citus/src/backend/distributed/executor/local_executor.c

1060 lines
31 KiB
C

/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not on shards on the node that the query is being executed. In that
* sense, the local executor is only triggered if the node has both the metadata
* and the shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks
* and simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor
* uses adaptive executor's custom scan nodes.
*
* One thing to note is that Citus MX is only supported with replication factor
* to be equal to 1, so keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local
* execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as
* long as the queries hit the shards on the same node, the local execution
* will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query
* execution,
* all the other queries in the same transaction block that touch any local
* shard have to use the local execution. Although this sounds restrictive,
* we prefer to implement it in this way, otherwise we'd end-up with as
* complex scenarios as we have in the connection managements due to foreign
* keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So,
* after the local execution, the adaptive executor keeps continuing the
* execution on the other nodes.
*
* Note that for read-only queries, after the local execution, there is no
* need to kick in adaptive executor.
*
* (4) Execution of multi shards local queries and
* remote multi-shard queries within a transaction block
*
* We prefer local execution when we are inside a transaction block, because not using
* local execution might create some limitations for other commands in the transaction
* block. To simplify things, whenever we are inside a transaction block, we prefer local
* execution if possible.
*
* There are also a few limitations/trade-offs that are worth mentioning.
* - The local execution on multiple shards might be slow because the execution
* has to happen one task at a time (e.g., no parallelism).
* - Related with the previous item, COPY command cannot be mixed with local
* execution in a transaction. The implication of that is any part of INSERT..SELECT
* via coordinator cannot happen via the local execution.
*/
#include "postgres.h"
#include "miscadmin.h"
#include "executor/tstoreReceiver.h"
#include "executor/tuptable.h"
#include "nodes/params.h"
#include "optimizer/optimizer.h"
#include "utils/snapmgr.h"
#include "pg_version_constants.h"
#include "distributed/adaptive_executor.h"
#include "distributed/citus_custom_scan.h"
#include "distributed/citus_ruleutils.h"
#include "distributed/colocation_utils.h"
#include "distributed/commands/utility_hook.h"
#include "distributed/coordinator_protocol.h"
#include "distributed/deparse_shard_query.h"
#include "distributed/executor_util.h"
#include "distributed/listutils.h"
#include "distributed/local_executor.h"
#include "distributed/local_plan_cache.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_executor.h"
#include "distributed/multi_server_executor.h"
#include "distributed/query_utils.h"
#include "distributed/relation_access_tracking.h"
#include "distributed/remote_commands.h" /* to access LogRemoteCommands */
#include "distributed/transaction_management.h"
#include "distributed/utils/citus_stat_tenants.h"
#include "distributed/version_compat.h"
#include "distributed/worker_protocol.h"
/* controlled via a GUC */
bool EnableLocalExecution = true;
bool LogLocalCommands = false;
/* global variable that tracks whether the local execution is on a shard */
uint64 LocalExecutorShardId = INVALID_SHARD_ID;
static LocalExecutionStatus CurrentLocalExecutionStatus = LOCAL_EXECUTION_OPTIONAL;
static void SplitLocalAndRemotePlacements(List *taskPlacementList,
List **localTaskPlacementList,
List **remoteTaskPlacementList);
static uint64 LocallyExecuteTaskPlan(PlannedStmt *taskPlan, char *queryString,
TupleDestination *tupleDest, Task *task,
ParamListInfo paramListInfo);
static uint64 ExecuteTaskPlan(PlannedStmt *taskPlan, char *queryString,
TupleDestination *tupleDest, Task *task,
ParamListInfo paramListInfo);
static void RecordNonDistTableAccessesForTask(Task *task);
static void LogLocalCommand(Task *task);
static uint64 LocallyPlanAndExecuteMultipleQueries(List *queryStrings,
TupleDestination *tupleDest,
Task *task);
static void SetColocationIdAndPartitionKeyValueForTasks(List *taskList,
Job *distributedPlan);
static void LocallyExecuteUtilityTask(Task *task);
static void ExecuteUdfTaskQuery(Query *localUdfCommandQuery);
static void EnsureTransitionPossible(LocalExecutionStatus from,
LocalExecutionStatus to);
/*
* GetCurrentLocalExecutionStatus returns the current local execution status.
*/
LocalExecutionStatus
GetCurrentLocalExecutionStatus(void)
{
return CurrentLocalExecutionStatus;
}
/*
* ExecuteLocalTaskList executes the given tasks locally.
*
* The function goes over the task list and executes them locally.
* The returning tuples (if any) is stored in the tupleStoreState.
*
* The function returns totalRowsProcessed.
*/
uint64
ExecuteLocalTaskList(List *taskList, TupleDestination *defaultTupleDest)
{
if (list_length(taskList) == 0)
{
return 0;
}
DistributedPlan *distributedPlan = NULL;
ParamListInfo paramListInfo = NULL;
bool isUtilityCommand = false;
return ExecuteLocalTaskListExtended(taskList, paramListInfo, distributedPlan,
defaultTupleDest, isUtilityCommand);
}
/*
* ExecuteLocalUtilityTaskList executes the given tasks locally.
*
* The function returns totalRowsProcessed.
*/
uint64
ExecuteLocalUtilityTaskList(List *utilityTaskList)
{
if (list_length(utilityTaskList) == 0)
{
return 0;
}
DistributedPlan *distributedPlan = NULL;
ParamListInfo paramListInfo = NULL;
TupleDestination *defaultTupleDest = CreateTupleDestNone();
bool isUtilityCommand = true;
return ExecuteLocalTaskListExtended(utilityTaskList, paramListInfo, distributedPlan,
defaultTupleDest, isUtilityCommand);
}
/*
* ExecuteLocalTaskListExtended executes the given tasks locally.
*
* The function goes over the task list and executes them locally.
* The returning tuples (if any) is stored in the tupleStoreState.
*
* It uses a cached plan if distributedPlan is found in cache.
*
* The function returns totalRowsProcessed.
*/
uint64
ExecuteLocalTaskListExtended(List *taskList,
ParamListInfo orig_paramListInfo,
DistributedPlan *distributedPlan,
TupleDestination *defaultTupleDest,
bool isUtilityCommand)
{
ParamListInfo paramListInfo = copyParamList(orig_paramListInfo);
uint64 totalRowsProcessed = 0;
int numParams = 0;
Oid *parameterTypes = NULL;
if (paramListInfo != NULL)
{
/* not used anywhere, so declare here */
const char **parameterValues = NULL;
ExtractParametersForLocalExecution(paramListInfo, &parameterTypes,
&parameterValues);
numParams = paramListInfo->numParams;
}
if (taskList != NIL)
{
bool isRemote = false;
EnsureTaskExecutionAllowed(isRemote);
}
/*
* If workerJob has a partitionKeyValue, we need to set the colocation id
* and partition key value for each task before we start executing them
* because tenant stats are collected based on these values of a task.
*/
if (distributedPlan != NULL && distributedPlan->workerJob != NULL && taskList != NIL)
{
SetJobColocationId(distributedPlan->workerJob);
SetColocationIdAndPartitionKeyValueForTasks(taskList, distributedPlan->workerJob);
}
/*
* Use a new memory context that gets reset after every task to free
* the deparsed query string and query plan.
*/
MemoryContext loopContext = AllocSetContextCreate(CurrentMemoryContext,
"ExecuteLocalTaskListExtended",
ALLOCSET_DEFAULT_SIZES);
Task *task = NULL;
foreach_declared_ptr(task, taskList)
{
MemoryContext oldContext = MemoryContextSwitchTo(loopContext);
TupleDestination *tupleDest = task->tupleDest ?
task->tupleDest :
defaultTupleDest;
/*
* If we have a valid shard id, a distributed table will be accessed
* during execution. Record it to apply the restrictions related to
* local execution.
*/
if (task->anchorShardId != INVALID_SHARD_ID)
{
SetLocalExecutionStatus(LOCAL_EXECUTION_REQUIRED);
}
if (!ReadOnlyTask(task->taskType))
{
/*
* Any modification on the local execution should enable 2PC. If remote
* queries are also ReadOnly, our 2PC logic is smart enough to skip sending
* PREPARE to those connections.
*/
Use2PCForCoordinatedTransaction();
}
LogLocalCommand(task);
if (isUtilityCommand)
{
LocallyExecuteUtilityTask(task);
MemoryContextSwitchTo(oldContext);
MemoryContextReset(loopContext);
continue;
}
PlannedStmt *localPlan = GetCachedLocalPlan(task, distributedPlan);
/*
* If the plan is already cached, don't need to re-plan, just
* acquire necessary locks.
*/
if (localPlan != NULL)
{
Query *jobQuery = distributedPlan->workerJob->jobQuery;
LOCKMODE lockMode = GetQueryLockMode(jobQuery);
Oid relationId = InvalidOid;
foreach_declared_oid(relationId, localPlan->relationOids)
{
LockRelationOid(relationId, lockMode);
}
}
else
{
int taskNumParams = numParams;
Oid *taskParameterTypes = parameterTypes;
if (task->parametersInQueryStringResolved)
{
/*
* Parameters were removed from the query string so do not pass them
* here. Otherwise, we might see errors when passing custom types,
* since their OIDs were set to 0 and their type is normally
* inferred from
*/
taskNumParams = 0;
taskParameterTypes = NULL;
}
/*
* for concatenated strings, we set queryStringList so that we can access
* each query string.
*/
if (GetTaskQueryType(task) == TASK_QUERY_TEXT_LIST)
{
List *queryStringList = task->taskQuery.data.queryStringList;
totalRowsProcessed +=
LocallyPlanAndExecuteMultipleQueries(queryStringList, tupleDest,
task);
MemoryContextSwitchTo(oldContext);
MemoryContextReset(loopContext);
continue;
}
Query *shardQuery = ParseQueryString(TaskQueryString(task),
taskParameterTypes,
taskNumParams);
int cursorOptions = CURSOR_OPT_PARALLEL_OK;
/*
* Altough the shardQuery is local to this node, we prefer planner()
* over standard_planner(). The primary reason for that is Citus itself
* is not very tolarent standard_planner() calls that doesn't go through
* distributed_planner() because of the way that restriction hooks are
* implemented. So, let planner to call distributed_planner() which
* eventually calls standard_planner().
*/
localPlan = planner(shardQuery, NULL, cursorOptions, paramListInfo);
}
char *shardQueryString = NULL;
if (GetTaskQueryType(task) == TASK_QUERY_TEXT)
{
shardQueryString = TaskQueryString(task);
}
else
{
/* avoid the overhead of deparsing when using local execution */
shardQueryString = "<optimized out by local execution>";
}
totalRowsProcessed +=
LocallyExecuteTaskPlan(localPlan, shardQueryString,
tupleDest, task, paramListInfo);
MemoryContextSwitchTo(oldContext);
MemoryContextReset(loopContext);
}
return totalRowsProcessed;
}
/*
* SetColocationIdAndPartitionKeyValueForTasks sets colocationId and partitionKeyValue
* for the tasks in the taskList.
*/
static void
SetColocationIdAndPartitionKeyValueForTasks(List *taskList, Job *workerJob)
{
if (workerJob->colocationId != INVALID_COLOCATION_ID)
{
Task *task = NULL;
foreach_declared_ptr(task, taskList)
{
task->colocationId = workerJob->colocationId;
task->partitionKeyValue = workerJob->partitionKeyValue;
}
}
}
/*
* LocallyPlanAndExecuteMultipleQueries plans and executes the given query strings
* one by one.
*/
static uint64
LocallyPlanAndExecuteMultipleQueries(List *queryStrings, TupleDestination *tupleDest,
Task *task)
{
char *queryString = NULL;
uint64 totalProcessedRows = 0;
foreach_declared_ptr(queryString, queryStrings)
{
Query *shardQuery = ParseQueryString(queryString,
NULL,
0);
int cursorOptions = 0;
ParamListInfo paramListInfo = NULL;
PlannedStmt *localPlan = planner(shardQuery, NULL, cursorOptions,
paramListInfo);
totalProcessedRows += LocallyExecuteTaskPlan(localPlan, queryString,
tupleDest, task,
paramListInfo);
}
return totalProcessedRows;
}
/*
* ExtractParametersForLocalExecution extracts parameter types and values
* from the given ParamListInfo structure, and fills parameter type and
* value arrays. It does not change the oid of custom types, because the
* query will be run locally.
*/
void
ExtractParametersForLocalExecution(ParamListInfo paramListInfo, Oid **parameterTypes,
const char ***parameterValues)
{
ExtractParametersFromParamList(paramListInfo, parameterTypes,
parameterValues, true);
}
/*
* LocallyExecuteUtilityTask runs a utility command via local execution.
*/
static void
LocallyExecuteUtilityTask(Task *task)
{
/* keep the parity with multi-node clusters */
RecordNonDistTableAccessesForTask(task);
/*
* If we roll back to a savepoint, we may no longer be in a query on
* a shard. Reset the value as we go back up the stack.
*/
uint64 prevLocalExecutorShardId = LocalExecutorShardId;
if (task->anchorShardId != INVALID_SHARD_ID)
{
LocalExecutorShardId = task->anchorShardId;
}
PG_TRY();
{
ExecuteUtilityCommand(TaskQueryString(task));
}
PG_CATCH();
{
LocalExecutorShardId = prevLocalExecutorShardId;
PG_RE_THROW();
}
PG_END_TRY();
LocalExecutorShardId = prevLocalExecutorShardId;
}
/*
* ExecuteUtilityCommand executes the given task query in the current
* session.
*/
void
ExecuteUtilityCommand(const char *taskQueryCommand)
{
List *parseTreeList = pg_parse_query(taskQueryCommand);
RawStmt *taskRawStmt = NULL;
foreach_declared_ptr(taskRawStmt, parseTreeList)
{
Node *taskRawParseTree = taskRawStmt->stmt;
/*
* The query passed to this function would mostly be a utility
* command. However, some utility commands trigger udf calls
* (e.g alter_columnar_table_set()). In that case, we execute
* the query with the udf call in below conditional block.
*/
if (IsA(taskRawParseTree, SelectStmt))
{
/* we have no external parameters to rewrite the UDF call RawStmt */
Query *udfTaskQuery =
RewriteRawQueryStmt(taskRawStmt, taskQueryCommand, NULL, 0);
ExecuteUdfTaskQuery(udfTaskQuery);
}
else
{
/*
* It is a regular utility command we should execute it via
* process utility.
*/
ProcessUtilityParseTree(taskRawParseTree, taskQueryCommand,
PROCESS_UTILITY_QUERY, NULL, None_Receiver,
NULL);
}
}
}
/*
* ExecuteUdfTaskQuery executes the given udf command. A udf command
* is simply a "SELECT udf_call()" query and so it cannot be executed
* via process utility.
*/
static void
ExecuteUdfTaskQuery(Query *udfTaskQuery)
{
/* we do not expect any results */
ExecuteQueryIntoDestReceiver(udfTaskQuery, NULL, None_Receiver);
}
/*
* LogLocalCommand logs commands executed locally on this node. Although we're
* talking about local execution, the function relies on citus.log_remote_commands
* GUC. This makes sense because the local execution is still on a shard of a
* distributed table, meaning it is part of distributed execution.
*/
static void
LogLocalCommand(Task *task)
{
if (!(LogRemoteCommands || LogLocalCommands))
{
return;
}
const char *command = TaskQueryString(task);
if (!CommandMatchesLogGrepPattern(command))
{
return;
}
ereport(NOTICE, (errmsg("executing the command locally: %s",
command)));
}
/*
* ExtractLocalAndRemoteTasks gets a taskList and generates two
* task lists namely localTaskList and remoteTaskList. The function goes
* over the input taskList and puts the tasks that are local to the node
* into localTaskList and the remaining to the remoteTaskList. Either of
* the lists could be NIL depending on the input taskList.
*
* One slightly different case is modifications to replicated tables
* (e.g., reference tables) where a single task ends in two separate tasks
* and the local task is added to localTaskList and the remaning ones to
* the remoteTaskList.
*/
void
ExtractLocalAndRemoteTasks(bool readOnly, List *taskList, List **localTaskList,
List **remoteTaskList)
{
*remoteTaskList = NIL;
*localTaskList = NIL;
Task *task = NULL;
foreach_declared_ptr(task, taskList)
{
List *localTaskPlacementList = NULL;
List *remoteTaskPlacementList = NULL;
SplitLocalAndRemotePlacements(
task->taskPlacementList, &localTaskPlacementList, &remoteTaskPlacementList);
/* either the local or the remote should be non-nil */
Assert(!(localTaskPlacementList == NIL && remoteTaskPlacementList == NIL));
if (localTaskPlacementList == NIL)
{
*remoteTaskList = lappend(*remoteTaskList, task);
}
else if (remoteTaskPlacementList == NIL)
{
*localTaskList = lappend(*localTaskList, task);
}
else
{
/*
* At this point, we're dealing with a task that has placements on both
* local and remote nodes.
*/
Task *localTask = copyObject(task);
localTask->partiallyLocalOrRemote = true;
localTask->taskPlacementList = localTaskPlacementList;
*localTaskList = lappend(*localTaskList, localTask);
if (readOnly)
{
/* read-only tasks should only be executed on the local machine */
}
else
{
/* since shard replication factor > 1, we should have at least 1 remote task */
Assert(remoteTaskPlacementList != NIL);
Task *remoteTask = copyObject(task);
remoteTask->partiallyLocalOrRemote = true;
remoteTask->taskPlacementList = remoteTaskPlacementList;
*remoteTaskList = lappend(*remoteTaskList, remoteTask);
}
}
}
}
/*
* SplitLocalAndRemotePlacements is a helper function which iterates over the
* input taskPlacementList and puts the placements into corresponding list of
* either localTaskPlacementList or remoteTaskPlacementList.
*/
static void
SplitLocalAndRemotePlacements(List *taskPlacementList, List **localTaskPlacementList,
List **remoteTaskPlacementList)
{
int32 localGroupId = GetLocalGroupId();
*localTaskPlacementList = NIL;
*remoteTaskPlacementList = NIL;
ShardPlacement *taskPlacement = NULL;
foreach_declared_ptr(taskPlacement, taskPlacementList)
{
if (taskPlacement->groupId == localGroupId)
{
*localTaskPlacementList = lappend(*localTaskPlacementList, taskPlacement);
}
else
{
*remoteTaskPlacementList = lappend(*remoteTaskPlacementList, taskPlacement);
}
}
}
/*
* ExecuteLocalTaskPlan gets a planned statement which can be executed locally.
* The function simply follows the steps to have a local execution, sets the
* tupleStore if necessary. The function returns the number of rows affected in
* case of DML.
*/
static uint64
LocallyExecuteTaskPlan(PlannedStmt *taskPlan, char *queryString,
TupleDestination *tupleDest, Task *task,
ParamListInfo paramListInfo)
{
volatile uint64 processedRows = 0;
/*
* If we roll back to a savepoint, we may no longer be in a query on
* a shard. Reset the value as we go back up the stack.
*/
uint64 prevLocalExecutorShardId = LocalExecutorShardId;
if (task->anchorShardId != INVALID_SHARD_ID)
{
LocalExecutorShardId = task->anchorShardId;
}
char *partitionKeyValueString = NULL;
if (task->partitionKeyValue != NULL)
{
partitionKeyValueString = DatumToString(task->partitionKeyValue->constvalue,
task->partitionKeyValue->consttype);
}
AttributeTask(partitionKeyValueString, task->colocationId, taskPlan->commandType);
PG_TRY();
{
processedRows = ExecuteTaskPlan(taskPlan, queryString, tupleDest, task,
paramListInfo);
}
PG_CATCH();
{
LocalExecutorShardId = prevLocalExecutorShardId;
PG_RE_THROW();
}
PG_END_TRY();
LocalExecutorShardId = prevLocalExecutorShardId;
return processedRows;
}
/*
* ExecuteTaskPlan executes the given planned statement and writes the results
* to tupleDest.
*/
static uint64
ExecuteTaskPlan(PlannedStmt *taskPlan, char *queryString,
TupleDestination *tupleDest, Task *task,
ParamListInfo paramListInfo)
{
ScanDirection scanDirection = ForwardScanDirection;
QueryEnvironment *queryEnv = create_queryEnv();
int eflags = 0;
uint64 totalRowsProcessed = 0;
RecordNonDistTableAccessesForTask(task);
MemoryContext localContext = AllocSetContextCreate(CurrentMemoryContext,
"ExecuteTaskPlan",
ALLOCSET_DEFAULT_SIZES);
MemoryContext oldContext = MemoryContextSwitchTo(localContext);
/*
* Some tuple destinations look at task->taskPlacementList to determine
* where the result came from using the placement index. Since a local
* task can only ever have 1 placement, we set the index to 0.
*/
int localPlacementIndex = 0;
/*
* Use the tupleStore provided by the scanState because it is shared across
* the other task executions and the adaptive executor.
*
* Also note that as long as the tupleDest is provided, local execution always
* stores the tuples. This is also valid for partiallyLocalOrRemote tasks
* as well.
*/
DestReceiver *destReceiver = tupleDest ?
CreateTupleDestDestReceiver(tupleDest, task,
localPlacementIndex) :
CreateDestReceiver(DestNone);
/* Create a QueryDesc for the query */
QueryDesc *queryDesc = CreateQueryDesc(taskPlan, queryString,
GetActiveSnapshot(), InvalidSnapshot,
destReceiver, paramListInfo,
queryEnv, 0);
ExecutorStart(queryDesc, eflags);
ExecutorRun(queryDesc, scanDirection, 0L, true);
/*
* We'll set the executorState->es_processed later, for now only remember
* the count.
*/
if (taskPlan->commandType != CMD_SELECT)
{
totalRowsProcessed = queryDesc->estate->es_processed;
}
ExecutorFinish(queryDesc);
ExecutorEnd(queryDesc);
FreeQueryDesc(queryDesc);
MemoryContextSwitchTo(oldContext);
MemoryContextDelete(localContext);
return totalRowsProcessed;
}
/*
* RecordNonDistTableAccessesForTask records relation accesses for the non-distributed
* relations that given task will access (if any).
*/
static void
RecordNonDistTableAccessesForTask(Task *task)
{
List *taskPlacementList = task->taskPlacementList;
if (list_length(taskPlacementList) == 0)
{
/*
* We should never get here, but prefer to throw an error over crashing
* if we're wrong.
*/
ereport(ERROR, (errmsg("shard " UINT64_FORMAT " does not have any shard "
"placements",
task->anchorShardId)));
}
/*
* We use only the first placement to find the relation accesses. It is
* sufficient as PlacementAccessListForTask iterates relationShardList
* field of the task and generates accesses per relation in the task.
* As we are only interested in relations, not the placements, we can
* skip rest of the placements.
* Also, here we don't need to iterate relationShardList field of task
* to mark each accessed relation because PlacementAccessListForTask
* already computes and returns relations that task accesses.
*/
ShardPlacement *taskPlacement = linitial(taskPlacementList);
List *placementAccessList = PlacementAccessListForTask(task, taskPlacement);
ShardPlacementAccess *placementAccess = NULL;
foreach_declared_ptr(placementAccess, placementAccessList)
{
uint64 placementAccessShardId = placementAccess->placement->shardId;
if (placementAccessShardId == INVALID_SHARD_ID)
{
/*
* When a SELECT prunes down to 0 shard, we still may pass through
* the local executor. In that case, we don't need to record any
* relation access as we don't actually access any shard placement.
*/
continue;
}
Oid accessedRelationId = RelationIdForShard(placementAccessShardId);
ShardPlacementAccessType shardPlacementAccessType = placementAccess->accessType;
RecordRelationAccessIfNonDistTable(accessedRelationId, shardPlacementAccessType);
}
}
/*
* SetLocalExecutionStatus sets the local execution status to
* the given status, it errors if the transition is not possible from the
* current status.
*/
void
SetLocalExecutionStatus(LocalExecutionStatus newStatus)
{
EnsureTransitionPossible(GetCurrentLocalExecutionStatus(), newStatus);
CurrentLocalExecutionStatus = newStatus;
}
/*
* EnsureTransitionPossible errors if we cannot switch to the 'to' status
* from the 'from' status.
*/
static void
EnsureTransitionPossible(LocalExecutionStatus from, LocalExecutionStatus
to)
{
if (from == LOCAL_EXECUTION_REQUIRED && to == LOCAL_EXECUTION_DISABLED)
{
ereport(ERROR,
(errmsg(
"cannot switch local execution status from local execution required "
"to local execution disabled since it can cause "
"visibility problems in the current transaction")));
}
if (from == LOCAL_EXECUTION_DISABLED && to == LOCAL_EXECUTION_REQUIRED)
{
ereport(ERROR,
(errmsg(
"cannot switch local execution status from local execution disabled "
"to local execution enabled since it can cause "
"visibility problems in the current transaction")));
}
}
/*
* ShouldExecuteTasksLocally gets a task list and returns true if the
* any of the tasks should be executed locally. This function does not
* guarantee that any task have to be executed locally.
*/
bool
ShouldExecuteTasksLocally(List *taskList)
{
if (!EnableLocalExecution)
{
return false;
}
if (GetCurrentLocalExecutionStatus() == LOCAL_EXECUTION_DISABLED)
{
/*
* if the current transaction accessed the local node over a connection
* then we can't use local execution because of visibility problems.
*/
return false;
}
if (GetCurrentLocalExecutionStatus() == LOCAL_EXECUTION_REQUIRED)
{
/*
* If we already used local execution for a previous command
* we should stick to it for read-your-writes policy, this can be a
* case when we are inside a transaction block. Such as:
*
* BEGIN;
* some-command; -- executed via local execution
* another-command; -- this should be executed via local execution for visibility
* COMMIT;
*
* We may need to use local execution even if we are not inside a transaction block,
* however the state will go back to LOCAL_EXECUTION_OPTIONAL at the end of transaction.
*/
return true;
}
bool singleTask = (list_length(taskList) == 1);
if (singleTask && TaskAccessesLocalNode((Task *) linitial(taskList)))
{
/*
* This is the valuable time to use the local execution. We are likely
* to avoid any network round-trips by simply executing the command
* within this session.
*
* We cannot avoid network round trips if the task is not a read only
* task and accesses multiple placements. For example, modifications to
* distributed tables (with replication factor == 1) would avoid network
* round-trips. However, modifications to reference tables still needs
* to go to over the network to do the modification on the other placements.
* Still, we'll be avoding the network round trip for this node.
*
* Note that we shouldn't use local execution if any distributed execution
* has happened because that'd break transaction visibility rules and
* many other things.
*/
return true;
}
if (!singleTask)
{
/*
* For multi-task executions, we prefer to use connections for parallelism,
* except for two cases. First, when in a multi-statement transaction since
* there could be other commands that require local execution. Second, the
* task list already requires sequential execution. In that case, connection
* establishment becomes an unnecessary operation.
*/
return (IsMultiStatementTransaction() || ShouldRunTasksSequentially(taskList)) &&
AnyTaskAccessesLocalNode(taskList);
}
return false;
}
/*
* AnyTaskAccessesLocalNode returns true if a task within the task list accesses
* to the local node.
*/
bool
AnyTaskAccessesLocalNode(List *taskList)
{
Task *task = NULL;
foreach_declared_ptr(task, taskList)
{
if (TaskAccessesLocalNode(task))
{
return true;
}
}
return false;
}
/*
* TaskAccessesLocalNode returns true if any placements of the task reside on
* the node that we're executing the query.
*/
bool
TaskAccessesLocalNode(Task *task)
{
int32 localGroupId = GetLocalGroupId();
ShardPlacement *taskPlacement = NULL;
foreach_declared_ptr(taskPlacement, task->taskPlacementList)
{
if (taskPlacement->groupId == localGroupId)
{
return true;
}
}
return false;
}
/*
* EnsureCompatibleLocalExecutionState makes sure that the tasks won't have
* any visibility problems because of local execution.
*/
void
EnsureCompatibleLocalExecutionState(List *taskList)
{
/*
* We have LOCAL_EXECUTION_REQUIRED check here to avoid unnecessarily
* iterating the task list in AnyTaskAccessesLocalNode.
*/
if (GetCurrentLocalExecutionStatus() == LOCAL_EXECUTION_REQUIRED &&
AnyTaskAccessesLocalNode(taskList))
{
ErrorIfTransactionAccessedPlacementsLocally();
}
}
/*
* ErrorIfTransactionAccessedPlacementsLocally errors out if a local query
* on any shard has already been executed in the same transaction.
*
* This check is required because Citus currently hasn't implemented local
* execution infrastructure for all the commands/executors. As we implement
* local execution for the command/executor that this function call exists,
* we should simply remove the check.
*/
void
ErrorIfTransactionAccessedPlacementsLocally(void)
{
if (GetCurrentLocalExecutionStatus() == LOCAL_EXECUTION_REQUIRED)
{
ereport(ERROR,
(errmsg("cannot execute command because a local execution has "
"accessed a placement in the transaction"),
errhint("Try re-running the transaction with "
"\"SET LOCAL citus.enable_local_execution TO OFF;\""),
errdetail("Some parallel commands cannot be executed if a "
"previous command has already been executed locally")));
}
}
/*
* DisableLocalExecution is simply a C interface for setting the following:
* SET LOCAL citus.enable_local_execution TO off;
*/
void
DisableLocalExecution(void)
{
set_config_option("citus.enable_local_execution", "off",
(superuser() ? PGC_SUSET : PGC_USERSET), PGC_S_SESSION,
GUC_ACTION_LOCAL, true, 0, false);
}