citus/src/backend/distributed/planner/distributed_planner.c

2777 lines
81 KiB
C

/*-------------------------------------------------------------------------
*
* distributed_planner.c
* General Citus planner code.
*
* Copyright (c) Citus Data, Inc.
*-------------------------------------------------------------------------
*/
#include <float.h>
#include <limits.h>
#include "postgres.h"
#include "funcapi.h"
#include "access/htup_details.h"
#include "access/xact.h"
#include "catalog/pg_class.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/pg_list.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "parser/parse_type.h"
#include "parser/parsetree.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "pg_version_constants.h"
#include "distributed/citus_depended_object.h"
#include "distributed/citus_nodefuncs.h"
#include "distributed/citus_nodes.h"
#include "distributed/citus_ruleutils.h"
#include "distributed/colocation_utils.h"
#include "distributed/combine_query_planner.h"
#include "distributed/commands.h"
#include "distributed/coordinator_protocol.h"
#include "distributed/cte_inline.h"
#include "distributed/distributed_planner.h"
#include "distributed/function_call_delegation.h"
#include "distributed/insert_select_planner.h"
#include "distributed/intermediate_result_pruning.h"
#include "distributed/intermediate_results.h"
#include "distributed/listutils.h"
#include "distributed/merge_planner.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_executor.h"
#include "distributed/multi_logical_optimizer.h"
#include "distributed/multi_logical_planner.h"
#include "distributed/multi_partitioning_utils.h"
#include "distributed/multi_physical_planner.h"
#include "distributed/multi_router_planner.h"
#include "distributed/query_pushdown_planning.h"
#include "distributed/query_utils.h"
#include "distributed/recursive_planning.h"
#include "distributed/shard_utils.h"
#include "distributed/shardinterval_utils.h"
#include "distributed/stats/stat_tenants.h"
#include "distributed/version_compat.h"
#include "distributed/worker_shard_visibility.h"
#if PG_VERSION_NUM >= PG_VERSION_16
#include "parser/parse_relation.h"
#endif
/* RouterPlanType is used to determine the router plan to invoke */
typedef enum RouterPlanType
{
INSERT_SELECT_INTO_CITUS_TABLE,
INSERT_SELECT_INTO_LOCAL_TABLE,
DML_QUERY,
SELECT_QUERY,
MERGE_QUERY,
REPLAN_WITH_BOUND_PARAMETERS
} RouterPlanType;
static List *plannerRestrictionContextList = NIL;
int MultiTaskQueryLogLevel = CITUS_LOG_LEVEL_OFF; /* multi-task query log level */
static uint64 NextPlanId = 1;
/* keep track of planner call stack levels */
int PlannerLevel = 0;
static bool ListContainsDistributedTableRTE(List *rangeTableList,
bool *maybeHasForeignDistributedTable);
static PlannedStmt * CreateDistributedPlannedStmt(
DistributedPlanningContext *planContext);
static PlannedStmt * InlineCtesAndCreateDistributedPlannedStmt(uint64 planId,
DistributedPlanningContext
*planContext);
static PlannedStmt * TryCreateDistributedPlannedStmt(PlannedStmt *localPlan,
Query *originalQuery,
Query *query, ParamListInfo
boundParams,
PlannerRestrictionContext *
plannerRestrictionContext);
static DeferredErrorMessage * DeferErrorIfPartitionTableNotSingleReplicated(Oid
relationId);
static int AssignRTEIdentities(List *rangeTableList, int rteIdCounter);
static void AssignRTEIdentity(RangeTblEntry *rangeTableEntry, int rteIdentifier);
static void AdjustPartitioningForDistributedPlanning(List *rangeTableList,
bool setPartitionedTablesInherited);
static bool RTEWentThroughAdjustPartitioning(RangeTblEntry *rangeTableEntry);
static PlannedStmt * FinalizeNonRouterPlan(PlannedStmt *localPlan,
DistributedPlan *distributedPlan,
CustomScan *customScan);
static PlannedStmt * FinalizeRouterPlan(PlannedStmt *localPlan, CustomScan *customScan);
static AppendRelInfo * FindTargetAppendRelInfo(PlannerInfo *root, int relationRteIndex);
static List * makeTargetListFromCustomScanList(List *custom_scan_tlist);
static List * makeCustomScanTargetlistFromExistingTargetList(List *existingTargetlist);
static int32 BlessRecordExpressionList(List *exprs);
static void CheckNodeIsDumpable(Node *node);
static Node * CheckNodeCopyAndSerialization(Node *node);
static void AdjustReadIntermediateResultCost(RangeTblEntry *rangeTableEntry,
RelOptInfo *relOptInfo);
static void AdjustReadIntermediateResultArrayCost(RangeTblEntry *rangeTableEntry,
RelOptInfo *relOptInfo);
static void AdjustReadIntermediateResultsCostInternal(RelOptInfo *relOptInfo,
List *columnTypes,
int resultIdCount,
Datum *resultIds,
Const *resultFormatConst);
static List * OuterPlanParamsList(PlannerInfo *root);
static List * CopyPlanParamList(List *originalPlanParamList);
static PlannerRestrictionContext * CreateAndPushPlannerRestrictionContext(
FastPathRestrictionContext *fastPathContext);
static PlannerRestrictionContext * CurrentPlannerRestrictionContext(void);
static void PopPlannerRestrictionContext(void);
static void ResetPlannerRestrictionContext(
PlannerRestrictionContext *plannerRestrictionContext);
static PlannedStmt * PlanFastPathDistributedStmt(DistributedPlanningContext *planContext);
static PlannedStmt * PlanDistributedStmt(DistributedPlanningContext *planContext,
int rteIdCounter);
static RTEListProperties * GetRTEListProperties(List *rangeTableList);
static List * TranslatedVars(PlannerInfo *root, int relationIndex);
static void WarnIfListHasForeignDistributedTable(List *rangeTableList);
static RouterPlanType GetRouterPlanType(Query *query,
Query *originalQuery,
bool hasUnresolvedParams);
static void ConcatenateRTablesAndPerminfos(PlannedStmt *mainPlan,
PlannedStmt *concatPlan);
static bool CheckPostPlanDistribution(bool isDistributedQuery,
Query *origQuery,
List *rangeTableList,
Query *plannedQuery);
/* Distributed planner hook */
PlannedStmt *
distributed_planner(Query *parse,
const char *query_string,
int cursorOptions,
ParamListInfo boundParams)
{
bool needsDistributedPlanning = false;
bool fastPathRouterQuery = false;
FastPathRestrictionContext fastPathContext = { 0 };
List *rangeTableList = ExtractRangeTableEntryList(parse);
if (cursorOptions & CURSOR_OPT_FORCE_DISTRIBUTED)
{
/* this cursor flag could only be set when Citus has been loaded */
Assert(CitusHasBeenLoaded());
/*
* We cannot have merge command for this path as well because
* there cannot be recursively planned merge command.
*/
Assert(!IsMergeQuery(parse));
needsDistributedPlanning = true;
}
else if (CitusHasBeenLoaded())
{
bool maybeHasForeignDistributedTable = false;
needsDistributedPlanning =
ListContainsDistributedTableRTE(rangeTableList,
&maybeHasForeignDistributedTable);
if (needsDistributedPlanning)
{
fastPathRouterQuery = FastPathRouterQuery(parse, &fastPathContext);
if (maybeHasForeignDistributedTable)
{
WarnIfListHasForeignDistributedTable(rangeTableList);
}
}
}
int rteIdCounter = 1;
DistributedPlanningContext planContext = {
.query = parse,
.cursorOptions = cursorOptions,
.boundParams = boundParams,
};
if (needsDistributedPlanning)
{
/*
* standard_planner scribbles on its input, but for deparsing we need the
* unmodified form. Before copying we call AssignRTEIdentities to be able
* to match RTEs in the rewritten query tree with those in the original
* tree.
*/
rteIdCounter = AssignRTEIdentities(rangeTableList, rteIdCounter);
planContext.originalQuery = copyObject(parse);
if (!fastPathRouterQuery)
{
/*
* When there are partitioned tables (not applicable to fast path),
* pretend that they are regular tables to avoid unnecessary work
* in standard_planner.
*/
bool setPartitionedTablesInherited = false;
AdjustPartitioningForDistributedPlanning(rangeTableList,
setPartitionedTablesInherited);
}
}
/*
* Make sure that we hide shard names on the Citus MX worker nodes. See comments in
* HideShardsFromSomeApplications() for the details.
*/
HideShardsFromSomeApplications(parse);
/*
* If GUC is set, we prevent queries, which contain pg meta relations, from
* showing any citus dependent object. The flag is expected to be set only before
* postgres vanilla tests.
*/
HideCitusDependentObjectsOnQueriesOfPgMetaTables((Node *) parse, NULL);
/* create a restriction context and put it at the end of context list */
planContext.plannerRestrictionContext = CreateAndPushPlannerRestrictionContext(
&fastPathContext);
/*
* We keep track of how many times we've recursed into the planner, primarily
* to detect whether we are in a function call. We need to make sure that the
* PlannerLevel is decremented exactly once at the end of the next PG_TRY
* block, both in the happy case and when an error occurs.
*/
PlannerLevel++;
PlannedStmt *result = NULL;
PG_TRY();
{
if (fastPathRouterQuery)
{
result = PlanFastPathDistributedStmt(&planContext);
}
else
{
/*
* Call into standard_planner because the Citus planner relies on both the
* restriction information per table and parse tree transformations made by
* postgres' planner.
*/
planContext.plan = standard_planner(planContext.query, NULL,
planContext.cursorOptions,
planContext.boundParams);
needsDistributedPlanning = CheckPostPlanDistribution(needsDistributedPlanning,
planContext.originalQuery,
rangeTableList,
planContext.query);
if (needsDistributedPlanning)
{
result = PlanDistributedStmt(&planContext, rteIdCounter);
}
else if ((result = TryToDelegateFunctionCall(&planContext)) == NULL)
{
result = planContext.plan;
}
}
}
PG_CATCH();
{
PopPlannerRestrictionContext();
PlannerLevel--;
PG_RE_THROW();
}
PG_END_TRY();
PlannerLevel--;
/* remove the context from the context list */
PopPlannerRestrictionContext();
/*
* In some cases, for example; parameterized SQL functions, we may miss that
* there is a need for distributed planning. Such cases only become clear after
* standard_planner performs some modifications on parse tree. In such cases
* we will simply error out.
*/
if (!needsDistributedPlanning && NeedsDistributedPlanning(parse))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot perform distributed planning on this "
"query because parameterized queries for SQL "
"functions referencing distributed tables are "
"not supported"),
errhint("Consider using PL/pgSQL functions instead.")));
}
/*
* We annotate the query for tenant statisisics.
*/
AttributeQueryIfAnnotated(query_string, parse->commandType);
return result;
}
/*
* ExtractRangeTableEntryList is a wrapper around ExtractRangeTableEntryWalker.
* The function traverses the input query and returns all the range table
* entries that are in the query tree.
*/
List *
ExtractRangeTableEntryList(Query *query)
{
List *rteList = NIL;
ExtractRangeTableEntryWalker((Node *) query, &rteList);
return rteList;
}
/*
* NeedsDistributedPlanning returns true if the Citus extension is loaded and
* the query contains a distributed table.
*
* This function allows queries containing local tables to pass through the
* distributed planner. How to handle local tables is a decision that should
* be made within the planner
*/
bool
NeedsDistributedPlanning(Query *query)
{
if (!CitusHasBeenLoaded())
{
return false;
}
CmdType commandType = query->commandType;
if (commandType != CMD_SELECT && commandType != CMD_INSERT &&
commandType != CMD_UPDATE && commandType != CMD_DELETE)
{
return false;
}
List *allRTEs = ExtractRangeTableEntryList(query);
return ListContainsDistributedTableRTE(allRTEs, NULL);
}
/*
* ListContainsDistributedTableRTE gets a list of range table entries
* and returns true if there is at least one distributed relation range
* table entry in the list. The boolean maybeHasForeignDistributedTable
* variable is set to true if the list contains a foreign table.
*/
static bool
ListContainsDistributedTableRTE(List *rangeTableList,
bool *maybeHasForeignDistributedTable)
{
ListCell *rangeTableCell = NULL;
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
if (rangeTableEntry->rtekind != RTE_RELATION)
{
continue;
}
if (HideCitusDependentObjects && IsolationIsSerializable() && IsPgLocksTable(
rangeTableEntry))
{
/*
* Postgres tidscan.sql test fails if we do not filter pg_locks table because
* test results, which show taken locks in serializable isolation mode,
* fails by showing extra lock taken by IsCitusTable below.
*/
continue;
}
if (IsCitusTable(rangeTableEntry->relid))
{
if (maybeHasForeignDistributedTable != NULL &&
IsForeignTable(rangeTableEntry->relid))
{
*maybeHasForeignDistributedTable = true;
}
return true;
}
}
return false;
}
/*
* AssignRTEIdentities function modifies query tree by adding RTE identities to the
* RTE_RELATIONs.
*
* Please note that, we want to avoid modifying query tree as much as possible
* because if PostgreSQL changes the way it uses modified fields, that may break
* our logic.
*
* Returns the next id. This can be used to call on a rangeTableList that may've
* been partially assigned. Should be set to 1 initially.
*/
static int
AssignRTEIdentities(List *rangeTableList, int rteIdCounter)
{
ListCell *rangeTableCell = NULL;
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
/*
* To be able to track individual RTEs through PostgreSQL's query
* planning, we need to be able to figure out whether an RTE is
* actually a copy of another, rather than a different one. We
* simply number the RTEs starting from 1.
*
* Note that we're only interested in RTE_RELATIONs and thus assigning
* identifiers to those RTEs only.
*/
if (rangeTableEntry->rtekind == RTE_RELATION &&
rangeTableEntry->values_lists == NIL)
{
AssignRTEIdentity(rangeTableEntry, rteIdCounter++);
}
}
return rteIdCounter;
}
/*
* AdjustPartitioningForDistributedPlanning function modifies query tree by
* changing inh flag and relkind of partitioned tables. We want Postgres to
* treat partitioned tables as regular relations (i.e. we do not want to
* expand them to their partitions) since it breaks Citus planning in different
* ways. We let anything related to partitioning happen on the shards.
*
* Please note that, we want to avoid modifying query tree as much as possible
* because if PostgreSQL changes the way it uses modified fields, that may break
* our logic.
*/
static void
AdjustPartitioningForDistributedPlanning(List *rangeTableList,
bool setPartitionedTablesInherited)
{
ListCell *rangeTableCell = NULL;
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
/*
* We want Postgres to behave partitioned tables as regular relations
* (i.e. we do not want to expand them to their partitions). To do this
* we set each partitioned table's inh flag to appropriate
* value before and after dropping to the standart_planner.
*/
if (rangeTableEntry->rtekind == RTE_RELATION &&
PartitionedTable(rangeTableEntry->relid))
{
rangeTableEntry->inh = setPartitionedTablesInherited;
if (setPartitionedTablesInherited)
{
rangeTableEntry->relkind = RELKIND_PARTITIONED_TABLE;
}
else
{
rangeTableEntry->relkind = RELKIND_RELATION;
}
}
}
}
/*
* RTEWentThroughAdjustPartitioning returns true if the given rangetableentry
* has been modified through AdjustPartitioningForDistributedPlanning
* function, false otherwise.
*/
static bool
RTEWentThroughAdjustPartitioning(RangeTblEntry *rangeTableEntry)
{
return (rangeTableEntry->rtekind == RTE_RELATION &&
PartitionedTable(rangeTableEntry->relid) &&
rangeTableEntry->inh == false);
}
/*
* AssignRTEIdentity assigns the given rteIdentifier to the given range table
* entry.
*
* To be able to track RTEs through postgres' query planning, which copies and
* duplicate, and modifies them, we sometimes need to figure out whether two
* RTEs are copies of the same original RTE. For that we, hackishly, use a
* field normally unused in RTE_RELATION RTEs.
*
* The assigned identifier better be unique within a plantree.
*/
static void
AssignRTEIdentity(RangeTblEntry *rangeTableEntry, int rteIdentifier)
{
Assert(rangeTableEntry->rtekind == RTE_RELATION);
rangeTableEntry->values_lists = list_make2_int(rteIdentifier, rangeTableEntry->inh);
}
/* GetRTEIdentity returns the identity assigned with AssignRTEIdentity. */
int
GetRTEIdentity(RangeTblEntry *rte)
{
Assert(rte->rtekind == RTE_RELATION);
/*
* Since SQL functions might be in-lined by standard_planner,
* we might miss assigning an RTE identity for RangeTblEntries
* related to SQL functions. We already have checks in other
* places to throw an error for SQL functions but they are not
* sufficient due to function in-lining; so here we capture such
* cases and throw an error here.
*/
if (list_length(rte->values_lists) != 2)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot perform distributed planning on this "
"query because parameterized queries for SQL "
"functions referencing distributed tables are "
"not supported"),
errhint("Consider using PL/pgSQL functions instead.")));
}
Assert(IsA(rte->values_lists, IntList));
return linitial_int(rte->values_lists);
}
/*
* GetOriginalInh gets the original value of the inheritance flag set by
* AssignRTEIdentity. The planner resets this flag in the rewritten query,
* but we need it during deparsing.
*/
bool
GetOriginalInh(RangeTblEntry *rte)
{
return lsecond_int(rte->values_lists);
}
/*
* GetQueryLockMode returns the necessary lock mode to be acquired for the
* given query. (See comment written in RangeTblEntry->rellockmode)
*/
LOCKMODE
GetQueryLockMode(Query *query)
{
if (IsModifyCommand(query))
{
return RowExclusiveLock;
}
else if (query->hasForUpdate)
{
return RowShareLock;
}
else
{
return AccessShareLock;
}
}
/*
* IsModifyCommand returns true if the query performs modifications, false
* otherwise.
*/
bool
IsModifyCommand(Query *query)
{
CmdType commandType = query->commandType;
if (commandType == CMD_INSERT || commandType == CMD_UPDATE ||
commandType == CMD_DELETE || commandType == CMD_MERGE)
{
return true;
}
return false;
}
/*
* IsMultiTaskPlan returns true if job contains multiple tasks.
*/
bool
IsMultiTaskPlan(DistributedPlan *distributedPlan)
{
Job *workerJob = distributedPlan->workerJob;
if (workerJob != NULL && list_length(workerJob->taskList) > 1)
{
return true;
}
return false;
}
/*
* PlanFastPathDistributedStmt creates a distributed planned statement using
* the FastPathPlanner.
*/
static PlannedStmt *
PlanFastPathDistributedStmt(DistributedPlanningContext *planContext)
{
FastPathRestrictionContext *fastPathContext =
planContext->plannerRestrictionContext->fastPathRestrictionContext;
if (!fastPathContext->delayFastPathPlanning)
{
planContext->plan = FastPathPlanner(planContext->originalQuery,
planContext->query,
planContext->boundParams);
}
return CreateDistributedPlannedStmt(planContext);
}
/*
* PlanDistributedStmt creates a distributed planned statement using the PG
* planner.
*/
static PlannedStmt *
PlanDistributedStmt(DistributedPlanningContext *planContext,
int rteIdCounter)
{
/* may've inlined new relation rtes */
List *rangeTableList = ExtractRangeTableEntryList(planContext->query);
rteIdCounter = AssignRTEIdentities(rangeTableList, rteIdCounter);
PlannedStmt *result = CreateDistributedPlannedStmt(planContext);
bool setPartitionedTablesInherited = true;
AdjustPartitioningForDistributedPlanning(rangeTableList,
setPartitionedTablesInherited);
return result;
}
/*
* DissuadePlannerFromUsingPlan try dissuade planner when planning a plan that
* potentially failed due to unresolved prepared statement parameters.
*/
void
DissuadePlannerFromUsingPlan(PlannedStmt *plan)
{
/*
* Arbitrarily high cost, but low enough that it can be added up
* without overflowing by choose_custom_plan().
*/
Assert(plan != NULL);
plan->planTree->total_cost = FLT_MAX / 100000000;
}
/*
* CreateDistributedPlannedStmt encapsulates the logic needed to transform a particular
* query into a distributed plan that is encapsulated by a PlannedStmt.
*/
static PlannedStmt *
CreateDistributedPlannedStmt(DistributedPlanningContext *planContext)
{
uint64 planId = NextPlanId++;
bool hasUnresolvedParams = false;
PlannedStmt *resultPlan = NULL;
if (QueryTreeContainsInlinableCTE(planContext->originalQuery))
{
/*
* Inlining CTEs as subqueries in the query can avoid recursively
* planning some (or all) of the CTEs. In other words, the inlined
* CTEs could become part of query pushdown planning, which is much
* more efficient than recursively planning. So, first try distributed
* planning on the inlined CTEs in the query tree.
*
* We also should fallback to distributed planning with non-inlined CTEs
* if the distributed planning fails with inlined CTEs, because recursively
* planning CTEs can provide full SQL coverage, although it might be slow.
*/
resultPlan = InlineCtesAndCreateDistributedPlannedStmt(planId, planContext);
if (resultPlan != NULL)
{
return resultPlan;
}
}
if (HasUnresolvedExternParamsWalker((Node *) planContext->originalQuery,
planContext->boundParams))
{
hasUnresolvedParams = true;
}
bool allowRecursivePlanning = true;
DistributedPlan *distributedPlan =
CreateDistributedPlan(planId, allowRecursivePlanning,
planContext->originalQuery,
planContext->query,
planContext->boundParams,
hasUnresolvedParams,
planContext->plannerRestrictionContext);
/*
* If no plan was generated, prepare a generic error to be emitted.
* Normally this error message will never returned to the user, as it's
* usually due to unresolved prepared statement parameters - in that case
* the logic below will force a custom plan (i.e. with parameters bound to
* specific values) to be generated. But sql (not plpgsql) functions
* unfortunately don't go through a codepath supporting custom plans - so
* we still need to have an error prepared.
*/
if (!distributedPlan)
{
/* currently always should have a more specific error otherwise */
Assert(hasUnresolvedParams);
distributedPlan = CitusMakeNode(DistributedPlan);
distributedPlan->planningError =
DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"could not create distributed plan",
"Possibly this is caused by the use of parameters in SQL "
"functions, which is not supported in Citus.",
"Consider using PL/pgSQL functions instead.");
}
/*
* Error out if none of the planners resulted in a usable plan, unless the
* error was possibly triggered by missing parameters. In that case we'll
* not error out here, but instead rely on postgres' custom plan logic.
* Postgres re-plans prepared statements the first five executions
* (i.e. it produces custom plans), after that the cost of a generic plan
* is compared with the average custom plan cost. We support otherwise
* unsupported prepared statement parameters by assigning an exorbitant
* cost to the unsupported query. That'll lead to the custom plan being
* chosen. But for that to be possible we can't error out here, as
* otherwise that logic is never reached.
*/
if (distributedPlan->planningError && !hasUnresolvedParams)
{
RaiseDeferredError(distributedPlan->planningError, ERROR);
}
CheckAndBuildDelayedFastPathPlan(planContext, distributedPlan);
/* remember the plan's identifier for identifying subplans */
distributedPlan->planId = planId;
/* create final plan by combining local plan with distributed plan */
resultPlan = FinalizePlan(planContext->plan, distributedPlan);
/*
* As explained above, force planning costs to be unrealistically high if
* query planning failed (possibly) due to prepared statement parameters or
* if it is planned as a multi shard modify query.
*/
if ((distributedPlan->planningError ||
(UpdateOrDeleteOrMergeQuery(planContext->originalQuery) && IsMultiTaskPlan(
distributedPlan))) &&
hasUnresolvedParams)
{
DissuadePlannerFromUsingPlan(resultPlan);
}
return resultPlan;
}
/*
* InlineCtesAndCreateDistributedPlannedStmt gets all the parameters required
* for creating a distributed planned statement. The function is primarily a
* wrapper on top of CreateDistributedPlannedStmt(), by first inlining the
* CTEs and calling CreateDistributedPlannedStmt() in PG_TRY() block. The
* function returns NULL if the planning fails on the query where eligable
* CTEs are inlined.
*/
static PlannedStmt *
InlineCtesAndCreateDistributedPlannedStmt(uint64 planId,
DistributedPlanningContext *planContext)
{
/*
* We'll inline the CTEs and try distributed planning, preserve the original
* query in case the planning fails and we fallback to recursive planning of
* CTEs.
*/
Query *copyOfOriginalQuery = copyObject(planContext->originalQuery);
RecursivelyInlineCtesInQueryTree(copyOfOriginalQuery);
/* after inlining, we shouldn't have any inlinable CTEs */
Assert(!QueryTreeContainsInlinableCTE(copyOfOriginalQuery));
/* simply recurse into CreateDistributedPlannedStmt() in a PG_TRY() block */
PlannedStmt *result = TryCreateDistributedPlannedStmt(planContext->plan,
copyOfOriginalQuery,
planContext->query,
planContext->boundParams,
planContext->
plannerRestrictionContext);
return result;
}
/*
* TryCreateDistributedPlannedStmt is a wrapper around CreateDistributedPlannedStmt, simply
* calling it in PG_TRY()/PG_CATCH() block. The function returns a PlannedStmt if the input
* query can be planned by Citus. If not, the function returns NULL and generates a DEBUG4
* message with the reason for the failure.
*/
static PlannedStmt *
TryCreateDistributedPlannedStmt(PlannedStmt *localPlan,
Query *originalQuery,
Query *query, ParamListInfo boundParams,
PlannerRestrictionContext *plannerRestrictionContext)
{
MemoryContext savedContext = CurrentMemoryContext;
PlannedStmt *result = NULL;
DistributedPlanningContext *planContext = palloc0(sizeof(DistributedPlanningContext));
planContext->plan = localPlan;
planContext->boundParams = boundParams;
planContext->originalQuery = originalQuery;
planContext->query = query;
planContext->plannerRestrictionContext = plannerRestrictionContext;
PG_TRY();
{
result = CreateDistributedPlannedStmt(planContext);
}
PG_CATCH();
{
MemoryContextSwitchTo(savedContext);
ErrorData *edata = CopyErrorData();
FlushErrorState();
/* don't try to intercept PANIC or FATAL, let those breeze past us */
if (edata->elevel != ERROR)
{
PG_RE_THROW();
}
ereport(DEBUG4, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("Planning after CTEs inlined failed with "
"\nmessage: %s\ndetail: %s\nhint: %s",
edata->message ? edata->message : "",
edata->detail ? edata->detail : "",
edata->hint ? edata->hint : "")));
/* leave the error handling system */
FreeErrorData(edata);
result = NULL;
}
PG_END_TRY();
return result;
}
/*
* GetRouterPlanType checks the parse tree to return appropriate plan type.
*/
static RouterPlanType
GetRouterPlanType(Query *query, Query *originalQuery, bool hasUnresolvedParams)
{
if (!IsModifyCommand(originalQuery))
{
return SELECT_QUERY;
}
Oid targetRelationId = ModifyQueryResultRelationId(query);
EnsureModificationsCanRunOnRelation(targetRelationId);
EnsurePartitionTableNotReplicated(targetRelationId);
/* Check the type of modification being done */
if (InsertSelectIntoCitusTable(originalQuery))
{
if (hasUnresolvedParams)
{
return REPLAN_WITH_BOUND_PARAMETERS;
}
return INSERT_SELECT_INTO_CITUS_TABLE;
}
else if (InsertSelectIntoLocalTable(originalQuery))
{
if (hasUnresolvedParams)
{
return REPLAN_WITH_BOUND_PARAMETERS;
}
return INSERT_SELECT_INTO_LOCAL_TABLE;
}
else if (IsMergeQuery(originalQuery))
{
if (hasUnresolvedParams)
{
return REPLAN_WITH_BOUND_PARAMETERS;
}
return MERGE_QUERY;
}
else
{
return DML_QUERY;
}
}
/*
* CreateDistributedPlan generates a distributed plan for a query.
* It goes through 3 steps:
*
* 1. Try router planner
* 2. Generate subplans for CTEs and complex subqueries
* - If any, go back to step 1 by calling itself recursively
* 3. Logical planner
*/
DistributedPlan *
CreateDistributedPlan(uint64 planId, bool allowRecursivePlanning, Query *originalQuery,
Query *query, ParamListInfo boundParams, bool hasUnresolvedParams,
PlannerRestrictionContext *plannerRestrictionContext)
{
DistributedPlan *distributedPlan = NULL;
bool hasCtes = originalQuery->cteList != NIL;
/* Step 1: Try router planner */
RouterPlanType routerPlan = GetRouterPlanType(query, originalQuery,
hasUnresolvedParams);
switch (routerPlan)
{
case INSERT_SELECT_INTO_CITUS_TABLE:
{
distributedPlan =
CreateInsertSelectPlan(planId,
originalQuery,
plannerRestrictionContext,
boundParams);
break;
}
case INSERT_SELECT_INTO_LOCAL_TABLE:
{
distributedPlan =
CreateInsertSelectIntoLocalTablePlan(planId,
originalQuery,
boundParams,
hasUnresolvedParams,
plannerRestrictionContext);
break;
}
case DML_QUERY:
{
/* modifications are always routed through the same planner/executor */
distributedPlan =
CreateModifyPlan(originalQuery, query, plannerRestrictionContext);
break;
}
case MERGE_QUERY:
{
distributedPlan =
CreateMergePlan(planId, originalQuery, query, plannerRestrictionContext,
boundParams);
break;
}
case REPLAN_WITH_BOUND_PARAMETERS:
{
/*
* Unresolved parameters can cause performance regressions in
* INSERT...SELECT when the partition column is a parameter
* because we don't perform any additional pruning in the executor.
*/
return NULL;
}
case SELECT_QUERY:
{
/*
* For select queries we, if router executor is enabled, first try to
* plan the query as a router query. If not supported, otherwise try
* the full blown plan/optimize/physical planning process needed to
* produce distributed query plans.
*/
distributedPlan =
CreateRouterPlan(originalQuery, query, plannerRestrictionContext);
break;
}
}
/* the functions above always return a plan, possibly with an error */
Assert(distributedPlan);
if (distributedPlan->planningError == NULL)
{
return distributedPlan;
}
else
{
RaiseDeferredError(distributedPlan->planningError, DEBUG2);
}
if (hasUnresolvedParams)
{
/*
* There are parameters that don't have a value in boundParams.
*
* The remainder of the planning logic cannot handle unbound
* parameters. We return a NULL plan, which will have an
* extremely high cost, such that postgres will replan with
* bound parameters.
*/
return NULL;
}
/* force evaluation of bound params */
boundParams = copyParamList(boundParams);
/*
* If there are parameters that do have a value in boundParams, replace
* them in the original query. This allows us to more easily cut the
* query into pieces (during recursive planning) or deparse parts of
* the query (during subquery pushdown planning).
*/
originalQuery = (Query *) ResolveExternalParams((Node *) originalQuery,
boundParams);
Assert(originalQuery != NULL);
/* Step 2: Generate subplans for CTEs and complex subqueries */
/*
* Plan subqueries and CTEs that cannot be pushed down by recursively
* calling the planner and return the resulting plans to subPlanList.
* Note that GenerateSubplansForSubqueriesAndCTEs will reset perminfoindexes
* for some RTEs in originalQuery->rtable list, while not changing
* originalQuery->rteperminfos. That's fine because we will go through
* standard_planner again, which will adjust things accordingly in
* set_plan_references>add_rtes_to_flat_rtable>add_rte_to_flat_rtable.
*/
List *subPlanList = GenerateSubplansForSubqueriesAndCTEs(planId, originalQuery,
plannerRestrictionContext);
/*
* If subqueries were recursively planned then we need to replan the query
* to get the new planner restriction context and apply planner transformations.
*
* We could simplify this code if the logical planner was capable of dealing
* with an original query. In that case, we would only have to filter the
* planner restriction context.
*
* Note that we check both for subplans and whether the query had CTEs
* prior to calling GenerateSubplansForSubqueriesAndCTEs. If none of
* the CTEs are referenced then there are no subplans, but we still want
* to retry the router planner.
*/
if (list_length(subPlanList) > 0 || hasCtes)
{
/*
* recursive planner should handle all the tree from bottom to
* top at single pass. i.e. It should have already recursively planned all
* required parts in its first pass. Hence, we expect allowRecursivePlanning
* to be true. Otherwise, this means we have bug at recursive planner,
* which needs to be handled. We add a check here and return error.
*/
if (!allowRecursivePlanning)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("recursive complex joins are only supported "
"when all distributed tables are co-located and "
"joined on their distribution columns")));
}
Query *newQuery = copyObject(originalQuery);
bool setPartitionedTablesInherited = false;
PlannerRestrictionContext *currentPlannerRestrictionContext =
CurrentPlannerRestrictionContext();
/* reset the current planner restrictions context */
ResetPlannerRestrictionContext(currentPlannerRestrictionContext);
/*
* We force standard_planner to treat partitioned tables as regular tables
* by clearing the inh flag on RTEs. We already did this at the start of
* distributed_planner, but on a copy of the original query, so we need
* to do it again here.
*/
AdjustPartitioningForDistributedPlanning(ExtractRangeTableEntryList(newQuery),
setPartitionedTablesInherited);
/*
* Some relations may have been removed from the query, but we can skip
* AssignRTEIdentities since we currently do not rely on RTE identities
* being contiguous.
*/
standard_planner(newQuery, NULL, 0, boundParams);
/* overwrite the old transformed query with the new transformed query */
*query = *newQuery;
/*
* recurse into CreateDistributedPlan with subqueries/CTEs replaced.
* We only allow recursive planning once, which should have already done all
* the necessary transformations. So, we do not allow recursive planning once again.
*/
allowRecursivePlanning = false;
distributedPlan = CreateDistributedPlan(planId, allowRecursivePlanning,
originalQuery, query, NULL, false,
plannerRestrictionContext);
/* distributedPlan cannot be null since hasUnresolvedParams argument was false */
Assert(distributedPlan != NULL);
distributedPlan->subPlanList = subPlanList;
return distributedPlan;
}
/*
* DML command returns a planning error, even after recursive planning. The
* logical planner cannot handle DML commands so return the plan with the
* error.
*/
if (IsModifyCommand(originalQuery))
{
return distributedPlan;
}
/*
* CTEs are stripped from the original query by RecursivelyPlanSubqueriesAndCTEs.
* If we get here and there are still CTEs that means that none of the CTEs are
* referenced. We therefore also strip the CTEs from the rewritten query.
*/
query->cteList = NIL;
Assert(originalQuery->cteList == NIL);
/* Step 3: Try Logical planner */
MultiTreeRoot *logicalPlan = MultiLogicalPlanCreate(originalQuery, query,
plannerRestrictionContext);
MultiLogicalPlanOptimize(logicalPlan);
/*
* This check is here to make it likely that all node types used in
* Citus are dumpable. Explain can dump logical and physical plans
* using the extended outfuncs infrastructure, but it's infeasible to
* test most plans. MultiQueryContainerNode always serializes the
* physical plan, so there's no need to check that separately
*/
CheckNodeIsDumpable((Node *) logicalPlan);
/* Create the physical plan */
distributedPlan = CreatePhysicalDistributedPlan(logicalPlan,
plannerRestrictionContext);
/* distributed plan currently should always succeed or error out */
Assert(distributedPlan && distributedPlan->planningError == NULL);
return distributedPlan;
}
/*
* EnsurePartitionTableNotReplicated errors out if the input relation is
* a partition table and the table has a replication factor greater than
* one.
*
* If the table is not a partition or replication factor is 1, the function
* becomes a no-op.
*/
void
EnsurePartitionTableNotReplicated(Oid relationId)
{
DeferredErrorMessage *deferredError =
DeferErrorIfPartitionTableNotSingleReplicated(relationId);
if (deferredError != NULL)
{
RaiseDeferredError(deferredError, ERROR);
}
}
/*
* DeferErrorIfPartitionTableNotSingleReplicated defers error if the input relation
* is a partition table with replication factor > 1. Otherwise, the function returns
* NULL.
*/
static DeferredErrorMessage *
DeferErrorIfPartitionTableNotSingleReplicated(Oid relationId)
{
if (PartitionTableNoLock(relationId) && !SingleReplicatedTable(relationId))
{
Oid parentOid = PartitionParentOid(relationId);
char *parentRelationTest = get_rel_name(parentOid);
StringInfo errorHint = makeStringInfo();
appendStringInfo(errorHint, "Run the query on the parent table "
"\"%s\" instead.", parentRelationTest);
return DeferredError(ERRCODE_FEATURE_NOT_SUPPORTED,
"modifications on partitions when replication "
"factor is greater than 1 is not supported",
NULL, errorHint->data);
}
return NULL;
}
/*
* ResolveExternalParams replaces the external parameters that appears
* in the query with the corresponding entries in the boundParams.
*
* Note that this function is inspired by eval_const_expr() on Postgres.
* We cannot use that function because it requires access to PlannerInfo.
*/
Node *
ResolveExternalParams(Node *inputNode, ParamListInfo boundParams)
{
/* consider resolving external parameters only when boundParams exists */
if (!boundParams)
{
return inputNode;
}
if (inputNode == NULL)
{
return NULL;
}
if (IsA(inputNode, Param))
{
Param *paramToProcess = (Param *) inputNode;
int numberOfParameters = boundParams->numParams;
int parameterId = paramToProcess->paramid;
int16 typeLength = 0;
bool typeByValue = false;
Datum constValue = 0;
if (paramToProcess->paramkind != PARAM_EXTERN)
{
return inputNode;
}
if (parameterId < 0)
{
return inputNode;
}
/* parameterId starts from 1 */
int parameterIndex = parameterId - 1;
if (parameterIndex >= numberOfParameters)
{
return inputNode;
}
ParamExternData *correspondingParameterData =
&boundParams->params[parameterIndex];
if (!(correspondingParameterData->pflags & PARAM_FLAG_CONST))
{
return inputNode;
}
get_typlenbyval(paramToProcess->paramtype, &typeLength, &typeByValue);
bool paramIsNull = correspondingParameterData->isnull;
if (paramIsNull)
{
constValue = 0;
}
else if (typeByValue)
{
constValue = correspondingParameterData->value;
}
else
{
/*
* Out of paranoia ensure that datum lives long enough,
* although bind params currently should always live
* long enough.
*/
constValue = datumCopy(correspondingParameterData->value, typeByValue,
typeLength);
}
return (Node *) makeConst(paramToProcess->paramtype, paramToProcess->paramtypmod,
paramToProcess->paramcollid, typeLength, constValue,
paramIsNull, typeByValue);
}
else if (IsA(inputNode, Query))
{
return (Node *) query_tree_mutator((Query *) inputNode, ResolveExternalParams,
boundParams, 0);
}
return expression_tree_mutator(inputNode, ResolveExternalParams, boundParams);
}
/*
* GetDistributedPlan returns the associated DistributedPlan for a CustomScan.
*
* Callers should only read from the returned data structure, since it may be
* the plan of a prepared statement and may therefore be reused.
*/
DistributedPlan *
GetDistributedPlan(CustomScan *customScan)
{
Assert(list_length(customScan->custom_private) == 1);
Node *node = (Node *) linitial(customScan->custom_private);
Assert(CitusIsA(node, DistributedPlan));
CheckNodeCopyAndSerialization(node);
DistributedPlan *distributedPlan = (DistributedPlan *) node;
return distributedPlan;
}
/*
* FinalizePlan combines local plan with distributed plan and creates a plan
* which can be run by the PostgreSQL executor.
*/
PlannedStmt *
FinalizePlan(PlannedStmt *localPlan, DistributedPlan *distributedPlan)
{
PlannedStmt *finalPlan = NULL;
CustomScan *customScan = makeNode(CustomScan);
MultiExecutorType executorType = MULTI_EXECUTOR_INVALID_FIRST;
/* this field is used in JobExecutorType */
distributedPlan->relationIdList = localPlan->relationOids;
if (!distributedPlan->planningError)
{
executorType = JobExecutorType(distributedPlan);
}
switch (executorType)
{
case MULTI_EXECUTOR_ADAPTIVE:
{
customScan->methods = &AdaptiveExecutorCustomScanMethods;
break;
}
case MULTI_EXECUTOR_NON_PUSHABLE_INSERT_SELECT:
{
customScan->methods = &NonPushableInsertSelectCustomScanMethods;
break;
}
case MULTI_EXECUTOR_NON_PUSHABLE_MERGE_QUERY:
{
customScan->methods = &NonPushableMergeCommandCustomScanMethods;
break;
}
default:
{
customScan->methods = &DelayedErrorCustomScanMethods;
break;
}
}
if (IsMultiTaskPlan(distributedPlan))
{
/* if it is not a single task executable plan, inform user according to the log level */
if (MultiTaskQueryLogLevel != CITUS_LOG_LEVEL_OFF)
{
ereport(MultiTaskQueryLogLevel, (errmsg(
"multi-task query about to be executed"),
errhint(
"Queries are split to multiple tasks "
"if they have to be split into several"
" queries on the workers.")));
}
}
distributedPlan->queryId = localPlan->queryId;
Node *distributedPlanData = (Node *) distributedPlan;
customScan->custom_private = list_make1(distributedPlanData);
/* necessary to avoid extra Result node in PG15 */
customScan->flags = CUSTOMPATH_SUPPORT_BACKWARD_SCAN | CUSTOMPATH_SUPPORT_PROJECTION;
/*
* Fast path queries cannot have any subplans by definition, so skip
* expensive traversals.
*/
if (!distributedPlan->fastPathRouterPlan)
{
/*
* Record subplans used by distributed plan to make intermediate result
* pruning easier.
*
* We do this before finalizing the plan, because the combineQuery is
* rewritten by standard_planner in FinalizeNonRouterPlan.
*/
distributedPlan->usedSubPlanNodeList = FindSubPlanUsages(distributedPlan);
}
if (distributedPlan->combineQuery)
{
finalPlan = FinalizeNonRouterPlan(localPlan, distributedPlan, customScan);
}
else
{
finalPlan = FinalizeRouterPlan(localPlan, customScan);
}
return finalPlan;
}
/*
* FinalizeNonRouterPlan gets the distributed custom scan plan, and creates the
* final master select plan on the top of this distributed plan for adaptive executor.
*/
static PlannedStmt *
FinalizeNonRouterPlan(PlannedStmt *localPlan, DistributedPlan *distributedPlan,
CustomScan *customScan)
{
PlannedStmt *finalPlan = PlanCombineQuery(distributedPlan, customScan);
finalPlan->queryId = localPlan->queryId;
finalPlan->utilityStmt = localPlan->utilityStmt;
/* add original range table list for access permission checks */
ConcatenateRTablesAndPerminfos(finalPlan, localPlan);
return finalPlan;
}
static void
ConcatenateRTablesAndPerminfos(PlannedStmt *mainPlan, PlannedStmt *concatPlan)
{
mainPlan->rtable = list_concat(mainPlan->rtable, concatPlan->rtable);
#if PG_VERSION_NUM >= PG_VERSION_16
/*
* concatPlan's range table list is concatenated to mainPlan's range table list
* therefore all the perminfoindexes should be updated to their value
* PLUS the highest perminfoindex in mainPlan's perminfos, which is exactly
* the list length.
*/
int mainPlan_highest_perminfoindex = list_length(mainPlan->permInfos);
ListCell *lc;
foreach(lc, concatPlan->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
if (rte->perminfoindex != 0)
{
rte->perminfoindex = rte->perminfoindex + mainPlan_highest_perminfoindex;
}
}
/* finally, concatenate perminfos as well */
mainPlan->permInfos = list_concat(mainPlan->permInfos, concatPlan->permInfos);
#endif
}
/*
* FinalizeRouterPlan gets a CustomScan node which already wrapped distributed
* part of a router plan and sets it as the direct child of the router plan
* because we don't run any query on master node for router executable queries.
* Here, we also rebuild the column list to read from the remote scan.
*/
static PlannedStmt *
FinalizeRouterPlan(PlannedStmt *localPlan, CustomScan *customScan)
{
List *columnNameList = NIL;
customScan->custom_scan_tlist =
makeCustomScanTargetlistFromExistingTargetList(localPlan->planTree->targetlist);
customScan->scan.plan.targetlist =
makeTargetListFromCustomScanList(customScan->custom_scan_tlist);
/* extract the column names from the final targetlist*/
TargetEntry *targetEntry = NULL;
foreach_declared_ptr(targetEntry, customScan->scan.plan.targetlist)
{
String *columnName = makeString(targetEntry->resname);
columnNameList = lappend(columnNameList, columnName);
}
PlannedStmt *routerPlan = makeNode(PlannedStmt);
routerPlan->planTree = (Plan *) customScan;
RangeTblEntry *remoteScanRangeTableEntry = RemoteScanRangeTableEntry(columnNameList);
routerPlan->rtable = list_make1(remoteScanRangeTableEntry);
/* add original range table list for access permission checks */
ConcatenateRTablesAndPerminfos(routerPlan, localPlan);
routerPlan->canSetTag = true;
routerPlan->relationOids = NIL;
routerPlan->queryId = localPlan->queryId;
routerPlan->utilityStmt = localPlan->utilityStmt;
routerPlan->commandType = localPlan->commandType;
routerPlan->hasReturning = localPlan->hasReturning;
return routerPlan;
}
/*
* makeCustomScanTargetlistFromExistingTargetList rebuilds the targetlist from the remote
* query into a list that can be used as the custom_scan_tlist for our Citus Custom Scan.
*/
static List *
makeCustomScanTargetlistFromExistingTargetList(List *existingTargetlist)
{
List *custom_scan_tlist = NIL;
/* we will have custom scan range table entry as the first one in the list */
const int customScanRangeTableIndex = 1;
/* build a targetlist to read from the custom scan output */
TargetEntry *targetEntry = NULL;
foreach_declared_ptr(targetEntry, existingTargetlist)
{
Assert(IsA(targetEntry, TargetEntry));
/*
* This is unlikely to be hit because we would not need resjunk stuff
* at the toplevel of a router query - all things needing it have been
* pushed down.
*/
if (targetEntry->resjunk)
{
continue;
}
/* build target entry pointing to remote scan range table entry */
Var *newVar = makeVarFromTargetEntry(customScanRangeTableIndex, targetEntry);
if (newVar->vartype == RECORDOID || newVar->vartype == RECORDARRAYOID)
{
/*
* Add the anonymous composite type to the type cache and store
* the key in vartypmod. Eventually this makes its way into the
* TupleDesc used by the executor, which uses it to parse the
* query results from the workers in BuildTupleFromCStrings.
*/
newVar->vartypmod = BlessRecordExpression(targetEntry->expr);
}
TargetEntry *newTargetEntry = flatCopyTargetEntry(targetEntry);
newTargetEntry->expr = (Expr *) newVar;
custom_scan_tlist = lappend(custom_scan_tlist, newTargetEntry);
}
return custom_scan_tlist;
}
/*
* makeTargetListFromCustomScanList based on a custom_scan_tlist create the target list to
* use on the Citus Custom Scan Node. The targetlist differs from the custom_scan_tlist in
* a way that the expressions in the targetlist all are references to the index (resno) in
* the custom_scan_tlist in their varattno while the varno is replaced with INDEX_VAR
* instead of the range table entry index.
*/
static List *
makeTargetListFromCustomScanList(List *custom_scan_tlist)
{
List *targetList = NIL;
TargetEntry *targetEntry = NULL;
int resno = 1;
foreach_declared_ptr(targetEntry, custom_scan_tlist)
{
/*
* INDEX_VAR is used to reference back to the TargetEntry in custom_scan_tlist by
* its resno (index)
*/
Var *newVar = makeVarFromTargetEntry(INDEX_VAR, targetEntry);
TargetEntry *newTargetEntry = makeTargetEntry((Expr *) newVar, resno,
targetEntry->resname,
targetEntry->resjunk);
targetList = lappend(targetList, newTargetEntry);
resno++;
}
return targetList;
}
/*
* BlessRecordExpression ensures we can parse an anonymous composite type on the
* target list of a query that is sent to the worker.
*
* We cannot normally parse record types coming from the workers unless we
* "bless" the tuple descriptor, which adds a transient type to the type cache
* and assigns it a type mod value, which is the key in the type cache.
*/
int32
BlessRecordExpression(Expr *expr)
{
int32 typeMod = -1;
if (IsA(expr, FuncExpr) || IsA(expr, OpExpr))
{
/*
* Handle functions that return records on the target
* list, e.g. SELECT function_call(1,2);
*/
Oid resultTypeId = InvalidOid;
TupleDesc resultTupleDesc = NULL;
/* get_expr_result_type blesses the tuple descriptor */
TypeFuncClass typeClass = get_expr_result_type((Node *) expr, &resultTypeId,
&resultTupleDesc);
if (typeClass == TYPEFUNC_COMPOSITE)
{
typeMod = resultTupleDesc->tdtypmod;
}
}
else if (IsA(expr, RowExpr))
{
/*
* Handle row expressions, e.g. SELECT (1,2);
*/
RowExpr *rowExpr = (RowExpr *) expr;
ListCell *argCell = NULL;
int currentResno = 1;
TupleDesc rowTupleDesc = CreateTemplateTupleDesc(list_length(rowExpr->args));
foreach(argCell, rowExpr->args)
{
Node *rowArg = (Node *) lfirst(argCell);
Oid rowArgTypeId = exprType(rowArg);
int rowArgTypeMod = exprTypmod(rowArg);
if (rowArgTypeId == RECORDOID || rowArgTypeId == RECORDARRAYOID)
{
/* ensure nested rows are blessed as well */
rowArgTypeMod = BlessRecordExpression((Expr *) rowArg);
}
TupleDescInitEntry(rowTupleDesc, currentResno, NULL,
rowArgTypeId, rowArgTypeMod, 0);
TupleDescInitEntryCollation(rowTupleDesc, currentResno,
exprCollation(rowArg));
currentResno++;
}
BlessTupleDesc(rowTupleDesc);
typeMod = rowTupleDesc->tdtypmod;
}
else if (IsA(expr, ArrayExpr))
{
/*
* Handle row array expressions, e.g. SELECT ARRAY[(1,2)];
* Postgres allows ARRAY[(1,2),(1,2,3)]. We do not.
*/
ArrayExpr *arrayExpr = (ArrayExpr *) expr;
typeMod = BlessRecordExpressionList(arrayExpr->elements);
}
else if (IsA(expr, NullIfExpr))
{
NullIfExpr *nullIfExpr = (NullIfExpr *) expr;
typeMod = BlessRecordExpressionList(nullIfExpr->args);
}
else if (IsA(expr, MinMaxExpr))
{
MinMaxExpr *minMaxExpr = (MinMaxExpr *) expr;
typeMod = BlessRecordExpressionList(minMaxExpr->args);
}
else if (IsA(expr, CoalesceExpr))
{
CoalesceExpr *coalesceExpr = (CoalesceExpr *) expr;
typeMod = BlessRecordExpressionList(coalesceExpr->args);
}
else if (IsA(expr, CaseExpr))
{
CaseExpr *caseExpr = (CaseExpr *) expr;
List *results = NIL;
ListCell *whenCell = NULL;
foreach(whenCell, caseExpr->args)
{
CaseWhen *whenArg = (CaseWhen *) lfirst(whenCell);
results = lappend(results, whenArg->result);
}
if (caseExpr->defresult != NULL)
{
results = lappend(results, caseExpr->defresult);
}
typeMod = BlessRecordExpressionList(results);
}
return typeMod;
}
/*
* BlessRecordExpressionList maps BlessRecordExpression over a list.
* Returns typmod of all expressions, or -1 if they are not all the same.
* Ignores expressions with a typmod of -1.
*/
static int32
BlessRecordExpressionList(List *exprs)
{
int32 finalTypeMod = -1;
ListCell *exprCell = NULL;
foreach(exprCell, exprs)
{
Node *exprArg = (Node *) lfirst(exprCell);
int32 exprTypeMod = BlessRecordExpression((Expr *) exprArg);
if (exprTypeMod == -1)
{
continue;
}
else if (finalTypeMod == -1)
{
finalTypeMod = exprTypeMod;
}
else if (finalTypeMod != exprTypeMod)
{
return -1;
}
}
return finalTypeMod;
}
/*
* RemoteScanRangeTableEntry creates a range table entry from given column name
* list to represent a remote scan.
*/
RangeTblEntry *
RemoteScanRangeTableEntry(List *columnNameList)
{
RangeTblEntry *remoteScanRangeTableEntry = makeNode(RangeTblEntry);
/* we use RTE_VALUES for custom scan because we can't look up relation */
remoteScanRangeTableEntry->rtekind = RTE_VALUES;
remoteScanRangeTableEntry->eref = makeAlias("remote_scan", columnNameList);
remoteScanRangeTableEntry->inh = false;
remoteScanRangeTableEntry->inFromCl = true;
return remoteScanRangeTableEntry;
}
/*
* CheckNodeIsDumpable checks that the passed node can be dumped using
* nodeToString(). As this checks is expensive, it's only active when
* assertions are enabled.
*/
static void
CheckNodeIsDumpable(Node *node)
{
#ifdef USE_ASSERT_CHECKING
char *out = nodeToString(node);
pfree(out);
#endif
}
/*
* CheckNodeCopyAndSerialization checks copy/dump/read functions
* for nodes and returns copy of the input.
*
* It is only active when assertions are enabled, otherwise it returns
* the input directly. We use this to confirm that our serialization
* and copy logic produces the correct plan during regression tests.
*
* It does not check string equality on node dumps due to differences
* in some Postgres types.
*/
static Node *
CheckNodeCopyAndSerialization(Node *node)
{
#ifdef USE_ASSERT_CHECKING
char *out = nodeToString(node);
Node *nodeCopy = copyObject(node);
char *outCopy = nodeToString(nodeCopy);
pfree(out);
pfree(outCopy);
return nodeCopy;
#else
return node;
#endif
}
/*
* multi_join_restriction_hook is a hook called by postgresql standard planner
* to notify us about various planning information regarding joins. We use
* it to learn about the joining column.
*/
void
multi_join_restriction_hook(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
JoinType jointype,
JoinPathExtraData *extra)
{
if (bms_is_empty(innerrel->relids) || bms_is_empty(outerrel->relids))
{
/*
* We do not expect empty relids. Still, ignoring such JoinRestriction is
* preferable for two reasons:
* 1. This might be a query that doesn't rely on JoinRestrictions at all (e.g.,
* local query).
* 2. We cannot process them when they are empty (and likely to segfault if
* we allow as-is).
*/
ereport(DEBUG1, (errmsg("Join restriction information is NULL")));
}
/*
* Use a memory context that's guaranteed to live long enough, could be
* called in a more shortly lived one (e.g. with GEQO).
*/
PlannerRestrictionContext *plannerRestrictionContext =
CurrentPlannerRestrictionContext();
MemoryContext restrictionsMemoryContext = plannerRestrictionContext->memoryContext;
MemoryContext oldMemoryContext = MemoryContextSwitchTo(restrictionsMemoryContext);
JoinRestrictionContext *joinRestrictionContext =
plannerRestrictionContext->joinRestrictionContext;
Assert(joinRestrictionContext != NULL);
JoinRestriction *joinRestriction = palloc0(sizeof(JoinRestriction));
joinRestriction->joinType = jointype;
joinRestriction->plannerInfo = root;
/*
* We create a copy of restrictInfoList and relids because with geqo they may
* be created in a memory context which will be deleted when we still need it,
* thus we create a copy of it in our memory context.
*/
joinRestriction->joinRestrictInfoList = copyObject(extra->restrictlist);
joinRestriction->innerrelRelids = bms_copy(innerrel->relids);
joinRestriction->outerrelRelids = bms_copy(outerrel->relids);
joinRestrictionContext->joinRestrictionList =
lappend(joinRestrictionContext->joinRestrictionList, joinRestriction);
/*
* Keep track if we received any semi joins here. If we didn't we can
* later safely convert any semi joins in the rewritten query to inner
* joins.
*/
joinRestrictionContext->hasSemiJoin = joinRestrictionContext->hasSemiJoin ||
extra->sjinfo->jointype == JOIN_SEMI;
joinRestrictionContext->hasOuterJoin = joinRestrictionContext->hasOuterJoin ||
IS_OUTER_JOIN(extra->sjinfo->jointype);
MemoryContextSwitchTo(oldMemoryContext);
}
/*
* multi_relation_restriction_hook is a hook called by postgresql standard planner
* to notify us about various planning information regarding a relation. We use
* it to retrieve restrictions on relations.
*/
void
multi_relation_restriction_hook(PlannerInfo *root, RelOptInfo *relOptInfo,
Index restrictionIndex, RangeTblEntry *rte)
{
CitusTableCacheEntry *cacheEntry = NULL;
if (ReplaceCitusExtraDataContainer && IsCitusExtraDataContainerRelation(rte))
{
/*
* We got here by planning the query part that needs to be executed on the query
* coordinator node.
* We have verified the occurrence of the citus_extra_datacontainer function
* encoding the remote scan we plan to execute here. We will replace all paths
* with a path describing our custom scan.
*/
Path *path = CreateCitusCustomScanPath(root, relOptInfo, restrictionIndex, rte,
ReplaceCitusExtraDataContainerWithCustomScan);
/* replace all paths with our custom scan and recalculate cheapest */
relOptInfo->pathlist = list_make1(path);
set_cheapest(relOptInfo);
return;
}
AdjustReadIntermediateResultCost(rte, relOptInfo);
AdjustReadIntermediateResultArrayCost(rte, relOptInfo);
if (rte->rtekind != RTE_RELATION)
{
return;
}
/*
* Use a memory context that's guaranteed to live long enough, could be
* called in a more shortly lived one (e.g. with GEQO).
*/
PlannerRestrictionContext *plannerRestrictionContext =
CurrentPlannerRestrictionContext();
MemoryContext restrictionsMemoryContext = plannerRestrictionContext->memoryContext;
MemoryContext oldMemoryContext = MemoryContextSwitchTo(restrictionsMemoryContext);
bool isCitusTable = IsCitusTable(rte->relid);
RelationRestriction *relationRestriction = palloc0(sizeof(RelationRestriction));
relationRestriction->index = restrictionIndex;
relationRestriction->relationId = rte->relid;
relationRestriction->rte = rte;
relationRestriction->relOptInfo = relOptInfo;
relationRestriction->citusTable = isCitusTable;
relationRestriction->plannerInfo = root;
/* see comments on GetVarFromAssignedParam() */
relationRestriction->outerPlanParamsList = OuterPlanParamsList(root);
relationRestriction->translatedVars = TranslatedVars(root,
relationRestriction->index);
RelationRestrictionContext *relationRestrictionContext =
plannerRestrictionContext->relationRestrictionContext;
/*
* We're also keeping track of whether all participant
* tables are reference tables.
*/
if (isCitusTable)
{
cacheEntry = GetCitusTableCacheEntry(rte->relid);
#if PG_VERSION_NUM == PG_VERSION_15
/*
* Postgres 15.0 had a bug regarding inherited statistics expressions,
* which is fixed in 15.1 via Postgres commit
* 1f1865e9083625239769c26f68b9c2861b8d4b1c.
*
* Hence, we only set this value on exactly PG15.0
*/
relOptInfo->statlist = NIL;
#endif
relationRestrictionContext->allReferenceTables &=
IsCitusTableTypeCacheEntry(cacheEntry, REFERENCE_TABLE);
}
relationRestrictionContext->relationRestrictionList =
lappend(relationRestrictionContext->relationRestrictionList, relationRestriction);
MemoryContextSwitchTo(oldMemoryContext);
}
/*
* multi_get_relation_info_hook modifies the relation's indexlist
* if necessary, to avoid a crash in PG16 caused by our
* Citus function AdjustPartitioningForDistributedPlanning().
*
* AdjustPartitioningForDistributedPlanning() is a hack that we use
* to prevent Postgres' standard_planner() to expand all the partitions
* for the distributed planning when a distributed partitioned table
* is queried. It is required for both correctness and performance
* reasons. Although we can eliminate the use of the function for
* the correctness (e.g., make sure that rest of the planner can handle
* partitions), it's performance implication is hard to avoid. Certain
* planning logic of Citus (such as router or query pushdown) relies
* heavily on the relationRestrictionList. If
* AdjustPartitioningForDistributedPlanning() is removed, all the
* partitions show up in the relationRestrictionList, causing high
* planning times for such queries.
*/
void
multi_get_relation_info_hook(PlannerInfo *root, Oid relationObjectId, bool inhparent,
RelOptInfo *rel)
{
if (!CitusHasBeenLoaded())
{
return;
}
Index varno = rel->relid;
RangeTblEntry *rangeTableEntry = planner_rt_fetch(varno, root);
if (RTEWentThroughAdjustPartitioning(rangeTableEntry))
{
ListCell *lc = NULL;
foreach(lc, rel->indexlist)
{
IndexOptInfo *indexOptInfo = (IndexOptInfo *) lfirst(lc);
if (get_rel_relkind(indexOptInfo->indexoid) == RELKIND_PARTITIONED_INDEX)
{
/*
* Normally, we should not need this. However, the combination of
* Postgres commit 3c569049b7b502bb4952483d19ce622ff0af5fd6 and
* Citus function AdjustPartitioningForDistributedPlanning()
* forces us to do this. The commit expects partitioned indexes
* to belong to relations with "inh" flag set properly. Whereas, the
* function overrides "inh" flag. To avoid a crash,
* we go over the list of indexinfos and remove all partitioned indexes.
* Partitioned indexes were ignored pre PG16 anyway, we are essentially
* not breaking any logic.
*/
rel->indexlist = foreach_delete_current(rel->indexlist, lc);
}
}
}
}
/*
* TranslatedVars deep copies the translated vars for the given relation index
* if there is any append rel list.
*/
static List *
TranslatedVars(PlannerInfo *root, int relationIndex)
{
List *translatedVars = NIL;
if (root->append_rel_list != NIL)
{
AppendRelInfo *targetAppendRelInfo =
FindTargetAppendRelInfo(root, relationIndex);
if (targetAppendRelInfo != NULL)
{
/* postgres deletes translated_vars, hence we deep copy them here */
Node *targetNode = NULL;
foreach_declared_ptr(targetNode, targetAppendRelInfo->translated_vars)
{
translatedVars =
lappend(translatedVars, copyObject(targetNode));
}
}
}
return translatedVars;
}
/*
* FindTargetAppendRelInfo finds the target append rel info for the given
* relation rte index.
*/
static AppendRelInfo *
FindTargetAppendRelInfo(PlannerInfo *root, int relationRteIndex)
{
AppendRelInfo *appendRelInfo = NULL;
/* iterate on the queries that are part of UNION ALL subselects */
foreach_declared_ptr(appendRelInfo, root->append_rel_list)
{
/*
* We're only interested in the child rel that is equal to the
* relation we're investigating. Here we don't need to find the offset
* because postgres adds an offset to child_relid and parent_relid after
* calling multi_relation_restriction_hook.
*/
if (appendRelInfo->child_relid == relationRteIndex)
{
return appendRelInfo;
}
}
return NULL;
}
/*
* AdjustReadIntermediateResultCost adjusts the row count and total cost
* of a read_intermediate_result call based on the file size.
*/
static void
AdjustReadIntermediateResultCost(RangeTblEntry *rangeTableEntry, RelOptInfo *relOptInfo)
{
if (rangeTableEntry->rtekind != RTE_FUNCTION ||
list_length(rangeTableEntry->functions) != 1)
{
/* avoid more expensive checks below for non-functions */
return;
}
if (!CitusHasBeenLoaded() || !CheckCitusVersion(DEBUG5))
{
/* read_intermediate_result may not exist */
return;
}
if (!ContainsReadIntermediateResultFunction((Node *) rangeTableEntry->functions))
{
return;
}
RangeTblFunction *rangeTableFunction = (RangeTblFunction *) linitial(
rangeTableEntry->functions);
FuncExpr *funcExpression = (FuncExpr *) rangeTableFunction->funcexpr;
Const *resultIdConst = (Const *) linitial(funcExpression->args);
if (!IsA(resultIdConst, Const))
{
/* not sure how to interpret non-const */
return;
}
Datum resultIdDatum = resultIdConst->constvalue;
Const *resultFormatConst = (Const *) lsecond(funcExpression->args);
if (!IsA(resultFormatConst, Const))
{
/* not sure how to interpret non-const */
return;
}
AdjustReadIntermediateResultsCostInternal(relOptInfo,
rangeTableFunction->funccoltypes,
1, &resultIdDatum, resultFormatConst);
}
/*
* AdjustReadIntermediateResultArrayCost adjusts the row count and total cost
* of a read_intermediate_results(resultIds, format) call based on the file size.
*/
static void
AdjustReadIntermediateResultArrayCost(RangeTblEntry *rangeTableEntry,
RelOptInfo *relOptInfo)
{
Datum *resultIdArray = NULL;
int resultIdCount = 0;
if (rangeTableEntry->rtekind != RTE_FUNCTION ||
list_length(rangeTableEntry->functions) != 1)
{
/* avoid more expensive checks below for non-functions */
return;
}
if (!CitusHasBeenLoaded() || !CheckCitusVersion(DEBUG5))
{
/* read_intermediate_result may not exist */
return;
}
if (!ContainsReadIntermediateResultArrayFunction((Node *) rangeTableEntry->functions))
{
return;
}
RangeTblFunction *rangeTableFunction =
(RangeTblFunction *) linitial(rangeTableEntry->functions);
FuncExpr *funcExpression = (FuncExpr *) rangeTableFunction->funcexpr;
Const *resultIdConst = (Const *) linitial(funcExpression->args);
if (!IsA(resultIdConst, Const))
{
/* not sure how to interpret non-const */
return;
}
Datum resultIdArrayDatum = resultIdConst->constvalue;
deconstruct_array(DatumGetArrayTypeP(resultIdArrayDatum), TEXTOID, -1, false,
'i', &resultIdArray, NULL, &resultIdCount);
Const *resultFormatConst = (Const *) lsecond(funcExpression->args);
if (!IsA(resultFormatConst, Const))
{
/* not sure how to interpret non-const */
return;
}
AdjustReadIntermediateResultsCostInternal(relOptInfo,
rangeTableFunction->funccoltypes,
resultIdCount, resultIdArray,
resultFormatConst);
}
/*
* AdjustReadIntermediateResultsCostInternal adjusts the row count and total cost
* of reading intermediate results based on file sizes.
*/
static void
AdjustReadIntermediateResultsCostInternal(RelOptInfo *relOptInfo, List *columnTypes,
int resultIdCount, Datum *resultIds,
Const *resultFormatConst)
{
PathTarget *reltarget = relOptInfo->reltarget;
List *pathList = relOptInfo->pathlist;
double rowCost = 0.;
double rowSizeEstimate = 0;
double rowCountEstimate = 0.;
double ioCost = 0.;
QualCost funcCost = { 0., 0. };
int64 totalResultSize = 0;
ListCell *typeCell = NULL;
Datum resultFormatDatum = resultFormatConst->constvalue;
Oid resultFormatId = DatumGetObjectId(resultFormatDatum);
bool binaryFormat = (resultFormatId == BinaryCopyFormatId());
for (int index = 0; index < resultIdCount; index++)
{
char *resultId = TextDatumGetCString(resultIds[index]);
int64 resultSize = IntermediateResultSize(resultId);
if (resultSize < 0)
{
/* result does not exist, will probably error out later on */
return;
}
if (binaryFormat)
{
/* subtract 11-byte signature + 8 byte header + 2-byte footer */
totalResultSize -= 21;
}
totalResultSize += resultSize;
}
/* start with the cost of evaluating quals */
rowCost += relOptInfo->baserestrictcost.per_tuple;
/* postgres' estimate for the width of the rows */
rowSizeEstimate += reltarget->width;
/* add 2 bytes for column count (binary) or line separator (text) */
rowSizeEstimate += 2;
foreach(typeCell, columnTypes)
{
Oid columnTypeId = lfirst_oid(typeCell);
Oid inputFunctionId = InvalidOid;
Oid typeIOParam = InvalidOid;
if (binaryFormat)
{
getTypeBinaryInputInfo(columnTypeId, &inputFunctionId, &typeIOParam);
/* binary format: 4 bytes for field size */
rowSizeEstimate += 4;
}
else
{
getTypeInputInfo(columnTypeId, &inputFunctionId, &typeIOParam);
/* text format: 1 byte for tab separator */
rowSizeEstimate += 1;
}
/* add the cost of parsing a column */
add_function_cost(NULL, inputFunctionId, NULL, &funcCost);
}
rowCost += funcCost.per_tuple;
/* estimate the number of rows based on the file size and estimated row size */
rowCountEstimate = Max(1, (double) totalResultSize / rowSizeEstimate);
/* cost of reading the data */
ioCost = seq_page_cost * totalResultSize / BLCKSZ;
Assert(pathList != NIL);
/* tell the planner about the cost and row count of the function */
Path *path = (Path *) linitial(pathList);
path->rows = rowCountEstimate;
path->total_cost = rowCountEstimate * rowCost + ioCost;
path->startup_cost = funcCost.startup + relOptInfo->baserestrictcost.startup;
}
/*
* OuterPlanParamsList creates a list of RootPlanParams for outer nodes of the
* given root. The first item in the list corresponds to parent_root, and the
* last item corresponds to the outer most node.
*/
static List *
OuterPlanParamsList(PlannerInfo *root)
{
List *planParamsList = NIL;
for (PlannerInfo *outerNodeRoot = root->parent_root; outerNodeRoot != NULL;
outerNodeRoot = outerNodeRoot->parent_root)
{
RootPlanParams *rootPlanParams = palloc0(sizeof(RootPlanParams));
rootPlanParams->root = outerNodeRoot;
/*
* TODO: In SearchPlannerParamList() we are only interested in Var plan
* params, consider copying just them here.
*/
rootPlanParams->plan_params = CopyPlanParamList(outerNodeRoot->plan_params);
planParamsList = lappend(planParamsList, rootPlanParams);
}
return planParamsList;
}
/*
* CopyPlanParamList deep copies the input PlannerParamItem list and returns the newly
* allocated list.
* Note that we cannot use copyObject() function directly since there is no support for
* copying PlannerParamItem structs.
*/
static List *
CopyPlanParamList(List *originalPlanParamList)
{
ListCell *planParamCell = NULL;
List *copiedPlanParamList = NIL;
foreach(planParamCell, originalPlanParamList)
{
PlannerParamItem *originalParamItem = lfirst(planParamCell);
PlannerParamItem *copiedParamItem = makeNode(PlannerParamItem);
copiedParamItem->paramId = originalParamItem->paramId;
copiedParamItem->item = copyObject(originalParamItem->item);
copiedPlanParamList = lappend(copiedPlanParamList, copiedParamItem);
}
return copiedPlanParamList;
}
/*
* CreateAndPushPlannerRestrictionContext creates a new planner restriction
* context with an empty relation restriction context and an empty join and
* a copy of the given fast path restriction context (if present). Finally,
* the planner restriction context is inserted to the beginning of the
* global plannerRestrictionContextList and it is returned.
*/
static PlannerRestrictionContext *
CreateAndPushPlannerRestrictionContext(
FastPathRestrictionContext *fastPathRestrictionContext)
{
PlannerRestrictionContext *plannerRestrictionContext =
palloc0(sizeof(PlannerRestrictionContext));
plannerRestrictionContext->relationRestrictionContext =
palloc0(sizeof(RelationRestrictionContext));
plannerRestrictionContext->joinRestrictionContext =
palloc0(sizeof(JoinRestrictionContext));
plannerRestrictionContext->fastPathRestrictionContext =
palloc0(sizeof(FastPathRestrictionContext));
if (fastPathRestrictionContext != NULL)
{
/* copy the given fast path restriction context */
memcpy(plannerRestrictionContext->fastPathRestrictionContext,
fastPathRestrictionContext,
sizeof(FastPathRestrictionContext));
}
plannerRestrictionContext->memoryContext = CurrentMemoryContext;
/* we'll apply logical AND as we add tables */
plannerRestrictionContext->relationRestrictionContext->allReferenceTables = true;
plannerRestrictionContextList = lcons(plannerRestrictionContext,
plannerRestrictionContextList);
return plannerRestrictionContext;
}
/*
* TranslatedVarsForRteIdentity gets an rteIdentity and returns the
* translatedVars that belong to the range table relation. If no
* translatedVars found, the function returns NIL;
*/
List *
TranslatedVarsForRteIdentity(int rteIdentity)
{
PlannerRestrictionContext *currentPlannerRestrictionContext =
CurrentPlannerRestrictionContext();
List *relationRestrictionList =
currentPlannerRestrictionContext->relationRestrictionContext->
relationRestrictionList;
RelationRestriction *relationRestriction = NULL;
foreach_declared_ptr(relationRestriction, relationRestrictionList)
{
if (GetRTEIdentity(relationRestriction->rte) == rteIdentity)
{
return relationRestriction->translatedVars;
}
}
return NIL;
}
/*
* CurrentRestrictionContext returns the most recently added
* PlannerRestrictionContext from the plannerRestrictionContextList list.
*/
static PlannerRestrictionContext *
CurrentPlannerRestrictionContext(void)
{
Assert(plannerRestrictionContextList != NIL);
PlannerRestrictionContext *plannerRestrictionContext =
(PlannerRestrictionContext *) linitial(plannerRestrictionContextList);
if (plannerRestrictionContext == NULL)
{
ereport(ERROR, (errcode(ERRCODE_INTERNAL_ERROR),
errmsg("planner restriction context stack was empty"),
errdetail("Please report this to the Citus core team.")));
}
return plannerRestrictionContext;
}
/*
* PopPlannerRestrictionContext removes the most recently added restriction contexts from
* the planner restriction context list. The function assumes the list is not empty.
*/
static void
PopPlannerRestrictionContext(void)
{
plannerRestrictionContextList = list_delete_first(plannerRestrictionContextList);
}
/*
* ResetPlannerRestrictionContext resets the element of the given planner
* restriction context.
*/
static void
ResetPlannerRestrictionContext(PlannerRestrictionContext *plannerRestrictionContext)
{
plannerRestrictionContext->relationRestrictionContext =
palloc0(sizeof(RelationRestrictionContext));
plannerRestrictionContext->joinRestrictionContext =
palloc0(sizeof(JoinRestrictionContext));
plannerRestrictionContext->fastPathRestrictionContext =
palloc0(sizeof(FastPathRestrictionContext));
/* we'll apply logical AND as we add tables */
plannerRestrictionContext->relationRestrictionContext->allReferenceTables = true;
}
/*
* HasUnresolvedExternParamsWalker returns true if the passed in expression
* has external parameters that are not contained in boundParams, false
* otherwise.
*/
bool
HasUnresolvedExternParamsWalker(Node *expression, ParamListInfo boundParams)
{
if (expression == NULL)
{
return false;
}
if (IsA(expression, Param))
{
Param *param = (Param *) expression;
int paramId = param->paramid;
/* only care about user supplied parameters */
if (param->paramkind != PARAM_EXTERN)
{
return false;
}
/* check whether parameter is available (and valid) */
if (boundParams && paramId > 0 && paramId <= boundParams->numParams)
{
Oid paramType = InvalidOid;
/* give hook a chance in case parameter is dynamic */
if (boundParams->paramFetch != NULL)
{
ParamExternData externParamPlaceholder;
paramType = (*boundParams->paramFetch)(boundParams, paramId, false,
&externParamPlaceholder)->ptype;
}
else
{
paramType = boundParams->params[paramId - 1].ptype;
}
if (OidIsValid(paramType))
{
return false;
}
}
return true;
}
/* keep traversing */
if (IsA(expression, Query))
{
return query_tree_walker((Query *) expression,
HasUnresolvedExternParamsWalker,
boundParams,
0);
}
else
{
return expression_tree_walker(expression,
HasUnresolvedExternParamsWalker,
boundParams);
}
}
/*
* ContainsSingleShardTable returns true if given query contains reference
* to a single-shard table.
*/
bool
ContainsSingleShardTable(Query *query)
{
RTEListProperties *rteListProperties = GetRTEListPropertiesForQuery(query);
return rteListProperties->hasSingleShardDistTable;
}
/*
* GetRTEListPropertiesForQuery is a wrapper around GetRTEListProperties that
* returns RTEListProperties for the rte list retrieved from query.
*/
RTEListProperties *
GetRTEListPropertiesForQuery(Query *query)
{
List *rteList = ExtractRangeTableEntryList(query);
return GetRTEListProperties(rteList);
}
/*
* GetRTEListProperties returns RTEListProperties struct processing the given
* rangeTableList.
*/
static RTEListProperties *
GetRTEListProperties(List *rangeTableList)
{
RTEListProperties *rteListProperties = palloc0(sizeof(RTEListProperties));
RangeTblEntry *rangeTableEntry = NULL;
foreach_declared_ptr(rangeTableEntry, rangeTableList)
{
if (rangeTableEntry->rtekind != RTE_RELATION)
{
continue;
}
else if (rangeTableEntry->relkind == RELKIND_VIEW)
{
/*
* Skip over views, distributed tables within (regular) views are
* already in rangeTableList.
*/
continue;
}
if (rangeTableEntry->relkind == RELKIND_MATVIEW)
{
/*
* Record materialized views as they are similar to postgres local tables
* but it is nice to record them separately.
*
* Regular tables, partitioned tables or foreign tables can be a local or
* distributed tables and we can qualify them accurately.
*
* For regular views, we don't care because their definitions are already
* in the same query tree and we can detect what is inside the view definition.
*
* For materialized views, they are just local tables in the queries. But, when
* REFRESH MATERIALIZED VIEW is used, they behave similar to regular views, adds
* the view definition to the query. Hence, it is useful to record it seperately
* and let the callers decide on what to do.
*/
rteListProperties->hasMaterializedView = true;
continue;
}
Oid relationId = rangeTableEntry->relid;
CitusTableCacheEntry *cacheEntry = LookupCitusTableCacheEntry(relationId);
if (!cacheEntry)
{
rteListProperties->hasPostgresLocalTable = true;
}
else if (IsCitusTableTypeCacheEntry(cacheEntry, REFERENCE_TABLE))
{
rteListProperties->hasReferenceTable = true;
}
else if (IsCitusTableTypeCacheEntry(cacheEntry, CITUS_LOCAL_TABLE))
{
rteListProperties->hasCitusLocalTable = true;
}
else if (IsCitusTableTypeCacheEntry(cacheEntry, DISTRIBUTED_TABLE))
{
rteListProperties->hasDistributedTable = true;
if (!HasDistributionKeyCacheEntry(cacheEntry))
{
rteListProperties->hasSingleShardDistTable = true;
}
else
{
rteListProperties->hasDistTableWithShardKey = true;
}
}
else
{
/* it's not expected, but let's do a bug catch here */
ereport(ERROR, (errcode(ERRCODE_INTERNAL_ERROR),
errmsg("encountered with an unexpected citus "
"table type while processing range table "
"entries of query")));
}
}
rteListProperties->hasCitusTable = (rteListProperties->hasDistributedTable ||
rteListProperties->hasReferenceTable ||
rteListProperties->hasCitusLocalTable);
return rteListProperties;
}
/*
* WarnIfListHasForeignDistributedTable iterates the given list and logs a WARNING
* if the given relation is a distributed foreign table.
* We do that because now we only support Citus Local Tables for foreign tables.
*/
static void
WarnIfListHasForeignDistributedTable(List *rangeTableList)
{
static bool DistributedForeignTableWarningPrompted = false;
RangeTblEntry *rangeTableEntry = NULL;
foreach_declared_ptr(rangeTableEntry, rangeTableList)
{
if (DistributedForeignTableWarningPrompted)
{
return;
}
Oid relationId = rangeTableEntry->relid;
if (IsForeignTable(relationId) && IsCitusTable(relationId) &&
!IsCitusTableType(relationId, CITUS_LOCAL_TABLE))
{
DistributedForeignTableWarningPrompted = true;
ereport(WARNING, (errmsg(
"support for distributed foreign tables are deprecated, "
"please use Citus managed local tables"),
(errdetail(
"Foreign tables can be added to metadata using UDF: "
"citus_add_local_table_to_metadata()"))));
}
}
}
static bool
CheckPostPlanDistribution(bool isDistributedQuery,
Query *origQuery, List *rangeTableList,
Query *plannedQuery)
{
if (isDistributedQuery)
{
Node *origQuals = origQuery->jointree->quals;
Node *plannedQuals = plannedQuery->jointree->quals;
#if PG_VERSION_NUM >= PG_VERSION_17
if (IsMergeQuery(origQuery))
{
origQuals = origQuery->mergeJoinCondition;
plannedQuals = plannedQuery->mergeJoinCondition;
}
#endif
/*
* The WHERE quals have been eliminated by the Postgres planner, possibly by
* an OR clause that was simplified to TRUE. In such cases, we need to check
* if the planned query still requires distributed planning.
*/
if (origQuals != NULL && plannedQuals == NULL)
{
List *rtesPostPlan = ExtractRangeTableEntryList(plannedQuery);
if (list_length(rtesPostPlan) < list_length(rangeTableList))
{
isDistributedQuery = ListContainsDistributedTableRTE(
rtesPostPlan, NULL);
}
}
}
return isDistributedQuery;
}