mirror of https://github.com/citusdata/citus.git
646 lines
17 KiB
C
646 lines
17 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* multi_executor.c
|
|
*
|
|
* Entrypoint into distributed query execution.
|
|
*
|
|
* Copyright (c) Citus Data, Inc.
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "miscadmin.h"
|
|
|
|
#include "access/xact.h"
|
|
#include "catalog/dependency.h"
|
|
#include "catalog/namespace.h"
|
|
#include "distributed/citus_custom_scan.h"
|
|
#include "distributed/commands/multi_copy.h"
|
|
#include "distributed/commands/utility_hook.h"
|
|
#include "distributed/insert_select_executor.h"
|
|
#include "distributed/insert_select_planner.h"
|
|
#include "distributed/master_protocol.h"
|
|
#include "distributed/multi_executor.h"
|
|
#include "distributed/multi_master_planner.h"
|
|
#include "distributed/distributed_planner.h"
|
|
#include "distributed/multi_router_planner.h"
|
|
#include "distributed/multi_resowner.h"
|
|
#include "distributed/multi_server_executor.h"
|
|
#include "distributed/resource_lock.h"
|
|
#include "distributed/transaction_management.h"
|
|
#include "distributed/worker_shard_visibility.h"
|
|
#include "distributed/worker_protocol.h"
|
|
#include "executor/execdebug.h"
|
|
#include "commands/copy.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "parser/parsetree.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "storage/lmgr.h"
|
|
#include "tcop/dest.h"
|
|
#include "tcop/pquery.h"
|
|
#include "tcop/utility.h"
|
|
#include "utils/snapmgr.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/*
|
|
* Controls the connection type for multi shard modifications, DDLs
|
|
* TRUNCATE and multi-shard SELECT queries.
|
|
*/
|
|
int MultiShardConnectionType = PARALLEL_CONNECTION;
|
|
bool WritableStandbyCoordinator = false;
|
|
|
|
|
|
/* sort the returning to get consistent outputs, used only for testing */
|
|
bool SortReturning = false;
|
|
|
|
/*
|
|
* How many nested executors have we started? This can happen for SQL
|
|
* UDF calls. The outer query starts an executor, then postgres opens
|
|
* another executor to run the SQL UDF.
|
|
*/
|
|
int ExecutorLevel = 0;
|
|
|
|
|
|
/* local function forward declarations */
|
|
static Relation StubRelation(TupleDesc tupleDescriptor);
|
|
static bool AlterTableConstraintCheck(QueryDesc *queryDesc);
|
|
static bool IsLocalReferenceTableJoinPlan(PlannedStmt *plan);
|
|
|
|
/*
|
|
* CitusExecutorStart is the ExecutorStart_hook that gets called when
|
|
* Postgres prepares for execution or EXPLAIN.
|
|
*/
|
|
void
|
|
CitusExecutorStart(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
PlannedStmt *plannedStmt = queryDesc->plannedstmt;
|
|
|
|
/*
|
|
* We cannot modify XactReadOnly on Windows because it is not
|
|
* declared with PGDLLIMPORT.
|
|
*/
|
|
#ifndef WIN32
|
|
if (RecoveryInProgress() && WritableStandbyCoordinator &&
|
|
IsCitusPlan(plannedStmt->planTree))
|
|
{
|
|
PG_TRY();
|
|
{
|
|
/*
|
|
* To enable writes from a hot standby we cheat our way through
|
|
* the checks in standard_ExecutorStart by temporarily setting
|
|
* XactReadOnly to false.
|
|
*/
|
|
XactReadOnly = false;
|
|
standard_ExecutorStart(queryDesc, eflags);
|
|
XactReadOnly = true;
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
XactReadOnly = true;
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
standard_ExecutorStart(queryDesc, eflags);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* CitusExecutorRun is the ExecutorRun_hook that gets called when postgres
|
|
* executes a query.
|
|
*/
|
|
void
|
|
CitusExecutorRun(QueryDesc *queryDesc,
|
|
ScanDirection direction, uint64 count, bool execute_once)
|
|
{
|
|
DestReceiver *dest = queryDesc->dest;
|
|
int originalLevel = ExecutorLevel;
|
|
|
|
ExecutorLevel++;
|
|
if (CitusHasBeenLoaded())
|
|
{
|
|
if (IsLocalReferenceTableJoinPlan(queryDesc->plannedstmt) &&
|
|
IsMultiStatementTransaction())
|
|
{
|
|
/*
|
|
* Currently we don't support this to avoid problems with tuple
|
|
* visibility, locking, etc. For example, change to the reference
|
|
* table can go through a MultiConnection, which won't be visible
|
|
* to the locally planned queries.
|
|
*/
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot join local tables and reference tables in "
|
|
"a transaction block, udf block, or distributed "
|
|
"CTE subquery")));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable execution of ALTER TABLE constraint validation queries. These
|
|
* constraints will be validated in worker nodes, so running these queries
|
|
* from the coordinator would be redundant.
|
|
*
|
|
* For example, ALTER TABLE ... ATTACH PARTITION checks that the new
|
|
* partition doesn't violate constraints of the parent table, which
|
|
* might involve running some SELECT queries.
|
|
*
|
|
* Ideally we'd completely skip these checks in the coordinator, but we don't
|
|
* have any means to tell postgres to skip the checks. So the best we can do is
|
|
* to not execute the queries and return an empty result set, as if this table has
|
|
* no rows, so no constraints will be violated.
|
|
*/
|
|
if (AlterTableConstraintCheck(queryDesc))
|
|
{
|
|
EState *estate = queryDesc->estate;
|
|
|
|
estate->es_processed = 0;
|
|
#if PG_VERSION_NUM < 120000
|
|
estate->es_lastoid = InvalidOid;
|
|
#endif
|
|
|
|
/* start and shutdown tuple receiver to simulate empty result */
|
|
dest->rStartup(queryDesc->dest, CMD_SELECT, queryDesc->tupDesc);
|
|
dest->rShutdown(dest);
|
|
}
|
|
else
|
|
{
|
|
standard_ExecutorRun(queryDesc, direction, count, execute_once);
|
|
}
|
|
|
|
/*
|
|
* Restore the original value. It is not sufficient to decrease the value
|
|
* because exceptions might cause us to go back a few levels at once.
|
|
*/
|
|
ExecutorLevel = originalLevel;
|
|
}
|
|
|
|
|
|
/*
|
|
* ReturnTupleFromTuplestore reads the next tuple from the tuple store of the
|
|
* given Citus scan node and returns it. It returns null if all tuples are read
|
|
* from the tuple store.
|
|
*/
|
|
TupleTableSlot *
|
|
ReturnTupleFromTuplestore(CitusScanState *scanState)
|
|
{
|
|
Tuplestorestate *tupleStore = scanState->tuplestorestate;
|
|
bool forwardScanDirection = true;
|
|
|
|
if (tupleStore == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
EState *executorState = ScanStateGetExecutorState(scanState);
|
|
ScanDirection scanDirection = executorState->es_direction;
|
|
Assert(ScanDirectionIsValid(scanDirection));
|
|
|
|
if (ScanDirectionIsBackward(scanDirection))
|
|
{
|
|
forwardScanDirection = false;
|
|
}
|
|
|
|
TupleTableSlot *resultSlot = scanState->customScanState.ss.ps.ps_ResultTupleSlot;
|
|
tuplestore_gettupleslot(tupleStore, forwardScanDirection, false, resultSlot);
|
|
|
|
return resultSlot;
|
|
}
|
|
|
|
|
|
/*
|
|
* Load data collected by task-tracker executor into the tuplestore
|
|
* of CitusScanState. For that, we first create a tuple store, and then copy the
|
|
* files one-by-one into the tuple store.
|
|
*
|
|
* Note that in the long term it'd be a lot better if Multi*Execute() directly
|
|
* filled the tuplestores, but that's a fair bit of work.
|
|
*/
|
|
void
|
|
LoadTuplesIntoTupleStore(CitusScanState *citusScanState, Job *workerJob)
|
|
{
|
|
List *workerTaskList = workerJob->taskList;
|
|
ListCell *workerTaskCell = NULL;
|
|
bool randomAccess = true;
|
|
bool interTransactions = false;
|
|
char *copyFormat = "text";
|
|
|
|
TupleDesc tupleDescriptor = ScanStateGetTupleDescriptor(citusScanState);
|
|
|
|
Assert(citusScanState->tuplestorestate == NULL);
|
|
citusScanState->tuplestorestate =
|
|
tuplestore_begin_heap(randomAccess, interTransactions, work_mem);
|
|
|
|
if (BinaryMasterCopyFormat)
|
|
{
|
|
copyFormat = "binary";
|
|
}
|
|
|
|
foreach(workerTaskCell, workerTaskList)
|
|
{
|
|
Task *workerTask = (Task *) lfirst(workerTaskCell);
|
|
|
|
StringInfo jobDirectoryName = MasterJobDirectoryName(workerTask->jobId);
|
|
StringInfo taskFilename = TaskFilename(jobDirectoryName, workerTask->taskId);
|
|
|
|
ReadFileIntoTupleStore(taskFilename->data, copyFormat, tupleDescriptor,
|
|
citusScanState->tuplestorestate);
|
|
}
|
|
|
|
tuplestore_donestoring(citusScanState->tuplestorestate);
|
|
}
|
|
|
|
|
|
/*
|
|
* ReadFileIntoTupleStore parses the records in a COPY-formatted file according
|
|
* according to the given tuple descriptor and stores the records in a tuple
|
|
* store.
|
|
*/
|
|
void
|
|
ReadFileIntoTupleStore(char *fileName, char *copyFormat, TupleDesc tupleDescriptor,
|
|
Tuplestorestate *tupstore)
|
|
{
|
|
/*
|
|
* Trick BeginCopyFrom into using our tuple descriptor by pretending it belongs
|
|
* to a relation.
|
|
*/
|
|
Relation stubRelation = StubRelation(tupleDescriptor);
|
|
|
|
EState *executorState = CreateExecutorState();
|
|
MemoryContext executorTupleContext = GetPerTupleMemoryContext(executorState);
|
|
ExprContext *executorExpressionContext = GetPerTupleExprContext(executorState);
|
|
|
|
int columnCount = tupleDescriptor->natts;
|
|
Datum *columnValues = palloc0(columnCount * sizeof(Datum));
|
|
bool *columnNulls = palloc0(columnCount * sizeof(bool));
|
|
|
|
List *copyOptions = NIL;
|
|
|
|
int location = -1; /* "unknown" token location */
|
|
DefElem *copyOption = makeDefElem("format", (Node *) makeString(copyFormat),
|
|
location);
|
|
copyOptions = lappend(copyOptions, copyOption);
|
|
|
|
CopyState copyState = BeginCopyFrom(NULL, stubRelation, fileName, false, NULL,
|
|
NULL, copyOptions);
|
|
|
|
while (true)
|
|
{
|
|
ResetPerTupleExprContext(executorState);
|
|
MemoryContext oldContext = MemoryContextSwitchTo(executorTupleContext);
|
|
|
|
bool nextRowFound = NextCopyFromCompat(copyState, executorExpressionContext,
|
|
columnValues, columnNulls);
|
|
if (!nextRowFound)
|
|
{
|
|
MemoryContextSwitchTo(oldContext);
|
|
break;
|
|
}
|
|
|
|
tuplestore_putvalues(tupstore, tupleDescriptor, columnValues, columnNulls);
|
|
MemoryContextSwitchTo(oldContext);
|
|
}
|
|
|
|
EndCopyFrom(copyState);
|
|
pfree(columnValues);
|
|
pfree(columnNulls);
|
|
}
|
|
|
|
|
|
/*
|
|
* SortTupleStore gets a CitusScanState and sorts the tuplestore by all the
|
|
* entries in the target entry list, starting from the first one and
|
|
* ending with the last entry.
|
|
*
|
|
* The sorting is done in ASC order.
|
|
*/
|
|
void
|
|
SortTupleStore(CitusScanState *scanState)
|
|
{
|
|
TupleDesc tupleDescriptor = ScanStateGetTupleDescriptor(scanState);
|
|
Tuplestorestate *tupleStore = scanState->tuplestorestate;
|
|
|
|
List *targetList = scanState->customScanState.ss.ps.plan->targetlist;
|
|
uint32 expectedColumnCount = list_length(targetList);
|
|
|
|
/* Convert list-ish representation to arrays wanted by executor */
|
|
int numberOfSortKeys = expectedColumnCount;
|
|
AttrNumber *sortColIdx = (AttrNumber *) palloc(numberOfSortKeys * sizeof(AttrNumber));
|
|
Oid *sortOperators = (Oid *) palloc(numberOfSortKeys * sizeof(Oid));
|
|
Oid *collations = (Oid *) palloc(numberOfSortKeys * sizeof(Oid));
|
|
bool *nullsFirst = (bool *) palloc(numberOfSortKeys * sizeof(bool));
|
|
|
|
ListCell *targetCell = NULL;
|
|
int sortKeyIndex = 0;
|
|
|
|
|
|
/*
|
|
* Iterate on the returning target list and generate the necessary information
|
|
* for sorting the tuples.
|
|
*/
|
|
foreach(targetCell, targetList)
|
|
{
|
|
TargetEntry *returningEntry = (TargetEntry *) lfirst(targetCell);
|
|
Oid sortop = InvalidOid;
|
|
|
|
/* determine the sortop, we don't need anything else */
|
|
get_sort_group_operators(exprType((Node *) returningEntry->expr),
|
|
true, false, false,
|
|
&sortop, NULL, NULL,
|
|
NULL);
|
|
|
|
sortColIdx[sortKeyIndex] = sortKeyIndex + 1;
|
|
sortOperators[sortKeyIndex] = sortop;
|
|
collations[sortKeyIndex] = exprCollation((Node *) returningEntry->expr);
|
|
nullsFirst[sortKeyIndex] = false;
|
|
|
|
sortKeyIndex++;
|
|
}
|
|
|
|
Tuplesortstate *tuplesortstate =
|
|
tuplesort_begin_heap(tupleDescriptor, numberOfSortKeys, sortColIdx, sortOperators,
|
|
collations, nullsFirst, work_mem, NULL, false);
|
|
|
|
while (true)
|
|
{
|
|
TupleTableSlot *slot = ReturnTupleFromTuplestore(scanState);
|
|
|
|
if (TupIsNull(slot))
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* tuplesort_puttupleslot copies the slot into sort context */
|
|
tuplesort_puttupleslot(tuplesortstate, slot);
|
|
}
|
|
|
|
/* perform the actual sort operation */
|
|
tuplesort_performsort(tuplesortstate);
|
|
|
|
/*
|
|
* Truncate the existing tupleStore, because we'll fill it back
|
|
* from the sorted tuplestore.
|
|
*/
|
|
tuplestore_clear(tupleStore);
|
|
|
|
/* iterate over all the sorted tuples, add them to original tuplestore */
|
|
while (true)
|
|
{
|
|
TupleTableSlot *newSlot = MakeSingleTupleTableSlotCompat(tupleDescriptor,
|
|
&TTSOpsMinimalTuple);
|
|
bool found = tuplesort_gettupleslot(tuplesortstate, true, false, newSlot, NULL);
|
|
|
|
if (!found)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* tuplesort_puttupleslot copies the slot into the tupleStore context */
|
|
tuplestore_puttupleslot(tupleStore, newSlot);
|
|
}
|
|
|
|
tuplestore_rescan(scanState->tuplestorestate);
|
|
|
|
/* terminate the sort, clear unnecessary resources */
|
|
tuplesort_end(tuplesortstate);
|
|
}
|
|
|
|
|
|
/*
|
|
* StubRelation creates a stub Relation from the given tuple descriptor.
|
|
* To be able to use copy.c, we need a Relation descriptor. As there is no
|
|
* relation corresponding to the data loaded from workers, we need to fake one.
|
|
* We just need the bare minimal set of fields accessed by BeginCopyFrom().
|
|
*/
|
|
static Relation
|
|
StubRelation(TupleDesc tupleDescriptor)
|
|
{
|
|
Relation stubRelation = palloc0(sizeof(RelationData));
|
|
stubRelation->rd_att = tupleDescriptor;
|
|
stubRelation->rd_rel = palloc0(sizeof(FormData_pg_class));
|
|
stubRelation->rd_rel->relkind = RELKIND_RELATION;
|
|
|
|
return stubRelation;
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecuteQueryStringIntoDestReceiver plans and executes a query and sends results
|
|
* to the given DestReceiver.
|
|
*/
|
|
void
|
|
ExecuteQueryStringIntoDestReceiver(const char *queryString, ParamListInfo params,
|
|
DestReceiver *dest)
|
|
{
|
|
Query *query = ParseQueryString(queryString, NULL, 0);
|
|
|
|
ExecuteQueryIntoDestReceiver(query, params, dest);
|
|
}
|
|
|
|
|
|
/*
|
|
* ParseQuery parses query string and returns a Query struct.
|
|
*/
|
|
Query *
|
|
ParseQueryString(const char *queryString, Oid *paramOids, int numParams)
|
|
{
|
|
RawStmt *rawStmt = (RawStmt *) ParseTreeRawStmt(queryString);
|
|
List *queryTreeList =
|
|
pg_analyze_and_rewrite(rawStmt, queryString, paramOids, numParams, NULL);
|
|
|
|
if (list_length(queryTreeList) != 1)
|
|
{
|
|
ereport(ERROR, (errmsg("can only execute a single query")));
|
|
}
|
|
|
|
Query *query = (Query *) linitial(queryTreeList);
|
|
|
|
return query;
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecuteQueryIntoDestReceiver plans and executes a query and sends results to the given
|
|
* DestReceiver.
|
|
*/
|
|
void
|
|
ExecuteQueryIntoDestReceiver(Query *query, ParamListInfo params, DestReceiver *dest)
|
|
{
|
|
int cursorOptions = CURSOR_OPT_PARALLEL_OK;
|
|
|
|
if (query->commandType == CMD_UTILITY)
|
|
{
|
|
/* can only execute DML/SELECT via this path */
|
|
ereport(ERROR, (errmsg("cannot execute utility commands")));
|
|
}
|
|
|
|
/* plan the subquery, this may be another distributed query */
|
|
PlannedStmt *queryPlan = pg_plan_query(query, cursorOptions, params);
|
|
|
|
ExecutePlanIntoDestReceiver(queryPlan, params, dest);
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecutePlanIntoDestReceiver executes a query plan and sends results to the given
|
|
* DestReceiver.
|
|
*/
|
|
void
|
|
ExecutePlanIntoDestReceiver(PlannedStmt *queryPlan, ParamListInfo params,
|
|
DestReceiver *dest)
|
|
{
|
|
int eflags = 0;
|
|
long count = FETCH_ALL;
|
|
|
|
/* create a new portal for executing the query */
|
|
Portal portal = CreateNewPortal();
|
|
|
|
/* don't display the portal in pg_cursors, it is for internal use only */
|
|
portal->visible = false;
|
|
|
|
PortalDefineQuery(portal,
|
|
NULL,
|
|
"",
|
|
"SELECT",
|
|
list_make1(queryPlan),
|
|
NULL);
|
|
|
|
PortalStart(portal, params, eflags, GetActiveSnapshot());
|
|
PortalRun(portal, count, false, true, dest, dest, NULL);
|
|
PortalDrop(portal, false);
|
|
}
|
|
|
|
|
|
/*
|
|
* SetLocalMultiShardModifyModeToSequential simply a C interface for
|
|
* setting the following:
|
|
* SET LOCAL citus.multi_shard_modify_mode = 'sequential';
|
|
*/
|
|
void
|
|
SetLocalMultiShardModifyModeToSequential()
|
|
{
|
|
set_config_option("citus.multi_shard_modify_mode", "sequential",
|
|
(superuser() ? PGC_SUSET : PGC_USERSET), PGC_S_SESSION,
|
|
GUC_ACTION_LOCAL, true, 0, false);
|
|
}
|
|
|
|
|
|
/*
|
|
* AlterTableConstraintCheck returns if the given query is an ALTER TABLE
|
|
* constraint check query.
|
|
*
|
|
* Postgres uses SPI to execute these queries. To see examples of how these
|
|
* constraint check queries look like, see RI_Initial_Check() and RI_Fkey_check().
|
|
*/
|
|
static bool
|
|
AlterTableConstraintCheck(QueryDesc *queryDesc)
|
|
{
|
|
if (!AlterTableInProgress())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* These queries are one or more SELECT queries, where postgres checks
|
|
* their results either for NULL values or existence of a row at all.
|
|
*/
|
|
if (queryDesc->plannedstmt->commandType != CMD_SELECT)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* While an ALTER TABLE is in progress, we might do SELECTs on some
|
|
* catalog tables too. For example, when dropping a column, citus_drop_trigger()
|
|
* runs some SELECTs on catalog tables. These are not constraint check queries.
|
|
*/
|
|
if (!IsCitusPlan(queryDesc->plannedstmt->planTree))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsLocalReferenceTableJoinPlan returns true if the given plan joins local tables
|
|
* with reference table shards.
|
|
*
|
|
* This should be consistent with IsLocalReferenceTableJoin() in distributed_planner.c.
|
|
*/
|
|
static bool
|
|
IsLocalReferenceTableJoinPlan(PlannedStmt *plan)
|
|
{
|
|
bool hasReferenceTable = false;
|
|
bool hasLocalTable = false;
|
|
ListCell *oidCell = NULL;
|
|
bool hasReferenceTableReplica = false;
|
|
|
|
/*
|
|
* We only allow join between reference tables and local tables in the
|
|
* coordinator.
|
|
*/
|
|
if (!IsCoordinator())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* All groups that have pg_dist_node entries, also have reference
|
|
* table replicas.
|
|
*/
|
|
PrimaryNodeForGroup(GetLocalGroupId(), &hasReferenceTableReplica);
|
|
|
|
/*
|
|
* If reference table doesn't have replicas on the coordinator, we don't
|
|
* allow joins with local tables.
|
|
*/
|
|
if (!hasReferenceTableReplica)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* No need to check FOR UPDATE/SHARE or modifying subqueries, those have
|
|
* already errored out in distributed_planner.c if they contain mix of
|
|
* local and distributed tables.
|
|
*/
|
|
if (plan->commandType != CMD_SELECT)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
foreach(oidCell, plan->relationOids)
|
|
{
|
|
Oid relationId = lfirst_oid(oidCell);
|
|
bool onlySearchPath = false;
|
|
|
|
if (RelationIsAKnownShard(relationId, onlySearchPath))
|
|
{
|
|
/*
|
|
* We don't allow joining non-reference distributed tables, so we
|
|
* can skip checking that this is a reference table shard or not.
|
|
*/
|
|
hasReferenceTable = true;
|
|
}
|
|
else
|
|
{
|
|
hasLocalTable = true;
|
|
}
|
|
|
|
if (hasReferenceTable && hasLocalTable)
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|