablesample)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query which use TABLESAMPLE";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
bool hasUnsupportedJoin = HasUnsupportedJoinWalker((Node *) queryTree->jointree,
|
|
NULL);
|
|
if (hasUnsupportedJoin)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with join types other than "
|
|
"INNER or OUTER JOINS";
|
|
errorHint = joinHint;
|
|
}
|
|
|
|
bool hasComplexRangeTableType = HasComplexRangeTableType(queryTree);
|
|
if (hasComplexRangeTableType)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "could not run distributed query with complex table expressions";
|
|
errorHint = filterHint;
|
|
}
|
|
|
|
if (FindNodeCheck((Node *) queryTree->limitCount, IsNodeSubquery))
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "subquery in LIMIT is not supported in multi-shard queries";
|
|
}
|
|
|
|
if (FindNodeCheck((Node *) queryTree->limitOffset, IsNodeSubquery))
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorMessage = "subquery in OFFSET is not supported in multi-shard queries";
|
|
}
|
|
|
|
/* finally check and error out if not satisfied */
|
|
if (!preconditionsSatisfied)
|
|
{
|
|
bool showHint = ErrorHintRequired(errorHint, queryTree);
|
|
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
|
|
errorMessage, NULL,
|
|
showHint ? errorHint : NULL);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* HasTablesample returns tree if the query contains tablesample */
|
|
static bool
|
|
HasTablesample(Query *queryTree)
|
|
{
|
|
List *rangeTableList = queryTree->rtable;
|
|
ListCell *rangeTableEntryCell = NULL;
|
|
bool hasTablesample = false;
|
|
|
|
foreach(rangeTableEntryCell, rangeTableList)
|
|
{
|
|
RangeTblEntry *rangeTableEntry = lfirst(rangeTableEntryCell);
|
|
if (rangeTableEntry->tablesample)
|
|
{
|
|
hasTablesample = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return hasTablesample;
|
|
}
|
|
|
|
|
|
/*
|
|
* HasUnsupportedJoinWalker returns tree if the query contains an unsupported
|
|
* join type. We currently support inner, left, right, full and anti joins.
|
|
* Semi joins are not supported. A full description of these join types is
|
|
* included in nodes/nodes.h.
|
|
*/
|
|
static bool
|
|
HasUnsupportedJoinWalker(Node *node, void *context)
|
|
{
|
|
bool hasUnsupportedJoin = false;
|
|
|
|
if (node == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, JoinExpr))
|
|
{
|
|
JoinExpr *joinExpr = (JoinExpr *) node;
|
|
JoinType joinType = joinExpr->jointype;
|
|
bool outerJoin = IS_OUTER_JOIN(joinType);
|
|
if (!outerJoin && joinType != JOIN_INNER && joinType != JOIN_SEMI)
|
|
{
|
|
hasUnsupportedJoin = true;
|
|
}
|
|
}
|
|
|
|
if (!hasUnsupportedJoin)
|
|
{
|
|
hasUnsupportedJoin = expression_tree_walker(node, HasUnsupportedJoinWalker,
|
|
NULL);
|
|
}
|
|
|
|
return hasUnsupportedJoin;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorHintRequired returns true if error hint shold be displayed with the
|
|
* query error message. Error hint is valid only for queries involving reference
|
|
* and hash partitioned tables. If more than one hash distributed table is
|
|
* present we display the hint only if the tables are colocated. If the query
|
|
* only has reference table(s), then it is handled by router planner.
|
|
*/
|
|
static bool
|
|
ErrorHintRequired(const char *errorHint, Query *queryTree)
|
|
{
|
|
List *distributedRelationIdList = DistributedRelationIdList(queryTree);
|
|
ListCell *relationIdCell = NULL;
|
|
List *colocationIdList = NIL;
|
|
|
|
if (errorHint == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
foreach(relationIdCell, distributedRelationIdList)
|
|
{
|
|
Oid relationId = lfirst_oid(relationIdCell);
|
|
char partitionMethod = PartitionMethod(relationId);
|
|
if (partitionMethod == DISTRIBUTE_BY_NONE)
|
|
{
|
|
continue;
|
|
}
|
|
else if (partitionMethod == DISTRIBUTE_BY_HASH)
|
|
{
|
|
int colocationId = TableColocationId(relationId);
|
|
colocationIdList = list_append_unique_int(colocationIdList, colocationId);
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* do not display the hint if there are more than one colocation group */
|
|
if (list_length(colocationIdList) > 1)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* DeferErrorIfSubqueryNotSupported checks that we can perform distributed planning for
|
|
* the given subquery. If not, a deferred error is returned. The function recursively
|
|
* does this check to all lower levels of the subquery.
|
|
*/
|
|
DeferredErrorMessage *
|
|
DeferErrorIfUnsupportedSubqueryRepartition(Query *subqueryTree)
|
|
{
|
|
char *errorDetail = NULL;
|
|
bool preconditionsSatisfied = true;
|
|
List *joinTreeTableIndexList = NIL;
|
|
|
|
if (!subqueryTree->hasAggs)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries without aggregates are not supported yet";
|
|
}
|
|
|
|
if (subqueryTree->groupClause == NIL)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries without group by clause are not supported yet";
|
|
}
|
|
|
|
if (subqueryTree->sortClause != NULL)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries with order by clause are not supported yet";
|
|
}
|
|
|
|
if (subqueryTree->limitCount != NULL)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries with limit are not supported yet";
|
|
}
|
|
|
|
if (subqueryTree->limitOffset != NULL)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries with offset are not supported yet";
|
|
}
|
|
|
|
if (subqueryTree->hasSubLinks)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries other than from-clause subqueries are unsupported";
|
|
}
|
|
|
|
/* finally check and return error if conditions are not satisfied */
|
|
if (!preconditionsSatisfied)
|
|
{
|
|
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
|
|
"cannot perform distributed planning on this query",
|
|
errorDetail, NULL);
|
|
}
|
|
|
|
/*
|
|
* Extract all range table indexes from the join tree. Note that sub-queries
|
|
* that get pulled up by PostgreSQL don't appear in this join tree.
|
|
*/
|
|
ExtractRangeTableIndexWalker((Node *) subqueryTree->jointree,
|
|
&joinTreeTableIndexList);
|
|
Assert(list_length(joinTreeTableIndexList) == 1);
|
|
|
|
/* continue with the inner subquery */
|
|
int rangeTableIndex = linitial_int(joinTreeTableIndexList);
|
|
RangeTblEntry *rangeTableEntry = rt_fetch(rangeTableIndex, subqueryTree->rtable);
|
|
if (rangeTableEntry->rtekind == RTE_RELATION)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
Assert(rangeTableEntry->rtekind == RTE_SUBQUERY);
|
|
Query *innerSubquery = rangeTableEntry->subquery;
|
|
|
|
/* recursively continue to the inner subqueries */
|
|
return DeferErrorIfUnsupportedSubqueryRepartition(innerSubquery);
|
|
}
|
|
|
|
|
|
/*
|
|
* HasComplexRangeTableType checks if the given query tree contains any complex
|
|
* range table types. For this, the function walks over all range tables in the
|
|
* join tree, and checks if they correspond to simple relations or subqueries.
|
|
* If they don't, the function assumes the query has complex range tables.
|
|
*/
|
|
static bool
|
|
HasComplexRangeTableType(Query *queryTree)
|
|
{
|
|
List *rangeTableList = queryTree->rtable;
|
|
List *joinTreeTableIndexList = NIL;
|
|
ListCell *joinTreeTableIndexCell = NULL;
|
|
bool hasComplexRangeTableType = false;
|
|
|
|
/*
|
|
* Extract all range table indexes from the join tree. Note that sub-queries
|
|
* that get pulled up by PostgreSQL don't appear in this join tree.
|
|
*/
|
|
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
|
|
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
|
|
{
|
|
/*
|
|
* Join tree's range table index starts from 1 in the query tree. But,
|
|
* list indexes start from 0.
|
|
*/
|
|
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
|
|
int rangeTableListIndex = joinTreeTableIndex - 1;
|
|
|
|
RangeTblEntry *rangeTableEntry =
|
|
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
|
|
|
|
/*
|
|
* Check if the range table in the join tree is a simple relation or a
|
|
* subquery or a function. Note that RTE_FUNCTIONs are handled via (sub)query
|
|
* pushdown.
|
|
*/
|
|
if (rangeTableEntry->rtekind != RTE_RELATION &&
|
|
rangeTableEntry->rtekind != RTE_SUBQUERY &&
|
|
rangeTableEntry->rtekind != RTE_FUNCTION)
|
|
{
|
|
hasComplexRangeTableType = true;
|
|
}
|
|
|
|
/*
|
|
* Check if the subquery range table entry includes children inheritance.
|
|
*
|
|
* Note that PostgreSQL flattens out simple union all queries into an
|
|
* append relation, sets "inh" field of RangeTblEntry to true and deletes
|
|
* set operations. Here we check this for subqueries.
|
|
*/
|
|
if (rangeTableEntry->rtekind == RTE_SUBQUERY && rangeTableEntry->inh)
|
|
{
|
|
hasComplexRangeTableType = true;
|
|
}
|
|
}
|
|
|
|
return hasComplexRangeTableType;
|
|
}
|
|
|
|
|
|
/*
|
|
* WhereClauseList walks over the FROM expression in the query tree, and builds
|
|
* a list of all clauses from the expression tree. The function checks for both
|
|
* implicitly and explicitly defined clauses, but only selects INNER join
|
|
* explicit clauses, and skips any outer-join clauses. Explicit clauses are
|
|
* expressed as "SELECT ... FROM R1 INNER JOIN R2 ON R1.A = R2.A". Implicit
|
|
* joins differ in that they live in the WHERE clause, and are expressed as
|
|
* "SELECT ... FROM ... WHERE R1.a = R2.a".
|
|
*/
|
|
List *
|
|
WhereClauseList(FromExpr *fromExpr)
|
|
{
|
|
FromExpr *fromExprCopy = copyObject(fromExpr);
|
|
QualifierWalkerContext *walkerContext = palloc0(sizeof(QualifierWalkerContext));
|
|
|
|
ExtractFromExpressionWalker((Node *) fromExprCopy, walkerContext);
|
|
List *whereClauseList = walkerContext->baseQualifierList;
|
|
|
|
return whereClauseList;
|
|
}
|
|
|
|
|
|
/*
|
|
* QualifierList walks over the FROM expression in the query tree, and builds
|
|
* a list of all qualifiers from the expression tree. The function checks for
|
|
* both implicitly and explicitly defined qualifiers. Note that this function
|
|
* is very similar to WhereClauseList(), but QualifierList() also includes
|
|
* outer-join clauses.
|
|
*/
|
|
List *
|
|
QualifierList(FromExpr *fromExpr)
|
|
{
|
|
FromExpr *fromExprCopy = copyObject(fromExpr);
|
|
QualifierWalkerContext *walkerContext = palloc0(sizeof(QualifierWalkerContext));
|
|
List *qualifierList = NIL;
|
|
|
|
ExtractFromExpressionWalker((Node *) fromExprCopy, walkerContext);
|
|
qualifierList = list_concat(qualifierList, walkerContext->baseQualifierList);
|
|
qualifierList = list_concat(qualifierList, walkerContext->outerJoinQualifierList);
|
|
|
|
return qualifierList;
|
|
}
|
|
|
|
|
|
/*
|
|
* DeferErrorIfUnsupportedClause walks over the given list of clauses, and
|
|
* checks that we can recognize all the clauses. This function ensures that
|
|
* we do not drop an unsupported clause type on the floor, and thus prevents
|
|
* erroneous results.
|
|
*
|
|
* Returns a deferred error, caller is responsible for raising the error.
|
|
*/
|
|
DeferredErrorMessage *
|
|
DeferErrorIfUnsupportedClause(List *clauseList)
|
|
{
|
|
ListCell *clauseCell = NULL;
|
|
foreach(clauseCell, clauseList)
|
|
{
|
|
Node *clause = (Node *) lfirst(clauseCell);
|
|
|
|
if (!(IsSelectClause(clause) || IsJoinClause(clause) || or_clause(clause)))
|
|
{
|
|
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
|
|
"unsupported clause type", NULL, NULL);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* JoinClauseList finds the join clauses from the given where clause expression
|
|
* list, and returns them. The function does not iterate into nested OR clauses
|
|
* and relies on find_duplicate_ors() in the optimizer to pull up factorizable
|
|
* OR clauses.
|
|
*/
|
|
List *
|
|
JoinClauseList(List *whereClauseList)
|
|
{
|
|
List *joinClauseList = NIL;
|
|
ListCell *whereClauseCell = NULL;
|
|
|
|
foreach(whereClauseCell, whereClauseList)
|
|
{
|
|
Node *whereClause = (Node *) lfirst(whereClauseCell);
|
|
if (IsJoinClause(whereClause))
|
|
{
|
|
joinClauseList = lappend(joinClauseList, whereClause);
|
|
}
|
|
}
|
|
|
|
return joinClauseList;
|
|
}
|
|
|
|
|
|
/*
|
|
* ExtractFromExpressionWalker walks over a FROM expression, and finds all
|
|
* implicit and explicit qualifiers in the expression. The function looks at
|
|
* join and from expression nodes to find qualifiers, and returns these
|
|
* qualifiers.
|
|
*
|
|
* Note that we don't want outer join clauses in regular outer join planning,
|
|
* but we need outer join clauses in subquery pushdown prerequisite checks.
|
|
* Therefore, outer join qualifiers are returned in a different list than other
|
|
* qualifiers inside the given walker context. For this reason, we return two
|
|
* qualifier lists.
|
|
*
|
|
* Note that we check if the qualifier node in join and from expression nodes
|
|
* is a list node. If it is not a list node which is the case for subqueries,
|
|
* then we run eval_const_expressions(), canonicalize_qual() and make_ands_implicit()
|
|
* on the qualifier node and get a list of flattened implicitly AND'ed qualifier
|
|
* list. Actually in the planer phase of PostgreSQL these functions also run on
|
|
* subqueries but differently from the outermost query, they are run on a copy
|
|
* of parse tree and changes do not get persisted as modifications to the original
|
|
* query tree.
|
|
*
|
|
* Also this function adds SubLinks to the baseQualifierList when they appear on
|
|
* the query's WHERE clause. The callers of the function should consider processing
|
|
* Sublinks as well.
|
|
*/
|
|
static bool
|
|
ExtractFromExpressionWalker(Node *node, QualifierWalkerContext *walkerContext)
|
|
{
|
|
if (node == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Get qualifier lists of join and from expression nodes. Note that in the
|
|
* case of subqueries, PostgreSQL can skip simplifying, flattening and
|
|
* making ANDs implicit. If qualifiers node is not a list, then we run these
|
|
* preprocess routines on qualifiers node.
|
|
*/
|
|
if (IsA(node, JoinExpr))
|
|
{
|
|
List *joinQualifierList = NIL;
|
|
JoinExpr *joinExpression = (JoinExpr *) node;
|
|
Node *joinQualifiersNode = joinExpression->quals;
|
|
JoinType joinType = joinExpression->jointype;
|
|
|
|
if (joinQualifiersNode != NULL)
|
|
{
|
|
if (IsA(joinQualifiersNode, List))
|
|
{
|
|
joinQualifierList = (List *) joinQualifiersNode;
|
|
}
|
|
else
|
|
{
|
|
/* this part of code only run for subqueries */
|
|
Node *joinClause = eval_const_expressions(NULL, joinQualifiersNode);
|
|
joinClause = (Node *) canonicalize_qual((Expr *) joinClause, false);
|
|
joinQualifierList = make_ands_implicit((Expr *) joinClause);
|
|
}
|
|
}
|
|
|
|
/* return outer join clauses in a separate list */
|
|
if (joinType == JOIN_INNER || joinType == JOIN_SEMI)
|
|
{
|
|
walkerContext->baseQualifierList =
|
|
list_concat(walkerContext->baseQualifierList, joinQualifierList);
|
|
}
|
|
else if (IS_OUTER_JOIN(joinType))
|
|
{
|
|
walkerContext->outerJoinQualifierList =
|
|
list_concat(walkerContext->outerJoinQualifierList, joinQualifierList);
|
|
}
|
|
}
|
|
else if (IsA(node, FromExpr))
|
|
{
|
|
List *fromQualifierList = NIL;
|
|
FromExpr *fromExpression = (FromExpr *) node;
|
|
Node *fromQualifiersNode = fromExpression->quals;
|
|
|
|
if (fromQualifiersNode != NULL)
|
|
{
|
|
if (IsA(fromQualifiersNode, List))
|
|
{
|
|
fromQualifierList = (List *) fromQualifiersNode;
|
|
}
|
|
else
|
|
{
|
|
/* this part of code only run for subqueries */
|
|
Node *fromClause = eval_const_expressions(NULL, fromQualifiersNode);
|
|
fromClause = (Node *) canonicalize_qual((Expr *) fromClause, false);
|
|
fromQualifierList = make_ands_implicit((Expr *) fromClause);
|
|
}
|
|
|
|
walkerContext->baseQualifierList =
|
|
list_concat(walkerContext->baseQualifierList, fromQualifierList);
|
|
}
|
|
}
|
|
|
|
bool walkerResult = expression_tree_walker(node, ExtractFromExpressionWalker,
|
|
(void *) walkerContext);
|
|
|
|
return walkerResult;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsJoinClause determines if the given node is a join clause according to our
|
|
* criteria. Our criteria defines a join clause as an equi join operator between
|
|
* two columns that belong to two different tables.
|
|
*/
|
|
bool
|
|
IsJoinClause(Node *clause)
|
|
{
|
|
Var *var = NULL;
|
|
|
|
/*
|
|
* take all column references from the clause, if we find 2 column references from a
|
|
* different relation we assume this is a join clause
|
|
*/
|
|
List *varList = pull_var_clause_default(clause);
|
|
if (list_length(varList) <= 0)
|
|
{
|
|
/* no column references in query, not describing a join */
|
|
return false;
|
|
}
|
|
Var *initialVar = castNode(Var, linitial(varList));
|
|
|
|
foreach_ptr(var, varList)
|
|
{
|
|
if (var->varno != initialVar->varno)
|
|
{
|
|
/*
|
|
* this column reference comes from a different relation, hence describing a
|
|
* join
|
|
*/
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* all column references were to the same relation, no join */
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* TableEntryList finds the regular relation nodes in the range table entry
|
|
* list, and builds a list of table entries from these regular relation nodes.
|
|
*/
|
|
List *
|
|
TableEntryList(List *rangeTableList)
|
|
{
|
|
List *tableEntryList = NIL;
|
|
ListCell *rangeTableCell = NULL;
|
|
uint32 tableId = 1; /* range table indices start at 1 */
|
|
|
|
foreach(rangeTableCell, rangeTableList)
|
|
{
|
|
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
|
|
|
|
if (rangeTableEntry->rtekind == RTE_RELATION)
|
|
{
|
|
TableEntry *tableEntry = (TableEntry *) palloc0(sizeof(TableEntry));
|
|
tableEntry->relationId = rangeTableEntry->relid;
|
|
tableEntry->rangeTableId = tableId;
|
|
|
|
tableEntryList = lappend(tableEntryList, tableEntry);
|
|
}
|
|
|
|
/*
|
|
* Increment tableId regardless so that table entry's tableId remains
|
|
* congruent with column's range table reference (varno).
|
|
*/
|
|
tableId++;
|
|
}
|
|
|
|
return tableEntryList;
|
|
}
|
|
|
|
|
|
/*
|
|
* UsedTableEntryList returns list of relation range table entries
|
|
* that are referenced within the query. Unused entries due to query
|
|
* flattening or re-rewriting are ignored.
|
|
*/
|
|
List *
|
|
UsedTableEntryList(Query *query)
|
|
{
|
|
List *tableEntryList = NIL;
|
|
List *rangeTableList = query->rtable;
|
|
List *joinTreeTableIndexList = NIL;
|
|
ListCell *joinTreeTableIndexCell = NULL;
|
|
|
|
ExtractRangeTableIndexWalker((Node *) query->jointree, &joinTreeTableIndexList);
|
|
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
|
|
{
|
|
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
|
|
RangeTblEntry *rangeTableEntry = rt_fetch(joinTreeTableIndex, rangeTableList);
|
|
if (rangeTableEntry->rtekind == RTE_RELATION)
|
|
{
|
|
TableEntry *tableEntry = (TableEntry *) palloc0(sizeof(TableEntry));
|
|
tableEntry->relationId = rangeTableEntry->relid;
|
|
tableEntry->rangeTableId = joinTreeTableIndex;
|
|
|
|
tableEntryList = lappend(tableEntryList, tableEntry);
|
|
}
|
|
}
|
|
|
|
return tableEntryList;
|
|
}
|
|
|
|
|
|
/*
|
|
* MultiTableNodeList builds a list of MultiTable nodes from the given table
|
|
* entry list. A multi table node represents one entry from the range table
|
|
* list. These entries may belong to the same physical relation in the case of
|
|
* self-joins.
|
|
*/
|
|
static List *
|
|
MultiTableNodeList(List *tableEntryList, List *rangeTableList)
|
|
{
|
|
List *tableNodeList = NIL;
|
|
ListCell *tableEntryCell = NULL;
|
|
|
|
foreach(tableEntryCell, tableEntryList)
|
|
{
|
|
TableEntry *tableEntry = (TableEntry *) lfirst(tableEntryCell);
|
|
Oid relationId = tableEntry->relationId;
|
|
uint32 rangeTableId = tableEntry->rangeTableId;
|
|
Var *partitionColumn = PartitionColumn(relationId, rangeTableId);
|
|
RangeTblEntry *rangeTableEntry = rt_fetch(rangeTableId, rangeTableList);
|
|
|
|
MultiTable *tableNode = CitusMakeNode(MultiTable);
|
|
tableNode->subquery = NULL;
|
|
tableNode->relationId = relationId;
|
|
tableNode->rangeTableId = rangeTableId;
|
|
tableNode->partitionColumn = partitionColumn;
|
|
tableNode->alias = rangeTableEntry->alias;
|
|
tableNode->referenceNames = rangeTableEntry->eref;
|
|
|
|
tableNodeList = lappend(tableNodeList, tableNode);
|
|
}
|
|
|
|
return tableNodeList;
|
|
}
|
|
|
|
|
|
/* Adds a MultiCollect node on top of each MultiTable node in the given list. */
|
|
static List *
|
|
AddMultiCollectNodes(List *tableNodeList)
|
|
{
|
|
List *collectTableList = NIL;
|
|
ListCell *tableNodeCell = NULL;
|
|
|
|
foreach(tableNodeCell, tableNodeList)
|
|
{
|
|
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
|
|
|
|
MultiCollect *collectNode = CitusMakeNode(MultiCollect);
|
|
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) tableNode);
|
|
|
|
collectTableList = lappend(collectTableList, collectNode);
|
|
}
|
|
|
|
return collectTableList;
|
|
}
|
|
|
|
|
|
/*
|
|
* MultiJoinTree takes in the join order information and the list of tables, and
|
|
* builds a join tree by applying the corresponding join rules. The function
|
|
* builds a left deep tree, as expressed by the join order list.
|
|
*
|
|
* The function starts by setting the first table as the top node in the join
|
|
* tree. Then, the function iterates over the list of tables, and builds a new
|
|
* join node between the top of the join tree and the next table in the list.
|
|
* At each iteration, the function sets the top of the join tree to the newly
|
|
* built list. This results in a left deep join tree, and the function returns
|
|
* this tree after every table in the list has been joined.
|
|
*/
|
|
static MultiNode *
|
|
MultiJoinTree(List *joinOrderList, List *collectTableList, List *joinWhereClauseList)
|
|
{
|
|
MultiNode *currentTopNode = NULL;
|
|
ListCell *joinOrderCell = NULL;
|
|
bool firstJoinNode = true;
|
|
|
|
foreach(joinOrderCell, joinOrderList)
|
|
{
|
|
JoinOrderNode *joinOrderNode = (JoinOrderNode *) lfirst(joinOrderCell);
|
|
uint32 joinTableId = joinOrderNode->tableEntry->rangeTableId;
|
|
MultiCollect *collectNode = CollectNodeForTable(collectTableList, joinTableId);
|
|
|
|
if (firstJoinNode)
|
|
{
|
|
currentTopNode = (MultiNode *) collectNode;
|
|
firstJoinNode = false;
|
|
}
|
|
else
|
|
{
|
|
JoinRuleType joinRuleType = joinOrderNode->joinRuleType;
|
|
JoinType joinType = joinOrderNode->joinType;
|
|
List *partitionColumnList = joinOrderNode->partitionColumnList;
|
|
List *joinClauseList = joinOrderNode->joinClauseList;
|
|
|
|
/*
|
|
* Build a join node between the top of our join tree and the next
|
|
* table in the join order.
|
|
*/
|
|
MultiNode *newJoinNode = ApplyJoinRule(currentTopNode,
|
|
(MultiNode *) collectNode,
|
|
joinRuleType, partitionColumnList,
|
|
joinType,
|
|
joinClauseList);
|
|
|
|
/* the new join node becomes the top of our join tree */
|
|
currentTopNode = newJoinNode;
|
|
}
|
|
}
|
|
|
|
/* current top node points to the entire left deep join tree */
|
|
return currentTopNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* CollectNodeForTable finds the MultiCollect node whose MultiTable node has the
|
|
* given range table identifier. Note that this function expects each collect
|
|
* node in the given list to have one table node as its child.
|
|
*/
|
|
static MultiCollect *
|
|
CollectNodeForTable(List *collectTableList, uint32 rangeTableId)
|
|
{
|
|
MultiCollect *collectNodeForTable = NULL;
|
|
ListCell *collectTableCell = NULL;
|
|
|
|
foreach(collectTableCell, collectTableList)
|
|
{
|
|
MultiCollect *collectNode = (MultiCollect *) lfirst(collectTableCell);
|
|
|
|
List *tableIdList = OutputTableIdList((MultiNode *) collectNode);
|
|
uint32 tableId = (uint32) linitial_int(tableIdList);
|
|
Assert(list_length(tableIdList) == 1);
|
|
|
|
if (tableId == rangeTableId)
|
|
{
|
|
collectNodeForTable = collectNode;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Assert(collectNodeForTable != NULL);
|
|
return collectNodeForTable;
|
|
}
|
|
|
|
|
|
/*
|
|
* MultiSelectNode extracts the select clauses from the given where clause list,
|
|
* and builds a MultiSelect node from these clauses. If the expression tree does
|
|
* not have any select clauses, the function return null.
|
|
*/
|
|
static MultiSelect *
|
|
MultiSelectNode(List *whereClauseList)
|
|
{
|
|
List *selectClauseList = NIL;
|
|
MultiSelect *selectNode = NULL;
|
|
|
|
ListCell *whereClauseCell = NULL;
|
|
foreach(whereClauseCell, whereClauseList)
|
|
{
|
|
Node *whereClause = (Node *) lfirst(whereClauseCell);
|
|
if (IsSelectClause(whereClause))
|
|
{
|
|
selectClauseList = lappend(selectClauseList, whereClause);
|
|
}
|
|
}
|
|
|
|
if (list_length(selectClauseList) > 0)
|
|
{
|
|
selectNode = CitusMakeNode(MultiSelect);
|
|
selectNode->selectClauseList = selectClauseList;
|
|
}
|
|
|
|
return selectNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsSelectClause determines if the given node is a select clause according to
|
|
* our criteria. Our criteria defines a select clause as an expression that has
|
|
* zero or more columns belonging to only one table. The function assumes that
|
|
* no sublinks exists in the clause.
|
|
*/
|
|
static bool
|
|
IsSelectClause(Node *clause)
|
|
{
|
|
ListCell *columnCell = NULL;
|
|
bool isSelectClause = true;
|
|
|
|
/* extract columns from the clause */
|
|
List *columnList = pull_var_clause_default(clause);
|
|
if (list_length(columnList) == 0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/* get first column's tableId */
|
|
Var *firstColumn = (Var *) linitial(columnList);
|
|
Index firstColumnTableId = firstColumn->varno;
|
|
|
|
/* check if all columns are from the same table */
|
|
foreach(columnCell, columnList)
|
|
{
|
|
Var *column = (Var *) lfirst(columnCell);
|
|
if (column->varno != firstColumnTableId)
|
|
{
|
|
isSelectClause = false;
|
|
}
|
|
}
|
|
|
|
return isSelectClause;
|
|
}
|
|
|
|
|
|
/*
|
|
* MultiProjectNode builds the project node using the target entry information
|
|
* from the query tree. The project node only encapsulates projected columns,
|
|
* and does not include aggregates, group clauses, or project expressions.
|
|
*/
|
|
MultiProject *
|
|
MultiProjectNode(List *targetEntryList)
|
|
{
|
|
List *uniqueColumnList = NIL;
|
|
ListCell *columnCell = NULL;
|
|
|
|
/* extract the list of columns and remove any duplicates */
|
|
List *columnList = pull_var_clause_default((Node *) targetEntryList);
|
|
foreach(columnCell, columnList)
|
|
{
|
|
Var *column = (Var *) lfirst(columnCell);
|
|
|
|
uniqueColumnList = list_append_unique(uniqueColumnList, column);
|
|
}
|
|
|
|
/* create project node with list of columns to project */
|
|
MultiProject *projectNode = CitusMakeNode(MultiProject);
|
|
projectNode->columnList = uniqueColumnList;
|
|
|
|
return projectNode;
|
|
}
|
|
|
|
|
|
/* Builds the extended operator node using fields from the given query tree. */
|
|
MultiExtendedOp *
|
|
MultiExtendedOpNode(Query *queryTree, Query *originalQuery)
|
|
{
|
|
MultiExtendedOp *extendedOpNode = CitusMakeNode(MultiExtendedOp);
|
|
extendedOpNode->targetList = queryTree->targetList;
|
|
extendedOpNode->groupClauseList = queryTree->groupClause;
|
|
extendedOpNode->sortClauseList = queryTree->sortClause;
|
|
extendedOpNode->limitCount = queryTree->limitCount;
|
|
extendedOpNode->limitOffset = queryTree->limitOffset;
|
|
extendedOpNode->havingQual = queryTree->havingQual;
|
|
extendedOpNode->distinctClause = queryTree->distinctClause;
|
|
extendedOpNode->hasDistinctOn = queryTree->hasDistinctOn;
|
|
extendedOpNode->hasWindowFuncs = queryTree->hasWindowFuncs;
|
|
extendedOpNode->windowClause = queryTree->windowClause;
|
|
extendedOpNode->onlyPushableWindowFunctions =
|
|
!queryTree->hasWindowFuncs ||
|
|
SafeToPushdownWindowFunction(originalQuery, NULL);
|
|
|
|
return extendedOpNode;
|
|
}
|
|
|
|
|
|
/* Helper function to return the parent node of the given node. */
|
|
MultiNode *
|
|
ParentNode(MultiNode *multiNode)
|
|
{
|
|
MultiNode *parentNode = multiNode->parentNode;
|
|
return parentNode;
|
|
}
|
|
|
|
|
|
/* Helper function to return the child of the given unary node. */
|
|
MultiNode *
|
|
ChildNode(MultiUnaryNode *multiNode)
|
|
{
|
|
MultiNode *childNode = multiNode->childNode;
|
|
return childNode;
|
|
}
|
|
|
|
|
|
/* Helper function to return the grand child of the given unary node. */
|
|
MultiNode *
|
|
GrandChildNode(MultiUnaryNode *multiNode)
|
|
{
|
|
MultiNode *childNode = ChildNode(multiNode);
|
|
MultiNode *grandChildNode = ChildNode((MultiUnaryNode *) childNode);
|
|
|
|
return grandChildNode;
|
|
}
|
|
|
|
|
|
/* Sets the given child node as a child of the given unary parent node. */
|
|
void
|
|
SetChild(MultiUnaryNode *parent, MultiNode *child)
|
|
{
|
|
parent->childNode = child;
|
|
child->parentNode = (MultiNode *) parent;
|
|
}
|
|
|
|
|
|
/* Sets the given child node as a left child of the given parent node. */
|
|
void
|
|
SetLeftChild(MultiBinaryNode *parent, MultiNode *leftChild)
|
|
{
|
|
parent->leftChildNode = leftChild;
|
|
leftChild->parentNode = (MultiNode *) parent;
|
|
}
|
|
|
|
|
|
/* Sets the given child node as a right child of the given parent node. */
|
|
void
|
|
SetRightChild(MultiBinaryNode *parent, MultiNode *rightChild)
|
|
{
|
|
parent->rightChildNode = rightChild;
|
|
rightChild->parentNode = (MultiNode *) parent;
|
|
}
|
|
|
|
|
|
/* Returns true if the given node is a unary operator. */
|
|
bool
|
|
UnaryOperator(MultiNode *node)
|
|
{
|
|
bool unaryOperator = false;
|
|
|
|
if (CitusIsA(node, MultiTreeRoot) || CitusIsA(node, MultiTable) ||
|
|
CitusIsA(node, MultiCollect) || CitusIsA(node, MultiSelect) ||
|
|
CitusIsA(node, MultiProject) || CitusIsA(node, MultiPartition) ||
|
|
CitusIsA(node, MultiExtendedOp))
|
|
{
|
|
unaryOperator = true;
|
|
}
|
|
|
|
return unaryOperator;
|
|
}
|
|
|
|
|
|
/* Returns true if the given node is a binary operator. */
|
|
bool
|
|
BinaryOperator(MultiNode *node)
|
|
{
|
|
bool binaryOperator = false;
|
|
|
|
if (CitusIsA(node, MultiJoin) || CitusIsA(node, MultiCartesianProduct))
|
|
{
|
|
binaryOperator = true;
|
|
}
|
|
|
|
return binaryOperator;
|
|
}
|
|
|
|
|
|
/*
|
|
* OutputTableIdList finds all table identifiers that are output by the given
|
|
* multi node, and returns these identifiers in a new list.
|
|
*/
|
|
List *
|
|
OutputTableIdList(MultiNode *multiNode)
|
|
{
|
|
List *tableIdList = NIL;
|
|
List *tableNodeList = FindNodesOfType(multiNode, T_MultiTable);
|
|
ListCell *tableNodeCell = NULL;
|
|
|
|
foreach(tableNodeCell, tableNodeList)
|
|
{
|
|
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
|
|
int tableId = (int) tableNode->rangeTableId;
|
|
|
|
if (tableId != SUBQUERY_RANGE_TABLE_ID)
|
|
{
|
|
tableIdList = lappend_int(tableIdList, tableId);
|
|
}
|
|
}
|
|
|
|
return tableIdList;
|
|
}
|
|
|
|
|
|
/*
|
|
* FindNodesOfType takes in a given logical plan tree, and recursively traverses
|
|
* the tree in preorder. The function finds all nodes of requested type during
|
|
* the traversal, and returns them in a list.
|
|
*/
|
|
List *
|
|
FindNodesOfType(MultiNode *node, int type)
|
|
{
|
|
List *nodeList = NIL;
|
|
|
|
/* terminal condition for recursion */
|
|
if (node == NULL)
|
|
{
|
|
return NIL;
|
|
}
|
|
|
|
/* current node has expected node type */
|
|
int nodeType = CitusNodeTag(node);
|
|
if (nodeType == type)
|
|
{
|
|
nodeList = lappend(nodeList, node);
|
|
}
|
|
|
|
if (UnaryOperator(node))
|
|
{
|
|
MultiNode *childNode = ((MultiUnaryNode *) node)->childNode;
|
|
List *childNodeList = FindNodesOfType(childNode, type);
|
|
|
|
nodeList = list_concat(nodeList, childNodeList);
|
|
}
|
|
else if (BinaryOperator(node))
|
|
{
|
|
MultiNode *leftChildNode = ((MultiBinaryNode *) node)->leftChildNode;
|
|
MultiNode *rightChildNode = ((MultiBinaryNode *) node)->rightChildNode;
|
|
|
|
List *leftChildNodeList = FindNodesOfType(leftChildNode, type);
|
|
List *rightChildNodeList = FindNodesOfType(rightChildNode, type);
|
|
|
|
nodeList = list_concat(nodeList, leftChildNodeList);
|
|
nodeList = list_concat(nodeList, rightChildNodeList);
|
|
}
|
|
|
|
return nodeList;
|
|
}
|
|
|
|
|
|
/*
|
|
* pull_var_clause_default calls pull_var_clause with the most commonly used
|
|
* arguments for distributed planning.
|
|
*/
|
|
List *
|
|
pull_var_clause_default(Node *node)
|
|
{
|
|
/*
|
|
* PVC_REJECT_PLACEHOLDERS is implicit if PVC_INCLUDE_PLACEHOLDERS
|
|
* isn't specified.
|
|
*/
|
|
List *columnList = pull_var_clause(node, PVC_RECURSE_AGGREGATES |
|
|
PVC_RECURSE_WINDOWFUNCS);
|
|
|
|
return columnList;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplyJoinRule finds the join rule application function that corresponds to
|
|
* the given join rule, and calls this function to create a new join node that
|
|
* joins the left and right nodes together.
|
|
*/
|
|
static MultiNode *
|
|
ApplyJoinRule(MultiNode *leftNode, MultiNode *rightNode, JoinRuleType ruleType,
|
|
List *partitionColumnList, JoinType joinType, List *joinClauseList)
|
|
{
|
|
List *leftTableIdList = OutputTableIdList(leftNode);
|
|
List *rightTableIdList = OutputTableIdList(rightNode);
|
|
int rightTableIdCount PG_USED_FOR_ASSERTS_ONLY = 0;
|
|
|
|
rightTableIdCount = list_length(rightTableIdList);
|
|
Assert(rightTableIdCount == 1);
|
|
|
|
/* find applicable join clauses between the left and right data sources */
|
|
uint32 rightTableId = (uint32) linitial_int(rightTableIdList);
|
|
List *applicableJoinClauses = ApplicableJoinClauses(leftTableIdList, rightTableId,
|
|
joinClauseList);
|
|
|
|
/* call the join rule application function to create the new join node */
|
|
RuleApplyFunction ruleApplyFunction = JoinRuleApplyFunction(ruleType);
|
|
MultiNode *multiNode = (*ruleApplyFunction)(leftNode, rightNode, partitionColumnList,
|
|
joinType, applicableJoinClauses);
|
|
|
|
if (joinType != JOIN_INNER && CitusIsA(multiNode, MultiJoin))
|
|
{
|
|
MultiJoin *joinNode = (MultiJoin *) multiNode;
|
|
|
|
/* preserve non-join clauses for OUTER joins */
|
|
joinNode->joinClauseList = list_copy(joinClauseList);
|
|
}
|
|
|
|
return multiNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* JoinRuleApplyFunction returns a function pointer for the rule application
|
|
* function; this rule application function corresponds to the given rule type.
|
|
* This function also initializes the rule application function array in a
|
|
* static code block, if the array has not been initialized.
|
|
*/
|
|
static RuleApplyFunction
|
|
JoinRuleApplyFunction(JoinRuleType ruleType)
|
|
{
|
|
static bool ruleApplyFunctionInitialized = false;
|
|
|
|
if (!ruleApplyFunctionInitialized)
|
|
{
|
|
RuleApplyFunctionArray[REFERENCE_JOIN] = &ApplyReferenceJoin;
|
|
RuleApplyFunctionArray[LOCAL_PARTITION_JOIN] = &ApplyLocalJoin;
|
|
RuleApplyFunctionArray[SINGLE_HASH_PARTITION_JOIN] =
|
|
&ApplySingleHashPartitionJoin;
|
|
RuleApplyFunctionArray[SINGLE_RANGE_PARTITION_JOIN] =
|
|
&ApplySingleRangePartitionJoin;
|
|
RuleApplyFunctionArray[DUAL_PARTITION_JOIN] = &ApplyDualPartitionJoin;
|
|
RuleApplyFunctionArray[CARTESIAN_PRODUCT_REFERENCE_JOIN] =
|
|
&ApplyCartesianProductReferenceJoin;
|
|
RuleApplyFunctionArray[CARTESIAN_PRODUCT] = &ApplyCartesianProduct;
|
|
|
|
ruleApplyFunctionInitialized = true;
|
|
}
|
|
|
|
RuleApplyFunction ruleApplyFunction = RuleApplyFunctionArray[ruleType];
|
|
Assert(ruleApplyFunction != NULL);
|
|
|
|
return ruleApplyFunction;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplyBroadcastJoin creates a new MultiJoin node that joins the left and the
|
|
* right node. The new node uses the broadcast join rule to perform the join.
|
|
*/
|
|
static MultiNode *
|
|
ApplyReferenceJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
|
|
joinNode->joinRuleType = REFERENCE_JOIN;
|
|
joinNode->joinType = joinType;
|
|
joinNode->joinClauseList = applicableJoinClauses;
|
|
|
|
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
|
|
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
|
|
|
|
return (MultiNode *) joinNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplyCartesianProductReferenceJoin creates a new MultiJoin node that joins
|
|
* the left and the right node. The new node uses the broadcast join rule to
|
|
* perform the join.
|
|
*/
|
|
static MultiNode *
|
|
ApplyCartesianProductReferenceJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
|
|
joinNode->joinRuleType = CARTESIAN_PRODUCT_REFERENCE_JOIN;
|
|
joinNode->joinType = joinType;
|
|
joinNode->joinClauseList = applicableJoinClauses;
|
|
|
|
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
|
|
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
|
|
|
|
return (MultiNode *) joinNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplyLocalJoin creates a new MultiJoin node that joins the left and the right
|
|
* node. The new node uses the local join rule to perform the join.
|
|
*/
|
|
static MultiNode *
|
|
ApplyLocalJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
|
|
joinNode->joinRuleType = LOCAL_PARTITION_JOIN;
|
|
joinNode->joinType = joinType;
|
|
joinNode->joinClauseList = applicableJoinClauses;
|
|
|
|
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
|
|
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
|
|
|
|
return (MultiNode *) joinNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplySingleRangePartitionJoin is a wrapper around ApplySinglePartitionJoin()
|
|
* which sets the joinRuleType properly.
|
|
*/
|
|
static MultiNode *
|
|
ApplySingleRangePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
MultiJoin *joinNode =
|
|
ApplySinglePartitionJoin(leftNode, rightNode, partitionColumnList, joinType,
|
|
applicableJoinClauses);
|
|
|
|
joinNode->joinRuleType = SINGLE_RANGE_PARTITION_JOIN;
|
|
|
|
return (MultiNode *) joinNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplySingleHashPartitionJoin is a wrapper around ApplySinglePartitionJoin()
|
|
* which sets the joinRuleType properly.
|
|
*/
|
|
static MultiNode *
|
|
ApplySingleHashPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
MultiJoin *joinNode =
|
|
ApplySinglePartitionJoin(leftNode, rightNode, partitionColumnList, joinType,
|
|
applicableJoinClauses);
|
|
|
|
joinNode->joinRuleType = SINGLE_HASH_PARTITION_JOIN;
|
|
|
|
return (MultiNode *) joinNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplySinglePartitionJoin creates a new MultiJoin node that joins the left and
|
|
* right node. The function also adds a MultiPartition node on top of the node
|
|
* (left or right) that is not partitioned on the join column.
|
|
*/
|
|
static MultiJoin *
|
|
ApplySinglePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
Var *partitionColumn = linitial(partitionColumnList);
|
|
uint32 partitionTableId = partitionColumn->varno;
|
|
|
|
/* create all operator structures up front */
|
|
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
|
|
MultiCollect *collectNode = CitusMakeNode(MultiCollect);
|
|
MultiPartition *partitionNode = CitusMakeNode(MultiPartition);
|
|
|
|
/*
|
|
* We first find the appropriate join clause. Then, we compare the partition
|
|
* column against the join clause's columns. If one of the columns matches,
|
|
* we introduce a (re-)partition operator for the other column.
|
|
*/
|
|
OpExpr *joinClause = SinglePartitionJoinClause(partitionColumnList,
|
|
applicableJoinClauses);
|
|
Assert(joinClause != NULL);
|
|
|
|
/* both are verified in SinglePartitionJoinClause to not be NULL, assert is to guard */
|
|
Var *leftColumn = LeftColumnOrNULL(joinClause);
|
|
Var *rightColumn = RightColumnOrNULL(joinClause);
|
|
|
|
Assert(leftColumn != NULL);
|
|
Assert(rightColumn != NULL);
|
|
|
|
if (equal(partitionColumn, leftColumn))
|
|
{
|
|
partitionNode->partitionColumn = rightColumn;
|
|
partitionNode->splitPointTableId = partitionTableId;
|
|
}
|
|
else if (equal(partitionColumn, rightColumn))
|
|
{
|
|
partitionNode->partitionColumn = leftColumn;
|
|
partitionNode->splitPointTableId = partitionTableId;
|
|
}
|
|
|
|
/* determine the node the partition operator goes on top of */
|
|
List *rightTableIdList = OutputTableIdList(rightNode);
|
|
uint32 rightTableId = (uint32) linitial_int(rightTableIdList);
|
|
Assert(list_length(rightTableIdList) == 1);
|
|
|
|
/*
|
|
* If the right child node is partitioned on the partition key column, we
|
|
* add the partition operator on the left child node; and vice versa. Then,
|
|
* we add a collect operator on top of the partition operator, and always
|
|
* make sure that we have at most one relation on the right-hand side.
|
|
*/
|
|
if (partitionTableId == rightTableId)
|
|
{
|
|
SetChild((MultiUnaryNode *) partitionNode, leftNode);
|
|
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) partitionNode);
|
|
|
|
SetLeftChild((MultiBinaryNode *) joinNode, (MultiNode *) collectNode);
|
|
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
|
|
}
|
|
else
|
|
{
|
|
SetChild((MultiUnaryNode *) partitionNode, rightNode);
|
|
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) partitionNode);
|
|
|
|
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
|
|
SetRightChild((MultiBinaryNode *) joinNode, (MultiNode *) collectNode);
|
|
}
|
|
|
|
/* finally set join operator fields */
|
|
joinNode->joinType = joinType;
|
|
joinNode->joinClauseList = applicableJoinClauses;
|
|
|
|
return joinNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplyDualPartitionJoin creates a new MultiJoin node that joins the left and
|
|
* right node. The function also adds two MultiPartition operators on top of
|
|
* both nodes to repartition these nodes' data on the join clause columns.
|
|
*/
|
|
static MultiNode *
|
|
ApplyDualPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
/* find the appropriate join clause */
|
|
OpExpr *joinClause = DualPartitionJoinClause(applicableJoinClauses);
|
|
Assert(joinClause != NULL);
|
|
|
|
/* both are verified in DualPartitionJoinClause to not be NULL, assert is to guard */
|
|
Var *leftColumn = LeftColumnOrNULL(joinClause);
|
|
Var *rightColumn = RightColumnOrNULL(joinClause);
|
|
Assert(leftColumn != NULL);
|
|
Assert(rightColumn != NULL);
|
|
|
|
List *rightTableIdList = OutputTableIdList(rightNode);
|
|
uint32 rightTableId = (uint32) linitial_int(rightTableIdList);
|
|
Assert(list_length(rightTableIdList) == 1);
|
|
|
|
MultiPartition *leftPartitionNode = CitusMakeNode(MultiPartition);
|
|
MultiPartition *rightPartitionNode = CitusMakeNode(MultiPartition);
|
|
|
|
/* find the partition node each join clause column belongs to */
|
|
if (leftColumn->varno == rightTableId)
|
|
{
|
|
leftPartitionNode->partitionColumn = rightColumn;
|
|
rightPartitionNode->partitionColumn = leftColumn;
|
|
}
|
|
else
|
|
{
|
|
leftPartitionNode->partitionColumn = leftColumn;
|
|
rightPartitionNode->partitionColumn = rightColumn;
|
|
}
|
|
|
|
/* add partition operators on top of left and right nodes */
|
|
SetChild((MultiUnaryNode *) leftPartitionNode, leftNode);
|
|
SetChild((MultiUnaryNode *) rightPartitionNode, rightNode);
|
|
|
|
/* add collect operators on top of the two partition operators */
|
|
MultiCollect *leftCollectNode = CitusMakeNode(MultiCollect);
|
|
MultiCollect *rightCollectNode = CitusMakeNode(MultiCollect);
|
|
|
|
SetChild((MultiUnaryNode *) leftCollectNode, (MultiNode *) leftPartitionNode);
|
|
SetChild((MultiUnaryNode *) rightCollectNode, (MultiNode *) rightPartitionNode);
|
|
|
|
/* add join operator on top of the two collect operators */
|
|
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
|
|
joinNode->joinRuleType = DUAL_PARTITION_JOIN;
|
|
joinNode->joinType = joinType;
|
|
joinNode->joinClauseList = applicableJoinClauses;
|
|
|
|
SetLeftChild((MultiBinaryNode *) joinNode, (MultiNode *) leftCollectNode);
|
|
SetRightChild((MultiBinaryNode *) joinNode, (MultiNode *) rightCollectNode);
|
|
|
|
return (MultiNode *) joinNode;
|
|
}
|
|
|
|
|
|
/* Creates a cartesian product node that joins the left and the right node. */
|
|
static MultiNode *
|
|
ApplyCartesianProduct(MultiNode *leftNode, MultiNode *rightNode,
|
|
List *partitionColumnList, JoinType joinType,
|
|
List *applicableJoinClauses)
|
|
{
|
|
MultiCartesianProduct *cartesianNode = CitusMakeNode(MultiCartesianProduct);
|
|
|
|
SetLeftChild((MultiBinaryNode *) cartesianNode, leftNode);
|
|
SetRightChild((MultiBinaryNode *) cartesianNode, rightNode);
|
|
|
|
return (MultiNode *) cartesianNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* OperatorImplementsEquality returns true if the given opno represents an
|
|
* equality operator. The function retrieves btree interpretation list for this
|
|
* opno and check if BTEqualStrategyNumber strategy is present.
|
|
*/
|
|
bool
|
|
OperatorImplementsEquality(Oid opno)
|
|
{
|
|
bool equalityOperator = false;
|
|
List *btreeIntepretationList = get_op_btree_interpretation(opno);
|
|
ListCell *btreeInterpretationCell = NULL;
|
|
foreach(btreeInterpretationCell, btreeIntepretationList)
|
|
{
|
|
OpBtreeInterpretation *btreeIntepretation = (OpBtreeInterpretation *)
|
|
lfirst(btreeInterpretationCell);
|
|
if (btreeIntepretation->strategy == BTEqualStrategyNumber)
|
|
{
|
|
equalityOperator = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return equalityOperator;
|
|
}
|