mirror of https://github.com/citusdata/citus.git
4610 lines
144 KiB
C
4610 lines
144 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* multi_logical_optimizer.c
|
|
* Routines for optimizing logical plan trees based on multi-relational
|
|
* algebra.
|
|
*
|
|
* Copyright (c) 2012-2016, Citus Data, Inc.
|
|
*
|
|
* $Id$
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
#include <math.h>
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "access/htup_details.h"
|
|
#include "access/nbtree.h"
|
|
#include "catalog/indexing.h"
|
|
#include "catalog/namespace.h"
|
|
#include "catalog/pg_aggregate.h"
|
|
#include "catalog/pg_am.h"
|
|
#include "catalog/pg_proc.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/extension.h"
|
|
#include "distributed/citus_nodes.h"
|
|
#include "distributed/citus_ruleutils.h"
|
|
#include "distributed/metadata_cache.h"
|
|
#include "distributed/multi_logical_optimizer.h"
|
|
#include "distributed/multi_logical_planner.h"
|
|
#include "distributed/multi_physical_planner.h"
|
|
#include "distributed/pg_dist_partition.h"
|
|
#include "distributed/worker_protocol.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "nodes/print.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/relcache.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/tqual.h"
|
|
|
|
|
|
/* Config variable managed via guc.c */
|
|
int LimitClauseRowFetchCount = -1; /* number of rows to fetch from each task */
|
|
double CountDistinctErrorRate = 0.0; /* precision of count(distinct) approximate */
|
|
|
|
|
|
typedef struct MasterAggregateWalkerContext
|
|
{
|
|
bool repartitionSubquery;
|
|
AttrNumber columnId;
|
|
} MasterAggregateWalkerContext;
|
|
|
|
typedef struct WorkerAggregateWalkerContext
|
|
{
|
|
bool repartitionSubquery;
|
|
List *expressionList;
|
|
bool createGroupByClause;
|
|
} WorkerAggregateWalkerContext;
|
|
|
|
|
|
/* Local functions forward declarations */
|
|
static MultiSelect * AndSelectNode(MultiSelect *selectNode);
|
|
static MultiSelect * OrSelectNode(MultiSelect *selectNode);
|
|
static List * OrSelectClauseList(List *selectClauseList);
|
|
static void PushDownNodeLoop(MultiUnaryNode *currentNode);
|
|
static void PullUpCollectLoop(MultiCollect *collectNode);
|
|
static void AddressProjectSpecialConditions(MultiProject *projectNode);
|
|
static List * ListCopyDeep(List *nodeList);
|
|
static PushDownStatus CanPushDown(MultiUnaryNode *parentNode);
|
|
static PullUpStatus CanPullUp(MultiUnaryNode *childNode);
|
|
static PushDownStatus Commutative(MultiUnaryNode *parentNode,
|
|
MultiUnaryNode *childNode);
|
|
static PushDownStatus Distributive(MultiUnaryNode *parentNode,
|
|
MultiBinaryNode *childNode);
|
|
static PullUpStatus Factorizable(MultiBinaryNode *parentNode,
|
|
MultiUnaryNode *childNode);
|
|
static List * SelectClauseTableIdList(List *selectClauseList);
|
|
static MultiUnaryNode * GenerateLeftNode(MultiUnaryNode *currentNode,
|
|
MultiBinaryNode *binaryNode);
|
|
static MultiUnaryNode * GenerateRightNode(MultiUnaryNode *currentNode,
|
|
MultiBinaryNode *binaryNode);
|
|
static MultiUnaryNode * GenerateNode(MultiUnaryNode *currentNode, MultiNode *childNode);
|
|
static List * TableIdListColumns(List *tableIdList, List *columnList);
|
|
static List * TableIdListSelectClauses(List *tableIdList, List *selectClauseList);
|
|
static void PushDownBelowUnaryChild(MultiUnaryNode *currentNode,
|
|
MultiUnaryNode *childNode);
|
|
static void PlaceUnaryNodeChild(MultiUnaryNode *unaryNode, MultiUnaryNode *childNode);
|
|
static void PlaceBinaryNodeLeftChild(MultiBinaryNode *binaryNode,
|
|
MultiUnaryNode *newLeftChildNode);
|
|
static void PlaceBinaryNodeRightChild(MultiBinaryNode *binaryNode,
|
|
MultiUnaryNode *newRightChildNode);
|
|
static void RemoveUnaryNode(MultiUnaryNode *unaryNode);
|
|
static void PullUpUnaryNode(MultiUnaryNode *unaryNode);
|
|
static void ParentSetNewChild(MultiNode *parentNode, MultiNode *oldChildNode,
|
|
MultiNode *newChildNode);
|
|
|
|
/* Local functions forward declarations for aggregate expressions */
|
|
static void ApplyExtendedOpNodes(MultiExtendedOp *originalNode,
|
|
MultiExtendedOp *masterNode,
|
|
MultiExtendedOp *workerNode);
|
|
static void TransformSubqueryNode(MultiTable *subqueryNode);
|
|
static MultiExtendedOp * MasterExtendedOpNode(MultiExtendedOp *originalOpNode);
|
|
static Node * MasterAggregateMutator(Node *originalNode,
|
|
MasterAggregateWalkerContext *walkerContext);
|
|
static Expr * MasterAggregateExpression(Aggref *originalAggregate,
|
|
MasterAggregateWalkerContext *walkerContext);
|
|
static Expr * MasterAverageExpression(Oid sumAggregateType, Oid countAggregateType,
|
|
AttrNumber *columnId);
|
|
static Expr * AddTypeConversion(Node *originalAggregate, Node *newExpression);
|
|
static MultiExtendedOp * WorkerExtendedOpNode(MultiExtendedOp *originalOpNode);
|
|
static bool WorkerAggregateWalker(Node *node,
|
|
WorkerAggregateWalkerContext *walkerContext);
|
|
static List * WorkerAggregateExpressionList(Aggref *originalAggregate,
|
|
WorkerAggregateWalkerContext *walkerContextry);
|
|
static AggregateType GetAggregateType(Oid aggFunctionId);
|
|
static Oid AggregateArgumentType(Aggref *aggregate);
|
|
static Oid AggregateFunctionOid(const char *functionName, Oid inputType);
|
|
static Oid TypeOid(Oid schemaId, const char *typeName);
|
|
|
|
/* Local functions forward declarations for count(distinct) approximations */
|
|
static char * CountDistinctHashFunctionName(Oid argumentType);
|
|
static int CountDistinctStorageSize(double approximationErrorRate);
|
|
static Const * MakeIntegerConst(int32 integerValue);
|
|
static Const * MakeIntegerConstInt64(int64 integerValue);
|
|
|
|
/* Local functions forward declarations for aggregate expression checks */
|
|
static void ErrorIfContainsUnsupportedAggregate(MultiNode *logicalPlanNode);
|
|
static void ErrorIfUnsupportedArrayAggregate(Aggref *arrayAggregateExpression);
|
|
static void ErrorIfUnsupportedAggregateDistinct(Aggref *aggregateExpression,
|
|
MultiNode *logicalPlanNode);
|
|
static Var * AggregateDistinctColumn(Aggref *aggregateExpression);
|
|
static bool TablePartitioningSupportsDistinct(List *tableNodeList,
|
|
MultiExtendedOp *opNode,
|
|
Var *distinctColumn);
|
|
static bool GroupedByColumn(List *groupClauseList, List *targetList, Var *column);
|
|
|
|
/* Local functions forward declarations for subquery pushdown checks */
|
|
static void ErrorIfContainsUnsupportedSubquery(MultiNode *logicalPlanNode);
|
|
static void ErrorIfCannotPushdownSubquery(Query *subqueryTree, bool outerQueryHasLimit);
|
|
static void ErrorIfUnsupportedTableCombination(Query *queryTree);
|
|
static void ErrorIfUnsupportedUnionQuery(Query *unionQuery);
|
|
static bool TargetListOnPartitionColumn(Query *query, List *targetEntryList);
|
|
static bool IsPartitionColumnRecursive(Expr *columnExpression, Query *query);
|
|
static FieldSelect * CompositeFieldRecursive(Expr *expression, Query *query);
|
|
static bool FullCompositeFieldList(List *compositeFieldList);
|
|
static Query * LateralQuery(Query *query);
|
|
static bool SupportedLateralQuery(Query *parentQuery, Query *lateralQuery);
|
|
static bool JoinOnPartitionColumn(Query *query);
|
|
static void ErrorIfUnsupportedShardDistribution(Query *query);
|
|
static List * RelationIdList(Query *query);
|
|
static bool CoPartitionedTables(Oid firstRelationId, Oid secondRelationId);
|
|
static bool ShardIntervalsEqual(FmgrInfo *comparisonFunction,
|
|
ShardInterval *firstInterval,
|
|
ShardInterval *secondInterval);
|
|
static void ErrorIfUnsupportedFilters(Query *subquery);
|
|
static bool EqualOpExpressionLists(List *firstOpExpressionList,
|
|
List *secondOpExpressionList);
|
|
|
|
/* Local functions forward declarations for limit clauses */
|
|
static Node * WorkerLimitCount(MultiExtendedOp *originalOpNode);
|
|
static List * WorkerSortClauseList(MultiExtendedOp *originalOpNode);
|
|
static bool CanPushDownLimitApproximate(List *sortClauseList, List *targetList);
|
|
static bool HasOrderByAggregate(List *sortClauseList, List *targetList);
|
|
static bool HasOrderByAverage(List *sortClauseList, List *targetList);
|
|
static bool HasOrderByComplexExpression(List *sortClauseList, List *targetList);
|
|
static bool HasOrderByHllType(List *sortClauseList, List *targetList);
|
|
|
|
|
|
/*
|
|
* MultiLogicalPlanOptimize applies multi-relational algebra optimizations on
|
|
* the given logical plan tree. Specifically, the function applies four set of
|
|
* optimizations in a particular order.
|
|
*
|
|
* First, the function splits the search node into two nodes that contain And
|
|
* and Or clauses, and pushes down the node that contains And clauses. Second,
|
|
* the function pushes down the project node; this node either contains columns
|
|
* to return to the user, or aggregate expressions used by the aggregate node.
|
|
* Third, the function pulls up the collect operators in the tree. Fourth, the
|
|
* function finds the extended operator node, and splits this node into master
|
|
* and worker extended operator nodes.
|
|
*/
|
|
void
|
|
MultiLogicalPlanOptimize(MultiTreeRoot *multiLogicalPlan)
|
|
{
|
|
bool hasOrderByHllType = false;
|
|
List *selectNodeList = NIL;
|
|
List *projectNodeList = NIL;
|
|
List *collectNodeList = NIL;
|
|
List *extendedOpNodeList = NIL;
|
|
List *tableNodeList = NIL;
|
|
ListCell *collectNodeCell = NULL;
|
|
ListCell *tableNodeCell = NULL;
|
|
MultiProject *projectNode = NULL;
|
|
MultiExtendedOp *extendedOpNode = NULL;
|
|
MultiExtendedOp *masterExtendedOpNode = NULL;
|
|
MultiExtendedOp *workerExtendedOpNode = NULL;
|
|
MultiNode *logicalPlanNode = (MultiNode *) multiLogicalPlan;
|
|
|
|
/* check that we can optimize aggregates in the plan */
|
|
ErrorIfContainsUnsupportedAggregate(logicalPlanNode);
|
|
|
|
/* check that we can pushdown subquery in the plan */
|
|
ErrorIfContainsUnsupportedSubquery(logicalPlanNode);
|
|
|
|
/*
|
|
* If a select node exists, we use the idempower property to split the node
|
|
* into two nodes that contain And and Or clauses. If both And and Or nodes
|
|
* exist, we modify the tree in place to swap the original select node with
|
|
* And and Or nodes. We then push down the And select node if it exists.
|
|
*/
|
|
selectNodeList = FindNodesOfType(logicalPlanNode, T_MultiSelect);
|
|
if (selectNodeList != NIL)
|
|
{
|
|
MultiSelect *selectNode = (MultiSelect *) linitial(selectNodeList);
|
|
MultiSelect *andSelectNode = AndSelectNode(selectNode);
|
|
MultiSelect *orSelectNode = OrSelectNode(selectNode);
|
|
|
|
if (andSelectNode != NULL && orSelectNode != NULL)
|
|
{
|
|
MultiNode *parentNode = ParentNode((MultiNode *) selectNode);
|
|
MultiNode *childNode = ChildNode((MultiUnaryNode *) selectNode);
|
|
Assert(UnaryOperator(parentNode));
|
|
|
|
SetChild((MultiUnaryNode *) parentNode, (MultiNode *) orSelectNode);
|
|
SetChild((MultiUnaryNode *) orSelectNode, (MultiNode *) andSelectNode);
|
|
SetChild((MultiUnaryNode *) andSelectNode, (MultiNode *) childNode);
|
|
}
|
|
else if (andSelectNode != NULL && orSelectNode == NULL)
|
|
{
|
|
andSelectNode = selectNode; /* no need to modify the tree */
|
|
}
|
|
|
|
if (andSelectNode != NULL)
|
|
{
|
|
PushDownNodeLoop((MultiUnaryNode *) andSelectNode);
|
|
}
|
|
}
|
|
|
|
/* push down the multi project node */
|
|
projectNodeList = FindNodesOfType(logicalPlanNode, T_MultiProject);
|
|
projectNode = (MultiProject *) linitial(projectNodeList);
|
|
PushDownNodeLoop((MultiUnaryNode *) projectNode);
|
|
|
|
/* pull up collect nodes and merge duplicate collects */
|
|
collectNodeList = FindNodesOfType(logicalPlanNode, T_MultiCollect);
|
|
foreach(collectNodeCell, collectNodeList)
|
|
{
|
|
MultiCollect *collectNode = (MultiCollect *) lfirst(collectNodeCell);
|
|
PullUpCollectLoop(collectNode);
|
|
}
|
|
|
|
/*
|
|
* We split the extended operator node into its equivalent master and worker
|
|
* operator nodes; and if the extended operator has aggregates, we transform
|
|
* aggregate functions accordingly for the master and worker operator nodes.
|
|
* If we can push down the limit clause, we also add limit count and sort
|
|
* clause list to the worker operator node. We then push the worker operator
|
|
* node below the collect node.
|
|
*/
|
|
extendedOpNodeList = FindNodesOfType(logicalPlanNode, T_MultiExtendedOp);
|
|
extendedOpNode = (MultiExtendedOp *) linitial(extendedOpNodeList);
|
|
|
|
masterExtendedOpNode = MasterExtendedOpNode(extendedOpNode);
|
|
workerExtendedOpNode = WorkerExtendedOpNode(extendedOpNode);
|
|
|
|
ApplyExtendedOpNodes(extendedOpNode, masterExtendedOpNode, workerExtendedOpNode);
|
|
|
|
tableNodeList = FindNodesOfType(logicalPlanNode, T_MultiTable);
|
|
foreach(tableNodeCell, tableNodeList)
|
|
{
|
|
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
|
|
if (tableNode->relationId == SUBQUERY_RELATION_ID)
|
|
{
|
|
ErrorIfContainsUnsupportedAggregate((MultiNode *) tableNode);
|
|
TransformSubqueryNode(tableNode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When enabled, count(distinct) approximation uses hll as the intermediate
|
|
* data type. We currently have a mismatch between hll target entry and sort
|
|
* clause's sortop oid, so we can't push an order by on the hll data type to
|
|
* the worker node. We check that here and error out if necessary.
|
|
*/
|
|
hasOrderByHllType = HasOrderByHllType(workerExtendedOpNode->sortClauseList,
|
|
workerExtendedOpNode->targetList);
|
|
if (hasOrderByHllType)
|
|
{
|
|
ereport(ERROR, (errmsg("cannot approximate count(distinct) and order by it"),
|
|
errhint("You might need to disable approximations for either "
|
|
"count(distinct) or limit through configuration.")));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* AndSelectNode looks for AND clauses in the given select node. If they exist,
|
|
* the function returns these clauses in a new node. Otherwise, the function
|
|
* returns null.
|
|
*/
|
|
static MultiSelect *
|
|
AndSelectNode(MultiSelect *selectNode)
|
|
{
|
|
MultiSelect *andSelectNode = NULL;
|
|
List *selectClauseList = selectNode->selectClauseList;
|
|
List *orSelectClauseList = OrSelectClauseList(selectClauseList);
|
|
|
|
/* AND clauses are select clauses that are not OR clauses */
|
|
List *andSelectClauseList = list_difference(selectClauseList, orSelectClauseList);
|
|
if (andSelectClauseList != NIL)
|
|
{
|
|
andSelectNode = CitusMakeNode(MultiSelect);
|
|
andSelectNode->selectClauseList = andSelectClauseList;
|
|
}
|
|
|
|
return andSelectNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* OrSelectNode looks for OR clauses in the given select node. If they exist,
|
|
* the function returns these clauses in a new node. Otherwise, the function
|
|
* returns null.
|
|
*/
|
|
static MultiSelect *
|
|
OrSelectNode(MultiSelect *selectNode)
|
|
{
|
|
MultiSelect *orSelectNode = NULL;
|
|
List *selectClauseList = selectNode->selectClauseList;
|
|
List *orSelectClauseList = OrSelectClauseList(selectClauseList);
|
|
|
|
if (orSelectClauseList != NIL)
|
|
{
|
|
orSelectNode = CitusMakeNode(MultiSelect);
|
|
orSelectNode->selectClauseList = orSelectClauseList;
|
|
}
|
|
|
|
return orSelectNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* OrSelectClauseList walks over the select clause list, and returns all clauses
|
|
* that have OR expressions in them.
|
|
*/
|
|
static List *
|
|
OrSelectClauseList(List *selectClauseList)
|
|
{
|
|
List *orSelectClauseList = NIL;
|
|
ListCell *selectClauseCell = NULL;
|
|
|
|
foreach(selectClauseCell, selectClauseList)
|
|
{
|
|
Node *selectClause = (Node *) lfirst(selectClauseCell);
|
|
bool orClause = or_clause(selectClause);
|
|
if (orClause)
|
|
{
|
|
orSelectClauseList = lappend(orSelectClauseList, selectClause);
|
|
}
|
|
}
|
|
|
|
return orSelectClauseList;
|
|
}
|
|
|
|
|
|
/*
|
|
* PushDownNodeLoop pushes down the current node as far down the plan tree as
|
|
* possible. For this, the function first addresses any special conditions that
|
|
* may apply on the current node. Then, the function pushes down the current
|
|
* node if its child node is unary. If the child is binary, the function splits
|
|
* the current node into two nodes by applying generation rules, and recurses
|
|
* into itself to push down these two nodes.
|
|
*/
|
|
static void
|
|
PushDownNodeLoop(MultiUnaryNode *currentNode)
|
|
{
|
|
MultiUnaryNode *projectNodeGenerated = NULL;
|
|
MultiUnaryNode *leftNodeGenerated = NULL;
|
|
MultiUnaryNode *rightNodeGenerated = NULL;
|
|
|
|
PushDownStatus pushDownStatus = CanPushDown(currentNode);
|
|
while (pushDownStatus == PUSH_DOWN_VALID ||
|
|
pushDownStatus == PUSH_DOWN_SPECIAL_CONDITIONS)
|
|
{
|
|
MultiNode *childNode = currentNode->childNode;
|
|
bool unaryChild = UnaryOperator(childNode);
|
|
bool binaryChild = BinaryOperator(childNode);
|
|
|
|
/*
|
|
* We first check if we can use the idempower property to split the
|
|
* project node. We split at a partition node as it captures the
|
|
* minimal set of columns needed from a partition job. After the split
|
|
* we break from the loop and recursively call pushdown for the
|
|
* generated project node.
|
|
*/
|
|
MultiNode *parentNode = ParentNode((MultiNode *) currentNode);
|
|
CitusNodeTag currentNodeType = CitusNodeTag(currentNode);
|
|
CitusNodeTag parentNodeType = CitusNodeTag(parentNode);
|
|
|
|
if (currentNodeType == T_MultiProject && parentNodeType == T_MultiPartition)
|
|
{
|
|
projectNodeGenerated = GenerateNode(currentNode, childNode);
|
|
PlaceUnaryNodeChild(currentNode, projectNodeGenerated);
|
|
|
|
break;
|
|
}
|
|
|
|
/* address any special conditions before we can perform the pushdown */
|
|
if (pushDownStatus == PUSH_DOWN_SPECIAL_CONDITIONS)
|
|
{
|
|
MultiProject *projectNode = (MultiProject *) currentNode;
|
|
Assert(currentNodeType == T_MultiProject);
|
|
|
|
AddressProjectSpecialConditions(projectNode);
|
|
}
|
|
|
|
if (unaryChild)
|
|
{
|
|
MultiUnaryNode *unaryChildNode = (MultiUnaryNode *) childNode;
|
|
PushDownBelowUnaryChild(currentNode, unaryChildNode);
|
|
}
|
|
else if (binaryChild)
|
|
{
|
|
MultiBinaryNode *binaryChildNode = (MultiBinaryNode *) childNode;
|
|
leftNodeGenerated = GenerateLeftNode(currentNode, binaryChildNode);
|
|
rightNodeGenerated = GenerateRightNode(currentNode, binaryChildNode);
|
|
|
|
/* push down the generated nodes below the binary child node */
|
|
PlaceBinaryNodeLeftChild(binaryChildNode, leftNodeGenerated);
|
|
PlaceBinaryNodeRightChild(binaryChildNode, rightNodeGenerated);
|
|
|
|
/*
|
|
* Remove the current node, and break out of the push down loop for
|
|
* the current node. Then, recurse into the push down function for
|
|
* the newly generated nodes.
|
|
*/
|
|
RemoveUnaryNode(currentNode);
|
|
break;
|
|
}
|
|
|
|
pushDownStatus = CanPushDown(currentNode);
|
|
}
|
|
|
|
/* recursively perform pushdown of any nodes generated in the loop */
|
|
if (projectNodeGenerated != NULL)
|
|
{
|
|
PushDownNodeLoop(projectNodeGenerated);
|
|
}
|
|
if (leftNodeGenerated != NULL)
|
|
{
|
|
PushDownNodeLoop(leftNodeGenerated);
|
|
}
|
|
if (rightNodeGenerated != NULL)
|
|
{
|
|
PushDownNodeLoop(rightNodeGenerated);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* PullUpCollectLoop pulls up the collect node as far up as possible in the plan
|
|
* tree. The function also merges two collect nodes that are direct descendants
|
|
* of each other by removing the given collect node from the tree.
|
|
*/
|
|
static void
|
|
PullUpCollectLoop(MultiCollect *collectNode)
|
|
{
|
|
MultiNode *childNode = NULL;
|
|
MultiUnaryNode *currentNode = (MultiUnaryNode *) collectNode;
|
|
|
|
PullUpStatus pullUpStatus = CanPullUp(currentNode);
|
|
while (pullUpStatus == PULL_UP_VALID)
|
|
{
|
|
PullUpUnaryNode(currentNode);
|
|
pullUpStatus = CanPullUp(currentNode);
|
|
}
|
|
|
|
/*
|
|
* After pulling up the collect node, if we find that our child node is also
|
|
* a collect, we merge the two collect nodes together by removing this node.
|
|
*/
|
|
childNode = currentNode->childNode;
|
|
if (CitusIsA(childNode, MultiCollect))
|
|
{
|
|
RemoveUnaryNode(currentNode);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* AddressProjectSpecialConditions adds columns to the project node if necessary
|
|
* to make the node commutative and distributive with its child node. For this,
|
|
* the function checks for any special conditions between the project and child
|
|
* node, and determines the child node columns to add for the special conditions
|
|
* to apply. The function then adds these columns to the project node.
|
|
*/
|
|
static void
|
|
AddressProjectSpecialConditions(MultiProject *projectNode)
|
|
{
|
|
MultiNode *childNode = ChildNode((MultiUnaryNode *) projectNode);
|
|
CitusNodeTag childNodeTag = CitusNodeTag(childNode);
|
|
List *childColumnList = NIL;
|
|
|
|
/*
|
|
* We check if we need to include any child columns in the project node to
|
|
* address the following special conditions.
|
|
*
|
|
* SNC1: project node must include child node's projected columns, or
|
|
* SNC2: project node must include child node's partition column, or
|
|
* SNC3: project node must include child node's selection columns, or
|
|
* NSC1: project node must include child node's join columns.
|
|
*/
|
|
if (childNodeTag == T_MultiProject)
|
|
{
|
|
MultiProject *projectChildNode = (MultiProject *) childNode;
|
|
List *projectColumnList = projectChildNode->columnList;
|
|
|
|
childColumnList = ListCopyDeep(projectColumnList);
|
|
}
|
|
else if (childNodeTag == T_MultiPartition)
|
|
{
|
|
MultiPartition *partitionNode = (MultiPartition *) childNode;
|
|
Var *partitionColumn = partitionNode->partitionColumn;
|
|
List *partitionColumnList = list_make1(partitionColumn);
|
|
|
|
childColumnList = ListCopyDeep(partitionColumnList);
|
|
}
|
|
else if (childNodeTag == T_MultiSelect)
|
|
{
|
|
MultiSelect *selectNode = (MultiSelect *) childNode;
|
|
Node *selectClauseList = (Node *) selectNode->selectClauseList;
|
|
List *selectList = pull_var_clause_default(selectClauseList);
|
|
|
|
childColumnList = ListCopyDeep(selectList);
|
|
}
|
|
else if (childNodeTag == T_MultiJoin)
|
|
{
|
|
MultiJoin *joinNode = (MultiJoin *) childNode;
|
|
Node *joinClauseList = (Node *) joinNode->joinClauseList;
|
|
List *joinList = pull_var_clause_default(joinClauseList);
|
|
|
|
childColumnList = ListCopyDeep(joinList);
|
|
}
|
|
|
|
/*
|
|
* If we need to include any child columns, then find the columns that are
|
|
* not already in the project column list, and add them.
|
|
*/
|
|
if (childColumnList != NIL)
|
|
{
|
|
List *projectColumnList = projectNode->columnList;
|
|
List *newColumnList = list_concat_unique(projectColumnList, childColumnList);
|
|
|
|
projectNode->columnList = newColumnList;
|
|
}
|
|
}
|
|
|
|
|
|
/* Deep copies the given node list, and returns the deep copied list. */
|
|
static List *
|
|
ListCopyDeep(List *nodeList)
|
|
{
|
|
List *nodeCopyList = NIL;
|
|
ListCell *nodeCell = NULL;
|
|
|
|
foreach(nodeCell, nodeList)
|
|
{
|
|
Node *node = (Node *) lfirst(nodeCell);
|
|
Node *nodeCopy = copyObject(node);
|
|
|
|
nodeCopyList = lappend(nodeCopyList, nodeCopy);
|
|
}
|
|
|
|
return nodeCopyList;
|
|
}
|
|
|
|
|
|
/*
|
|
* CanPushDown determines if a particular node can be moved below its child. The
|
|
* criteria for pushing down a node is determined by multi-relational algebra's
|
|
* rules for commutativity and distributivity.
|
|
*/
|
|
static PushDownStatus
|
|
CanPushDown(MultiUnaryNode *parentNode)
|
|
{
|
|
PushDownStatus pushDownStatus = PUSH_DOWN_INVALID_FIRST;
|
|
MultiNode *childNode = parentNode->childNode;
|
|
bool unaryChild = UnaryOperator(childNode);
|
|
bool binaryChild = BinaryOperator(childNode);
|
|
|
|
if (unaryChild)
|
|
{
|
|
pushDownStatus = Commutative(parentNode, (MultiUnaryNode *) childNode);
|
|
}
|
|
else if (binaryChild)
|
|
{
|
|
pushDownStatus = Distributive(parentNode, (MultiBinaryNode *) childNode);
|
|
}
|
|
|
|
Assert(pushDownStatus != PUSH_DOWN_INVALID_FIRST);
|
|
return pushDownStatus;
|
|
}
|
|
|
|
|
|
/*
|
|
* CanPullUp determines if a particular node can be moved above its parent. The
|
|
* criteria for pulling up a node is determined by multi-relational algebra's
|
|
* rules for commutativity and factorizability.
|
|
*/
|
|
static PullUpStatus
|
|
CanPullUp(MultiUnaryNode *childNode)
|
|
{
|
|
PullUpStatus pullUpStatus = PULL_UP_INVALID_FIRST;
|
|
MultiNode *parentNode = ParentNode((MultiNode *) childNode);
|
|
bool unaryParent = UnaryOperator(parentNode);
|
|
bool binaryParent = BinaryOperator(parentNode);
|
|
|
|
if (unaryParent)
|
|
{
|
|
/*
|
|
* Evaluate if parent can be pushed down below the child node, since it
|
|
* is equivalent to pulling up the child above its parent.
|
|
*/
|
|
PushDownStatus parentPushDownStatus = PUSH_DOWN_INVALID_FIRST;
|
|
parentPushDownStatus = Commutative((MultiUnaryNode *) parentNode, childNode);
|
|
|
|
if (parentPushDownStatus == PUSH_DOWN_VALID)
|
|
{
|
|
pullUpStatus = PULL_UP_VALID;
|
|
}
|
|
else
|
|
{
|
|
pullUpStatus = PULL_UP_NOT_VALID;
|
|
}
|
|
}
|
|
else if (binaryParent)
|
|
{
|
|
pullUpStatus = Factorizable((MultiBinaryNode *) parentNode, childNode);
|
|
}
|
|
|
|
Assert(pullUpStatus != PULL_UP_INVALID_FIRST);
|
|
return pullUpStatus;
|
|
}
|
|
|
|
|
|
/*
|
|
* Commutative returns a status which denotes whether the given parent node can
|
|
* be pushed down below its child node using the commutative property.
|
|
*/
|
|
static PushDownStatus
|
|
Commutative(MultiUnaryNode *parentNode, MultiUnaryNode *childNode)
|
|
{
|
|
PushDownStatus pushDownStatus = PUSH_DOWN_NOT_VALID;
|
|
CitusNodeTag parentNodeTag = CitusNodeTag(parentNode);
|
|
CitusNodeTag childNodeTag = CitusNodeTag(childNode);
|
|
|
|
/* we cannot be commutative with non-query operators */
|
|
if (childNodeTag == T_MultiTreeRoot || childNodeTag == T_MultiTable)
|
|
{
|
|
return PUSH_DOWN_NOT_VALID;
|
|
}
|
|
|
|
/* first check for commutative operators and no special conditions */
|
|
if ((parentNodeTag == T_MultiPartition && childNodeTag == T_MultiProject) ||
|
|
(parentNodeTag == T_MultiPartition && childNodeTag == T_MultiPartition) ||
|
|
(parentNodeTag == T_MultiPartition && childNodeTag == T_MultiSelect))
|
|
{
|
|
pushDownStatus = PUSH_DOWN_VALID;
|
|
}
|
|
if ((parentNodeTag == T_MultiCollect && childNodeTag == T_MultiProject) ||
|
|
(parentNodeTag == T_MultiCollect && childNodeTag == T_MultiCollect) ||
|
|
(parentNodeTag == T_MultiCollect && childNodeTag == T_MultiSelect))
|
|
{
|
|
pushDownStatus = PUSH_DOWN_VALID;
|
|
}
|
|
if (parentNodeTag == T_MultiSelect)
|
|
{
|
|
pushDownStatus = PUSH_DOWN_VALID;
|
|
}
|
|
if (parentNodeTag == T_MultiProject && childNodeTag == T_MultiCollect)
|
|
{
|
|
pushDownStatus = PUSH_DOWN_VALID;
|
|
}
|
|
|
|
/*
|
|
* The project node is commutative with the below operators given that
|
|
* its special conditions apply.
|
|
*/
|
|
if ((parentNodeTag == T_MultiProject && childNodeTag == T_MultiProject) ||
|
|
(parentNodeTag == T_MultiProject && childNodeTag == T_MultiPartition) ||
|
|
(parentNodeTag == T_MultiProject && childNodeTag == T_MultiSelect) ||
|
|
(parentNodeTag == T_MultiProject && childNodeTag == T_MultiJoin))
|
|
{
|
|
pushDownStatus = PUSH_DOWN_SPECIAL_CONDITIONS;
|
|
}
|
|
|
|
return pushDownStatus;
|
|
}
|
|
|
|
|
|
/*
|
|
* Distributive returns a status which denotes whether the given parent node can
|
|
* be pushed down below its binary child node using the distributive property.
|
|
*/
|
|
static PushDownStatus
|
|
Distributive(MultiUnaryNode *parentNode, MultiBinaryNode *childNode)
|
|
{
|
|
PushDownStatus pushDownStatus = PUSH_DOWN_NOT_VALID;
|
|
CitusNodeTag parentNodeTag = CitusNodeTag(parentNode);
|
|
CitusNodeTag childNodeTag = CitusNodeTag(childNode);
|
|
|
|
/* special condition checks for partition operator are not implemented */
|
|
Assert(parentNodeTag != T_MultiPartition);
|
|
|
|
/*
|
|
* The project node is distributive with the join operator given that its
|
|
* special conditions apply.
|
|
*/
|
|
if (parentNodeTag == T_MultiProject)
|
|
{
|
|
pushDownStatus = PUSH_DOWN_SPECIAL_CONDITIONS;
|
|
}
|
|
|
|
/* collect node is distributive without special conditions */
|
|
if ((parentNodeTag == T_MultiCollect && childNodeTag == T_MultiJoin) ||
|
|
(parentNodeTag == T_MultiCollect && childNodeTag == T_MultiCartesianProduct))
|
|
{
|
|
pushDownStatus = PUSH_DOWN_VALID;
|
|
}
|
|
|
|
/*
|
|
* The select node is distributive with a binary operator if all tables in
|
|
* the select clauses are output by the binary child. The select clauses are
|
|
* individually AND'd; and therefore this check is sufficient to implement
|
|
* the NSC3 special condition in multi-relational algebra.
|
|
*/
|
|
if ((parentNodeTag == T_MultiSelect && childNodeTag == T_MultiJoin) ||
|
|
(parentNodeTag == T_MultiSelect && childNodeTag == T_MultiCartesianProduct))
|
|
{
|
|
MultiSelect *selectNode = (MultiSelect *) parentNode;
|
|
List *selectClauseList = selectNode->selectClauseList;
|
|
|
|
List *selectTableIdList = SelectClauseTableIdList(selectClauseList);
|
|
List *childTableIdList = OutputTableIdList((MultiNode *) childNode);
|
|
|
|
/* find tables that are in select clause list, but not in child list */
|
|
List *diffList = list_difference_int(selectTableIdList, childTableIdList);
|
|
if (diffList == NIL)
|
|
{
|
|
pushDownStatus = PUSH_DOWN_VALID;
|
|
}
|
|
}
|
|
|
|
return pushDownStatus;
|
|
}
|
|
|
|
|
|
/*
|
|
* Factorizable returns a status which denotes whether the given unary child
|
|
* node can be pulled up above its binary parent node using the factorizability
|
|
* property. The function currently performs this check only for collect node
|
|
* types; other node types have generation rules that are not yet implemented.
|
|
*/
|
|
static PullUpStatus
|
|
Factorizable(MultiBinaryNode *parentNode, MultiUnaryNode *childNode)
|
|
{
|
|
PullUpStatus pullUpStatus = PULL_UP_NOT_VALID;
|
|
CitusNodeTag parentNodeTag = CitusNodeTag(parentNode);
|
|
CitusNodeTag childNodeTag = CitusNodeTag(childNode);
|
|
|
|
/*
|
|
* The following nodes are factorizable with their parents, but we don't
|
|
* have their generation rules implemented. We therefore assert here.
|
|
*/
|
|
Assert(childNodeTag != T_MultiProject);
|
|
Assert(childNodeTag != T_MultiPartition);
|
|
Assert(childNodeTag != T_MultiSelect);
|
|
|
|
if ((childNodeTag == T_MultiCollect && parentNodeTag == T_MultiJoin) ||
|
|
(childNodeTag == T_MultiCollect && parentNodeTag == T_MultiCartesianProduct))
|
|
{
|
|
pullUpStatus = PULL_UP_VALID;
|
|
}
|
|
|
|
return pullUpStatus;
|
|
}
|
|
|
|
|
|
/*
|
|
* SelectClauseTableIdList finds the (range) table identifier for each select
|
|
* clause in the given list, and returns these identifiers in a new list.
|
|
*/
|
|
static List *
|
|
SelectClauseTableIdList(List *selectClauseList)
|
|
{
|
|
List *tableIdList = NIL;
|
|
ListCell *selectClauseCell = NULL;
|
|
|
|
foreach(selectClauseCell, selectClauseList)
|
|
{
|
|
Node *selectClause = (Node *) lfirst(selectClauseCell);
|
|
List *selectColumnList = pull_var_clause_default(selectClause);
|
|
Var *selectColumn = NULL;
|
|
int selectColumnTableId = 0;
|
|
|
|
if (list_length(selectColumnList) == 0)
|
|
{
|
|
/* filter is a constant, e.g. false or 1=0 */
|
|
continue;
|
|
}
|
|
|
|
selectColumn = (Var *) linitial(selectColumnList);
|
|
selectColumnTableId = (int) selectColumn->varno;
|
|
|
|
tableIdList = lappend_int(tableIdList, selectColumnTableId);
|
|
}
|
|
|
|
return tableIdList;
|
|
}
|
|
|
|
|
|
/*
|
|
* GenerateLeftNode splits the current node over the binary node by applying the
|
|
* generation rule for distributivity in multi-relational algebra. After the
|
|
* split, the function returns the left node.
|
|
*/
|
|
static MultiUnaryNode *
|
|
GenerateLeftNode(MultiUnaryNode *currentNode, MultiBinaryNode *binaryNode)
|
|
{
|
|
MultiNode *leftChildNode = binaryNode->leftChildNode;
|
|
MultiUnaryNode *leftNodeGenerated = GenerateNode(currentNode, leftChildNode);
|
|
|
|
return leftNodeGenerated;
|
|
}
|
|
|
|
|
|
/*
|
|
* GenerateRightNode splits the current node over the binary node by applying
|
|
* the generation rule for distributivity in multi-relational algebra. After the
|
|
* split, the function returns the right node.
|
|
*/
|
|
static MultiUnaryNode *
|
|
GenerateRightNode(MultiUnaryNode *currentNode, MultiBinaryNode *binaryNode)
|
|
{
|
|
MultiNode *rightChildNode = binaryNode->rightChildNode;
|
|
MultiUnaryNode *rightNodeGenerated = GenerateNode(currentNode, rightChildNode);
|
|
|
|
return rightNodeGenerated;
|
|
}
|
|
|
|
|
|
/*
|
|
* GenerateNode determines the current node's type, and applies the relevant
|
|
* generation node for that node type. If the current node is a project node,
|
|
* the function creates a new project node with attributes that only have the
|
|
* child subtree's tables. Else if the current node is a select node, the
|
|
* function creates a new select node with select clauses that only belong to
|
|
* the tables output by the child node's subtree.
|
|
*/
|
|
static MultiUnaryNode *
|
|
GenerateNode(MultiUnaryNode *currentNode, MultiNode *childNode)
|
|
{
|
|
MultiUnaryNode *generatedNode = NULL;
|
|
CitusNodeTag currentNodeType = CitusNodeTag(currentNode);
|
|
List *tableIdList = OutputTableIdList(childNode);
|
|
|
|
if (currentNodeType == T_MultiProject)
|
|
{
|
|
MultiProject *projectNode = (MultiProject *) currentNode;
|
|
List *columnList = copyObject(projectNode->columnList);
|
|
|
|
List *newColumnList = TableIdListColumns(tableIdList, columnList);
|
|
if (newColumnList != NIL)
|
|
{
|
|
MultiProject *newProjectNode = CitusMakeNode(MultiProject);
|
|
newProjectNode->columnList = newColumnList;
|
|
|
|
generatedNode = (MultiUnaryNode *) newProjectNode;
|
|
}
|
|
}
|
|
else if (currentNodeType == T_MultiSelect)
|
|
{
|
|
MultiSelect *selectNode = (MultiSelect *) currentNode;
|
|
List *selectClauseList = copyObject(selectNode->selectClauseList);
|
|
List *newSelectClauseList = NIL;
|
|
|
|
newSelectClauseList = TableIdListSelectClauses(tableIdList, selectClauseList);
|
|
if (newSelectClauseList != NIL)
|
|
{
|
|
MultiSelect *newSelectNode = CitusMakeNode(MultiSelect);
|
|
newSelectNode->selectClauseList = newSelectClauseList;
|
|
|
|
generatedNode = (MultiUnaryNode *) newSelectNode;
|
|
}
|
|
}
|
|
|
|
return generatedNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* TableIdListColumns walks over the given column list, finds columns belonging
|
|
* to the given table id list, and returns the found columns in a new list.
|
|
*/
|
|
static List *
|
|
TableIdListColumns(List *tableIdList, List *columnList)
|
|
{
|
|
List *tableColumnList = NIL;
|
|
ListCell *columnCell = NULL;
|
|
|
|
foreach(columnCell, columnList)
|
|
{
|
|
Var *column = (Var *) lfirst(columnCell);
|
|
int columnTableId = (int) column->varno;
|
|
|
|
bool tableListMember = list_member_int(tableIdList, columnTableId);
|
|
if (tableListMember)
|
|
{
|
|
tableColumnList = lappend(tableColumnList, column);
|
|
}
|
|
}
|
|
|
|
return tableColumnList;
|
|
}
|
|
|
|
|
|
/*
|
|
* TableIdListSelectClauses walks over the given select clause list, finds the
|
|
* select clauses whose column references belong to the given table list, and
|
|
* returns the found clauses in a new list.
|
|
*/
|
|
static List *
|
|
TableIdListSelectClauses(List *tableIdList, List *selectClauseList)
|
|
{
|
|
List *tableSelectClauseList = NIL;
|
|
ListCell *selectClauseCell = NULL;
|
|
|
|
foreach(selectClauseCell, selectClauseList)
|
|
{
|
|
Node *selectClause = (Node *) lfirst(selectClauseCell);
|
|
|
|
List *selectColumnList = pull_var_clause_default(selectClause);
|
|
if (list_length(selectColumnList) == 0)
|
|
{
|
|
/* filter is a constant, e.g. false or 1=0, always include it */
|
|
tableSelectClauseList = lappend(tableSelectClauseList, selectClause);
|
|
}
|
|
else
|
|
{
|
|
Var *selectColumn = (Var *) linitial(selectColumnList);
|
|
int selectClauseTableId = (int) selectColumn->varno;
|
|
|
|
bool tableIdListMember = list_member_int(tableIdList, selectClauseTableId);
|
|
if (tableIdListMember)
|
|
{
|
|
tableSelectClauseList = lappend(tableSelectClauseList, selectClause);
|
|
}
|
|
}
|
|
}
|
|
|
|
return tableSelectClauseList;
|
|
}
|
|
|
|
|
|
/* Pushes down the current node below its unary child node. */
|
|
static void
|
|
PushDownBelowUnaryChild(MultiUnaryNode *currentNode, MultiUnaryNode *childNode)
|
|
{
|
|
MultiNode *parentNode = ParentNode((MultiNode *) currentNode);
|
|
MultiNode *childChildNode = ChildNode(childNode);
|
|
|
|
/* current node's parent now points to the child node */
|
|
ParentSetNewChild(parentNode, (MultiNode *) currentNode, (MultiNode *) childNode);
|
|
|
|
/* current node's child becomes its parent */
|
|
SetChild(childNode, (MultiNode *) currentNode);
|
|
|
|
/* current node points to the child node's child */
|
|
SetChild(currentNode, childChildNode);
|
|
}
|
|
|
|
|
|
/*
|
|
* PlaceUnaryNodeChild inserts the new node as a child node under the given
|
|
* unary node. The function also places the previous child node under the new
|
|
* child node.
|
|
*/
|
|
static void
|
|
PlaceUnaryNodeChild(MultiUnaryNode *unaryNode, MultiUnaryNode *newChildNode)
|
|
{
|
|
MultiNode *oldChildNode = ChildNode(unaryNode);
|
|
|
|
SetChild(unaryNode, (MultiNode *) newChildNode);
|
|
SetChild(newChildNode, oldChildNode);
|
|
}
|
|
|
|
|
|
/*
|
|
* PlaceBinaryNodeLeftChild inserts the new left child as the binary node's left
|
|
* child. The function also places the previous left child below the new child
|
|
* node.
|
|
*/
|
|
static void
|
|
PlaceBinaryNodeLeftChild(MultiBinaryNode *binaryNode, MultiUnaryNode *newLeftChildNode)
|
|
{
|
|
if (newLeftChildNode == NULL)
|
|
{
|
|
return;
|
|
}
|
|
|
|
SetChild(newLeftChildNode, binaryNode->leftChildNode);
|
|
SetLeftChild(binaryNode, (MultiNode *) newLeftChildNode);
|
|
}
|
|
|
|
|
|
/*
|
|
* PlaceBinaryNodeRightChild inserts the new right child as the binary node's
|
|
* right child. The function also places the previous right child below the new
|
|
* child node.
|
|
*/
|
|
static void
|
|
PlaceBinaryNodeRightChild(MultiBinaryNode *binaryNode, MultiUnaryNode *newRightChildNode)
|
|
{
|
|
if (newRightChildNode == NULL)
|
|
{
|
|
return;
|
|
}
|
|
|
|
SetChild(newRightChildNode, binaryNode->rightChildNode);
|
|
SetRightChild(binaryNode, (MultiNode *) newRightChildNode);
|
|
}
|
|
|
|
|
|
/* Removes the given unary node from the logical plan, and frees the node. */
|
|
static void
|
|
RemoveUnaryNode(MultiUnaryNode *unaryNode)
|
|
{
|
|
MultiNode *parentNode = ParentNode((MultiNode *) unaryNode);
|
|
MultiNode *childNode = ChildNode(unaryNode);
|
|
|
|
/* set parent to directly point to unary node's child */
|
|
ParentSetNewChild(parentNode, (MultiNode *) unaryNode, childNode);
|
|
|
|
pfree(unaryNode);
|
|
}
|
|
|
|
|
|
/* Pulls up the given current node above its parent node. */
|
|
static void
|
|
PullUpUnaryNode(MultiUnaryNode *unaryNode)
|
|
{
|
|
MultiNode *parentNode = ParentNode((MultiNode *) unaryNode);
|
|
bool unaryParent = UnaryOperator(parentNode);
|
|
bool binaryParent = BinaryOperator(parentNode);
|
|
|
|
if (unaryParent)
|
|
{
|
|
/* pulling up a node is the same as pushing down the node's unary parent */
|
|
MultiUnaryNode *unaryParentNode = (MultiUnaryNode *) parentNode;
|
|
PushDownBelowUnaryChild(unaryParentNode, unaryNode);
|
|
}
|
|
else if (binaryParent)
|
|
{
|
|
MultiBinaryNode *binaryParentNode = (MultiBinaryNode *) parentNode;
|
|
MultiNode *parentParentNode = ParentNode((MultiNode *) binaryParentNode);
|
|
MultiNode *childNode = unaryNode->childNode;
|
|
|
|
/* make the parent node point to the unary node's child node */
|
|
if (binaryParentNode->leftChildNode == ((MultiNode *) unaryNode))
|
|
{
|
|
SetLeftChild(binaryParentNode, childNode);
|
|
}
|
|
else
|
|
{
|
|
SetRightChild(binaryParentNode, childNode);
|
|
}
|
|
|
|
/* make the parent parent node point to the unary node */
|
|
ParentSetNewChild(parentParentNode, parentNode, (MultiNode *) unaryNode);
|
|
|
|
/* make the unary node point to the (old) parent node */
|
|
SetChild(unaryNode, parentNode);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ParentSetNewChild takes in the given parent node, and replaces the parent's
|
|
* old child node with the new child node. The function needs the old child node
|
|
* in case the parent is a binary node and the function needs to determine which
|
|
* side of the parent node the new child node needs to go to.
|
|
*/
|
|
static void
|
|
ParentSetNewChild(MultiNode *parentNode, MultiNode *oldChildNode,
|
|
MultiNode *newChildNode)
|
|
{
|
|
bool unaryParent = UnaryOperator(parentNode);
|
|
bool binaryParent = BinaryOperator(parentNode);
|
|
|
|
if (unaryParent)
|
|
{
|
|
MultiUnaryNode *unaryParentNode = (MultiUnaryNode *) parentNode;
|
|
SetChild(unaryParentNode, newChildNode);
|
|
}
|
|
else if (binaryParent)
|
|
{
|
|
MultiBinaryNode *binaryParentNode = (MultiBinaryNode *) parentNode;
|
|
|
|
/* determine which side of the parent the old child is on */
|
|
if (binaryParentNode->leftChildNode == oldChildNode)
|
|
{
|
|
SetLeftChild(binaryParentNode, newChildNode);
|
|
}
|
|
else
|
|
{
|
|
SetRightChild(binaryParentNode, newChildNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ApplyExtendedOpNodes replaces the original extended operator node with the
|
|
* master and worker extended operator nodes. The function then pushes down the
|
|
* worker node below the original node's child node. Note that for the push down
|
|
* to apply, the original node's child must be a collect node.
|
|
*/
|
|
static void
|
|
ApplyExtendedOpNodes(MultiExtendedOp *originalNode, MultiExtendedOp *masterNode,
|
|
MultiExtendedOp *workerNode)
|
|
{
|
|
MultiNode *parentNode = ParentNode((MultiNode *) originalNode);
|
|
MultiNode *collectNode = ChildNode((MultiUnaryNode *) originalNode);
|
|
MultiNode *collectChildNode = ChildNode((MultiUnaryNode *) collectNode);
|
|
|
|
/* original node's child must be a collect node */
|
|
Assert(CitusIsA(collectNode, MultiCollect));
|
|
Assert(UnaryOperator(parentNode));
|
|
|
|
/* swap the original aggregate node with the master extended node */
|
|
SetChild((MultiUnaryNode *) parentNode, (MultiNode *) masterNode);
|
|
SetChild((MultiUnaryNode *) masterNode, (MultiNode *) collectNode);
|
|
|
|
/* add the worker extended node below the collect node */
|
|
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) workerNode);
|
|
SetChild((MultiUnaryNode *) workerNode, (MultiNode *) collectChildNode);
|
|
|
|
/* clean up the original extended operator node */
|
|
pfree(originalNode);
|
|
}
|
|
|
|
|
|
/*
|
|
* TransformSubqueryNode splits the extended operator node under subquery
|
|
* multi table node into its equivalent master and worker operator nodes, and
|
|
* we transform aggregate functions accordingly for the master and worker
|
|
* operator nodes. We create a partition node based on the first group by
|
|
* column of the extended operator node and set it as the child of the master
|
|
* operator node.
|
|
*/
|
|
static void
|
|
TransformSubqueryNode(MultiTable *subqueryNode)
|
|
{
|
|
MultiExtendedOp *extendedOpNode =
|
|
(MultiExtendedOp *) ChildNode((MultiUnaryNode *) subqueryNode);
|
|
MultiNode *collectNode = ChildNode((MultiUnaryNode *) extendedOpNode);
|
|
MultiNode *collectChildNode = ChildNode((MultiUnaryNode *) collectNode);
|
|
MultiExtendedOp *masterExtendedOpNode = MasterExtendedOpNode(extendedOpNode);
|
|
MultiExtendedOp *workerExtendedOpNode = WorkerExtendedOpNode(extendedOpNode);
|
|
MultiPartition *partitionNode = CitusMakeNode(MultiPartition);
|
|
List *groupClauseList = extendedOpNode->groupClauseList;
|
|
List *targetEntryList = extendedOpNode->targetList;
|
|
List *groupTargetEntryList = GroupTargetEntryList(groupClauseList, targetEntryList);
|
|
TargetEntry *groupByTargetEntry = (TargetEntry *) linitial(groupTargetEntryList);
|
|
Expr *groupByExpression = groupByTargetEntry->expr;
|
|
|
|
/*
|
|
* If group by is on a function expression, then we create a new column from
|
|
* function expression result type. Because later while creating partition
|
|
* tasks, we expect a column type to partition intermediate results.
|
|
* Note that we will only need partition type. So we set column type to
|
|
* result type of the function expression, and set other fields of column to
|
|
* default values.
|
|
*/
|
|
if (IsA(groupByExpression, Var))
|
|
{
|
|
partitionNode->partitionColumn = (Var *) groupByExpression;
|
|
}
|
|
else if (IsA(groupByExpression, FuncExpr))
|
|
{
|
|
FuncExpr *functionExpression = (FuncExpr *) groupByExpression;
|
|
Index tableId = 0;
|
|
AttrNumber columnAttributeNumber = InvalidAttrNumber;
|
|
Oid columnType = functionExpression->funcresulttype;
|
|
int32 columnTypeMod = -1;
|
|
Oid columnCollationOid = InvalidOid;
|
|
Index columnLevelSup = 0;
|
|
|
|
Var *partitionColumn = makeVar(tableId, columnAttributeNumber, columnType,
|
|
columnTypeMod, columnCollationOid, columnLevelSup);
|
|
partitionNode->partitionColumn = partitionColumn;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot run this subquery"),
|
|
errdetail("Currently only columns and function expressions "
|
|
"are allowed in group by expression of subqueries")));
|
|
}
|
|
|
|
SetChild((MultiUnaryNode *) subqueryNode, (MultiNode *) masterExtendedOpNode);
|
|
SetChild((MultiUnaryNode *) masterExtendedOpNode, (MultiNode *) partitionNode);
|
|
SetChild((MultiUnaryNode *) partitionNode, (MultiNode *) collectNode);
|
|
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) workerExtendedOpNode);
|
|
SetChild((MultiUnaryNode *) workerExtendedOpNode, (MultiNode *) collectChildNode);
|
|
}
|
|
|
|
|
|
/*
|
|
* MasterExtendedOpNode creates the master extended operator node from the given
|
|
* target entries. The function walks over these target entries; and for entries
|
|
* with aggregates in them, this function calls the aggregate expression mutator
|
|
* function.
|
|
*
|
|
* Note that the function logically depends on the worker extended operator node
|
|
* function. If the target entry does not contain aggregate functions, we assume
|
|
* all work is done on the worker side, and create a column that references the
|
|
* worker nodes' results.
|
|
*/
|
|
static MultiExtendedOp *
|
|
MasterExtendedOpNode(MultiExtendedOp *originalOpNode)
|
|
{
|
|
MultiExtendedOp *masterExtendedOpNode = NULL;
|
|
List *targetEntryList = originalOpNode->targetList;
|
|
List *newTargetEntryList = NIL;
|
|
ListCell *targetEntryCell = NULL;
|
|
Node *originalHavingQual = originalOpNode->havingQual;
|
|
Node *newHavingQual = NULL;
|
|
MultiNode *parentNode = ParentNode((MultiNode *) originalOpNode);
|
|
MultiNode *childNode = ChildNode((MultiUnaryNode *) originalOpNode);
|
|
MasterAggregateWalkerContext *walkerContext = palloc0(
|
|
sizeof(MasterAggregateWalkerContext));
|
|
|
|
walkerContext->columnId = 1;
|
|
walkerContext->repartitionSubquery = false;
|
|
|
|
if (CitusIsA(parentNode, MultiTable) && CitusIsA(childNode, MultiCollect))
|
|
{
|
|
walkerContext->repartitionSubquery = true;
|
|
}
|
|
|
|
/* iterate over original target entries */
|
|
foreach(targetEntryCell, targetEntryList)
|
|
{
|
|
TargetEntry *originalTargetEntry = (TargetEntry *) lfirst(targetEntryCell);
|
|
TargetEntry *newTargetEntry = copyObject(originalTargetEntry);
|
|
Expr *originalExpression = originalTargetEntry->expr;
|
|
Expr *newExpression = NULL;
|
|
|
|
bool hasAggregates = contain_agg_clause((Node *) originalExpression);
|
|
if (hasAggregates)
|
|
{
|
|
Node *newNode = MasterAggregateMutator((Node *) originalExpression,
|
|
walkerContext);
|
|
|
|
newExpression = (Expr *) newNode;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* The expression does not have any aggregates. We simply make it
|
|
* reference the output generated by worker nodes.
|
|
*/
|
|
const uint32 masterTableId = 1; /* only one table on master node */
|
|
|
|
Var *column = makeVarFromTargetEntry(masterTableId, originalTargetEntry);
|
|
column->varattno = walkerContext->columnId;
|
|
column->varoattno = walkerContext->columnId;
|
|
walkerContext->columnId++;
|
|
|
|
newExpression = (Expr *) column;
|
|
}
|
|
|
|
newTargetEntry->expr = newExpression;
|
|
newTargetEntryList = lappend(newTargetEntryList, newTargetEntry);
|
|
}
|
|
|
|
if (originalHavingQual != NULL)
|
|
{
|
|
newHavingQual = MasterAggregateMutator(originalHavingQual, walkerContext);
|
|
}
|
|
|
|
masterExtendedOpNode = CitusMakeNode(MultiExtendedOp);
|
|
masterExtendedOpNode->targetList = newTargetEntryList;
|
|
masterExtendedOpNode->groupClauseList = originalOpNode->groupClauseList;
|
|
masterExtendedOpNode->sortClauseList = originalOpNode->sortClauseList;
|
|
masterExtendedOpNode->limitCount = originalOpNode->limitCount;
|
|
masterExtendedOpNode->limitOffset = originalOpNode->limitOffset;
|
|
masterExtendedOpNode->havingQual = newHavingQual;
|
|
|
|
return masterExtendedOpNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* MasterAggregateMutator walks over the original target entry expression, and
|
|
* creates the new expression tree to execute on the master node. The function
|
|
* transforms aggregates, and copies columns; and recurses into the expression
|
|
* mutator function for all other expression types.
|
|
*
|
|
* Please note that the recursive mutator function traverses the expression tree
|
|
* in depth first order. For this function to set attribute numbers correctly,
|
|
* WorkerAggregateWalker() *must* walk over the expression tree in the same
|
|
* depth first order.
|
|
*/
|
|
static Node *
|
|
MasterAggregateMutator(Node *originalNode, MasterAggregateWalkerContext *walkerContext)
|
|
{
|
|
Node *newNode = NULL;
|
|
if (originalNode == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if (IsA(originalNode, Aggref))
|
|
{
|
|
Aggref *originalAggregate = (Aggref *) originalNode;
|
|
Expr *newExpression = MasterAggregateExpression(originalAggregate, walkerContext);
|
|
|
|
newNode = (Node *) newExpression;
|
|
}
|
|
else if (IsA(originalNode, Var))
|
|
{
|
|
uint32 masterTableId = 1; /* one table on the master node */
|
|
Var *newColumn = copyObject(originalNode);
|
|
newColumn->varno = masterTableId;
|
|
newColumn->varattno = walkerContext->columnId;
|
|
walkerContext->columnId++;
|
|
|
|
newNode = (Node *) newColumn;
|
|
}
|
|
else
|
|
{
|
|
newNode = expression_tree_mutator(originalNode, MasterAggregateMutator,
|
|
(void *) walkerContext);
|
|
}
|
|
|
|
return newNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* MasterAggregateExpression creates the master aggregate expression using the
|
|
* original aggregate and aggregate's type information. This function handles
|
|
* the average, count, and array_agg aggregates separately due to differences
|
|
* in these aggregate functions' transformations.
|
|
*
|
|
* Note that this function has implicit knowledge of the transformations applied
|
|
* for worker nodes on the original aggregate. The function uses this implicit
|
|
* knowledge to create the appropriate master function with correct data types.
|
|
*/
|
|
static Expr *
|
|
MasterAggregateExpression(Aggref *originalAggregate,
|
|
MasterAggregateWalkerContext *walkerContext)
|
|
{
|
|
AggregateType aggregateType = GetAggregateType(originalAggregate->aggfnoid);
|
|
Expr *newMasterExpression = NULL;
|
|
Expr *typeConvertedExpression = NULL;
|
|
const uint32 masterTableId = 1; /* one table on the master node */
|
|
const Index columnLevelsUp = 0; /* normal column */
|
|
const AttrNumber argumentId = 1; /* our aggregates have single arguments */
|
|
AggClauseCosts aggregateCosts;
|
|
|
|
if (aggregateType == AGGREGATE_COUNT && originalAggregate->aggdistinct &&
|
|
CountDistinctErrorRate == DISABLE_DISTINCT_APPROXIMATION &&
|
|
walkerContext->repartitionSubquery)
|
|
{
|
|
Aggref *aggregate = (Aggref *) copyObject(originalAggregate);
|
|
List *varList = pull_var_clause_default((Node *) aggregate);
|
|
ListCell *varCell = NULL;
|
|
List *uniqueVarList = NIL;
|
|
int startColumnCount = walkerContext->columnId;
|
|
|
|
/* determine unique vars that were placed in target list by worker */
|
|
foreach(varCell, varList)
|
|
{
|
|
Var *column = (Var *) lfirst(varCell);
|
|
uniqueVarList = list_append_unique(uniqueVarList, copyObject(column));
|
|
}
|
|
|
|
/*
|
|
* Go over each var inside aggregate and update their varattno's according to
|
|
* worker query target entry column index.
|
|
*/
|
|
foreach(varCell, varList)
|
|
{
|
|
Var *columnToUpdate = (Var *) lfirst(varCell);
|
|
ListCell *uniqueVarCell = NULL;
|
|
int columnIndex = 0;
|
|
|
|
foreach(uniqueVarCell, uniqueVarList)
|
|
{
|
|
Var *currentVar = (Var *) lfirst(uniqueVarCell);
|
|
if (equal(columnToUpdate, currentVar))
|
|
{
|
|
break;
|
|
}
|
|
columnIndex++;
|
|
}
|
|
|
|
columnToUpdate->varattno = startColumnCount + columnIndex;
|
|
columnToUpdate->varoattno = startColumnCount + columnIndex;
|
|
}
|
|
|
|
/* we added that many columns */
|
|
walkerContext->columnId += list_length(uniqueVarList);
|
|
|
|
newMasterExpression = (Expr *) aggregate;
|
|
}
|
|
else if (aggregateType == AGGREGATE_COUNT && originalAggregate->aggdistinct &&
|
|
CountDistinctErrorRate != DISABLE_DISTINCT_APPROXIMATION)
|
|
{
|
|
/*
|
|
* If enabled, we check for count(distinct) approximations before count
|
|
* distincts. For this, we first compute hll_add_agg(hll_hash(column) on
|
|
* worker nodes, and get hll values. We then gather hlls on the master
|
|
* node, and compute hll_cardinality(hll_union_agg(hll)).
|
|
*/
|
|
const int argCount = 1;
|
|
const int defaultTypeMod = -1;
|
|
|
|
TargetEntry *hllTargetEntry = NULL;
|
|
Aggref *unionAggregate = NULL;
|
|
FuncExpr *cardinalityExpression = NULL;
|
|
|
|
/* extract schema name of hll */
|
|
Oid hllId = get_extension_oid(HLL_EXTENSION_NAME, false);
|
|
Oid hllSchemaOid = get_extension_schema(hllId);
|
|
const char *hllSchemaName = get_namespace_name(hllSchemaOid);
|
|
|
|
Oid unionFunctionId = FunctionOid(hllSchemaName, HLL_UNION_AGGREGATE_NAME,
|
|
argCount);
|
|
Oid cardinalityFunctionId = FunctionOid(hllSchemaName, HLL_CARDINALITY_FUNC_NAME,
|
|
argCount);
|
|
Oid cardinalityReturnType = get_func_rettype(cardinalityFunctionId);
|
|
|
|
Oid hllType = TypeOid(hllSchemaOid, HLL_TYPE_NAME);
|
|
Oid hllTypeCollationId = get_typcollation(hllType);
|
|
Var *hllColumn = makeVar(masterTableId, walkerContext->columnId, hllType,
|
|
defaultTypeMod,
|
|
hllTypeCollationId, columnLevelsUp);
|
|
walkerContext->columnId++;
|
|
|
|
hllTargetEntry = makeTargetEntry((Expr *) hllColumn, argumentId, NULL, false);
|
|
|
|
unionAggregate = makeNode(Aggref);
|
|
unionAggregate->aggfnoid = unionFunctionId;
|
|
unionAggregate->aggtype = hllType;
|
|
unionAggregate->args = list_make1(hllTargetEntry);
|
|
unionAggregate->aggkind = AGGKIND_NORMAL;
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
unionAggregate->aggtranstype = InvalidOid;
|
|
unionAggregate->aggargtypes = list_make1_oid(unionAggregate->aggtype);
|
|
unionAggregate->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
cardinalityExpression = makeNode(FuncExpr);
|
|
cardinalityExpression->funcid = cardinalityFunctionId;
|
|
cardinalityExpression->funcresulttype = cardinalityReturnType;
|
|
cardinalityExpression->args = list_make1(unionAggregate);
|
|
|
|
newMasterExpression = (Expr *) cardinalityExpression;
|
|
}
|
|
else if (aggregateType == AGGREGATE_AVERAGE)
|
|
{
|
|
/*
|
|
* If the original aggregate is an average, we first compute sum(colum)
|
|
* and count(column) on worker nodes. Then, we compute (sum(sum(column))
|
|
* / sum(count(column))) on the master node.
|
|
*/
|
|
const char *sumAggregateName = AggregateNames[AGGREGATE_SUM];
|
|
const char *countAggregateName = AggregateNames[AGGREGATE_COUNT];
|
|
|
|
Oid argumentType = AggregateArgumentType(originalAggregate);
|
|
|
|
Oid sumFunctionId = AggregateFunctionOid(sumAggregateName, argumentType);
|
|
Oid countFunctionId = AggregateFunctionOid(countAggregateName, ANYOID);
|
|
|
|
/* calculate the aggregate types that worker nodes are going to return */
|
|
Oid workerSumReturnType = get_func_rettype(sumFunctionId);
|
|
Oid workerCountReturnType = get_func_rettype(countFunctionId);
|
|
|
|
/* create the expression sum(sum(column) / sum(count(column))) */
|
|
newMasterExpression = MasterAverageExpression(workerSumReturnType,
|
|
workerCountReturnType,
|
|
&(walkerContext->columnId));
|
|
}
|
|
else if (aggregateType == AGGREGATE_COUNT)
|
|
{
|
|
/*
|
|
* Count aggregates are handled in two steps. First, worker nodes report
|
|
* their count results. Then, the master node sums up these results.
|
|
*/
|
|
Var *column = NULL;
|
|
TargetEntry *columnTargetEntry = NULL;
|
|
CoerceViaIO *coerceExpr = NULL;
|
|
Const *zeroConst = NULL;
|
|
List *coalesceArgs = NULL;
|
|
CoalesceExpr *coalesceExpr = NULL;
|
|
|
|
/* worker aggregate and original aggregate have the same return type */
|
|
Oid workerReturnType = exprType((Node *) originalAggregate);
|
|
int32 workerReturnTypeMod = exprTypmod((Node *) originalAggregate);
|
|
Oid workerCollationId = exprCollation((Node *) originalAggregate);
|
|
|
|
const char *sumAggregateName = AggregateNames[AGGREGATE_SUM];
|
|
Oid sumFunctionId = AggregateFunctionOid(sumAggregateName, workerReturnType);
|
|
Oid masterReturnType = get_func_rettype(sumFunctionId);
|
|
|
|
Aggref *newMasterAggregate = copyObject(originalAggregate);
|
|
newMasterAggregate->aggstar = false;
|
|
newMasterAggregate->aggdistinct = NULL;
|
|
newMasterAggregate->aggfnoid = sumFunctionId;
|
|
newMasterAggregate->aggtype = masterReturnType;
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
newMasterAggregate->aggtranstype = InvalidOid;
|
|
newMasterAggregate->aggargtypes = list_make1_oid(newMasterAggregate->aggtype);
|
|
newMasterAggregate->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
column = makeVar(masterTableId, walkerContext->columnId, workerReturnType,
|
|
workerReturnTypeMod, workerCollationId, columnLevelsUp);
|
|
walkerContext->columnId++;
|
|
|
|
/* aggref expects its arguments to be wrapped in target entries */
|
|
columnTargetEntry = makeTargetEntry((Expr *) column, argumentId, NULL, false);
|
|
newMasterAggregate->args = list_make1(columnTargetEntry);
|
|
|
|
/* cast numeric sum result to bigint (count's return type) */
|
|
coerceExpr = makeNode(CoerceViaIO);
|
|
coerceExpr->arg = (Expr *) newMasterAggregate;
|
|
coerceExpr->resulttype = INT8OID;
|
|
coerceExpr->resultcollid = InvalidOid;
|
|
coerceExpr->coerceformat = COERCE_IMPLICIT_CAST;
|
|
coerceExpr->location = -1;
|
|
|
|
/* convert NULL to 0 in case of no rows */
|
|
zeroConst = MakeIntegerConstInt64(0);
|
|
coalesceArgs = list_make2(coerceExpr, zeroConst);
|
|
|
|
coalesceExpr = makeNode(CoalesceExpr);
|
|
coalesceExpr->coalescetype = INT8OID;
|
|
coalesceExpr->coalescecollid = InvalidOid;
|
|
coalesceExpr->args = coalesceArgs;
|
|
coalesceExpr->location = -1;
|
|
|
|
newMasterExpression = (Expr *) coalesceExpr;
|
|
}
|
|
else if (aggregateType == AGGREGATE_ARRAY_AGG)
|
|
{
|
|
/*
|
|
* Array aggregates are handled in two steps. First, we compute array_agg()
|
|
* on the worker nodes. Then, we gather the arrays on the master and
|
|
* compute the array_cat_agg() aggregate on them to get the final array.
|
|
*/
|
|
Var *column = NULL;
|
|
TargetEntry *arrayCatAggArgument = NULL;
|
|
Aggref *newMasterAggregate = NULL;
|
|
Oid aggregateFunctionId = InvalidOid;
|
|
|
|
/* worker aggregate and original aggregate have same return type */
|
|
Oid workerReturnType = exprType((Node *) originalAggregate);
|
|
int32 workerReturnTypeMod = exprTypmod((Node *) originalAggregate);
|
|
Oid workerCollationId = exprCollation((Node *) originalAggregate);
|
|
|
|
/* assert that we do not support array_agg() with distinct or order by */
|
|
Assert(!originalAggregate->aggorder);
|
|
Assert(!originalAggregate->aggdistinct);
|
|
|
|
/* array_cat_agg() takes anyarray as input */
|
|
aggregateFunctionId = AggregateFunctionOid(ARRAY_CAT_AGGREGATE_NAME,
|
|
ANYARRAYOID);
|
|
|
|
/* create argument for the array_cat_agg() aggregate */
|
|
column = makeVar(masterTableId, walkerContext->columnId, workerReturnType,
|
|
workerReturnTypeMod, workerCollationId, columnLevelsUp);
|
|
arrayCatAggArgument = makeTargetEntry((Expr *) column, argumentId, NULL, false);
|
|
walkerContext->columnId++;
|
|
|
|
/* construct the master array_cat_agg() expression */
|
|
newMasterAggregate = copyObject(originalAggregate);
|
|
newMasterAggregate->aggfnoid = aggregateFunctionId;
|
|
newMasterAggregate->args = list_make1(arrayCatAggArgument);
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
newMasterAggregate->aggtranstype = InvalidOid;
|
|
newMasterAggregate->aggargtypes = list_make1_oid(ANYARRAYOID);
|
|
newMasterAggregate->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
newMasterExpression = (Expr *) newMasterAggregate;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* All other aggregates are handled as they are. These include sum, min,
|
|
* and max.
|
|
*/
|
|
Var *column = NULL;
|
|
TargetEntry *columnTargetEntry = NULL;
|
|
|
|
/* worker aggregate and original aggregate have the same return type */
|
|
Oid workerReturnType = exprType((Node *) originalAggregate);
|
|
int32 workerReturnTypeMod = exprTypmod((Node *) originalAggregate);
|
|
Oid workerCollationId = exprCollation((Node *) originalAggregate);
|
|
|
|
const char *aggregateName = AggregateNames[aggregateType];
|
|
Oid aggregateFunctionId = AggregateFunctionOid(aggregateName, workerReturnType);
|
|
Oid masterReturnType = get_func_rettype(aggregateFunctionId);
|
|
|
|
Aggref *newMasterAggregate = copyObject(originalAggregate);
|
|
newMasterAggregate->aggdistinct = NULL;
|
|
newMasterAggregate->aggfnoid = aggregateFunctionId;
|
|
newMasterAggregate->aggtype = masterReturnType;
|
|
|
|
column = makeVar(masterTableId, walkerContext->columnId, workerReturnType,
|
|
workerReturnTypeMod, workerCollationId, columnLevelsUp);
|
|
walkerContext->columnId++;
|
|
|
|
/* aggref expects its arguments to be wrapped in target entries */
|
|
columnTargetEntry = makeTargetEntry((Expr *) column, argumentId, NULL, false);
|
|
newMasterAggregate->args = list_make1(columnTargetEntry);
|
|
|
|
newMasterExpression = (Expr *) newMasterAggregate;
|
|
}
|
|
|
|
/*
|
|
* Aggregate functions could have changed the return type. If so, we wrap
|
|
* the new expression with a conversion function to make it have the same
|
|
* type as the original aggregate. We need this since functions like sorting
|
|
* and grouping have already been chosen based on the original type.
|
|
*/
|
|
typeConvertedExpression = AddTypeConversion((Node *) originalAggregate,
|
|
(Node *) newMasterExpression);
|
|
if (typeConvertedExpression != NULL)
|
|
{
|
|
newMasterExpression = typeConvertedExpression;
|
|
}
|
|
|
|
/* Run AggRefs through cost machinery to mark required fields sanely */
|
|
memset(&aggregateCosts, 0, sizeof(aggregateCosts));
|
|
|
|
#if PG_VERSION_NUM >= 90600
|
|
get_agg_clause_costs(NULL, (Node *) newMasterExpression, AGGSPLIT_SIMPLE,
|
|
&aggregateCosts);
|
|
#else
|
|
count_agg_clauses(NULL, (Node *) newMasterExpression, &aggregateCosts);
|
|
#endif
|
|
|
|
return newMasterExpression;
|
|
}
|
|
|
|
|
|
/*
|
|
* MasterAverageExpression creates an expression of the form (sum(column1) /
|
|
* sum(column2)), where column1 is the sum of the original value, and column2 is
|
|
* the count of that value. This expression allows us to evaluate the average
|
|
* function over distributed data.
|
|
*/
|
|
static Expr *
|
|
MasterAverageExpression(Oid sumAggregateType, Oid countAggregateType,
|
|
AttrNumber *columnId)
|
|
{
|
|
const char *sumAggregateName = AggregateNames[AGGREGATE_SUM];
|
|
const uint32 masterTableId = 1;
|
|
const int32 defaultTypeMod = -1;
|
|
const Index defaultLevelsUp = 0;
|
|
const AttrNumber argumentId = 1;
|
|
|
|
Oid sumTypeCollationId = get_typcollation(sumAggregateType);
|
|
Oid countTypeCollationId = get_typcollation(countAggregateType);
|
|
Var *firstColumn = NULL;
|
|
Var *secondColumn = NULL;
|
|
TargetEntry *firstTargetEntry = NULL;
|
|
TargetEntry *secondTargetEntry = NULL;
|
|
Aggref *firstSum = NULL;
|
|
Aggref *secondSum = NULL;
|
|
List *operatorNameList = NIL;
|
|
Expr *opExpr = NULL;
|
|
|
|
/* create the first argument for sum(column1) */
|
|
firstColumn = makeVar(masterTableId, (*columnId), sumAggregateType,
|
|
defaultTypeMod, sumTypeCollationId, defaultLevelsUp);
|
|
firstTargetEntry = makeTargetEntry((Expr *) firstColumn, argumentId, NULL, false);
|
|
(*columnId)++;
|
|
|
|
firstSum = makeNode(Aggref);
|
|
firstSum->aggfnoid = AggregateFunctionOid(sumAggregateName, sumAggregateType);
|
|
firstSum->aggtype = get_func_rettype(firstSum->aggfnoid);
|
|
firstSum->args = list_make1(firstTargetEntry);
|
|
firstSum->aggkind = AGGKIND_NORMAL;
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
firstSum->aggtranstype = InvalidOid;
|
|
firstSum->aggargtypes = list_make1_oid(firstSum->aggtype);
|
|
firstSum->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
/* create the second argument for sum(column2) */
|
|
secondColumn = makeVar(masterTableId, (*columnId), countAggregateType,
|
|
defaultTypeMod, countTypeCollationId, defaultLevelsUp);
|
|
secondTargetEntry = makeTargetEntry((Expr *) secondColumn, argumentId, NULL, false);
|
|
(*columnId)++;
|
|
|
|
secondSum = makeNode(Aggref);
|
|
secondSum->aggfnoid = AggregateFunctionOid(sumAggregateName, countAggregateType);
|
|
secondSum->aggtype = get_func_rettype(secondSum->aggfnoid);
|
|
secondSum->args = list_make1(secondTargetEntry);
|
|
secondSum->aggkind = AGGKIND_NORMAL;
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
secondSum->aggtranstype = InvalidOid;
|
|
secondSum->aggargtypes = list_make1_oid(firstSum->aggtype);
|
|
secondSum->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
/*
|
|
* Build the division operator between these two aggregates. This function
|
|
* will convert the types of the aggregates if necessary.
|
|
*/
|
|
operatorNameList = list_make1(makeString(DIVISION_OPER_NAME));
|
|
opExpr = make_op(NULL, operatorNameList, (Node *) firstSum, (Node *) secondSum, -1);
|
|
|
|
return opExpr;
|
|
}
|
|
|
|
|
|
/*
|
|
* AddTypeConversion checks if the given expressions generate the same types. If
|
|
* they don't, the function adds a type conversion function on top of the new
|
|
* expression to have it generate the same type as the original aggregate.
|
|
*/
|
|
static Expr *
|
|
AddTypeConversion(Node *originalAggregate, Node *newExpression)
|
|
{
|
|
Oid newTypeId = exprType(newExpression);
|
|
Oid originalTypeId = exprType(originalAggregate);
|
|
int32 originalTypeMod = exprTypmod(originalAggregate);
|
|
Node *typeConvertedExpression = NULL;
|
|
|
|
/* nothing to do if the two types are the same */
|
|
if (originalTypeId == newTypeId)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/* otherwise, add a type conversion function */
|
|
typeConvertedExpression = coerce_to_target_type(NULL, newExpression, newTypeId,
|
|
originalTypeId, originalTypeMod,
|
|
COERCION_EXPLICIT,
|
|
COERCE_EXPLICIT_CAST, -1);
|
|
Assert(typeConvertedExpression != NULL);
|
|
return (Expr *) typeConvertedExpression;
|
|
}
|
|
|
|
|
|
/*
|
|
* WorkerExtendedOpNode creates the worker extended operator node from the given
|
|
* target entries. The function walks over these target entries; and for entries
|
|
* with aggregates in them, this function calls the recursive aggregate walker
|
|
* function to create aggregates for the worker nodes. Also, the function checks
|
|
* if we can push down the limit to worker nodes; and if we can, sets the limit
|
|
* count and sort clause list fields in the new operator node. It provides special
|
|
* treatment for count distinct operator if it is used in repartition subqueries.
|
|
* Each column in count distinct aggregate is added to target list, and group by
|
|
* list of worker extended operator.
|
|
*/
|
|
static MultiExtendedOp *
|
|
WorkerExtendedOpNode(MultiExtendedOp *originalOpNode)
|
|
{
|
|
MultiExtendedOp *workerExtendedOpNode = NULL;
|
|
MultiNode *parentNode = ParentNode((MultiNode *) originalOpNode);
|
|
MultiNode *childNode = ChildNode((MultiUnaryNode *) originalOpNode);
|
|
List *targetEntryList = originalOpNode->targetList;
|
|
ListCell *targetEntryCell = NULL;
|
|
List *newTargetEntryList = NIL;
|
|
List *groupClauseList = copyObject(originalOpNode->groupClauseList);
|
|
Node *havingQual = originalOpNode->havingQual;
|
|
AttrNumber targetProjectionNumber = 1;
|
|
WorkerAggregateWalkerContext *walkerContext =
|
|
palloc0(sizeof(WorkerAggregateWalkerContext));
|
|
Index nextSortGroupRefIndex = 0;
|
|
|
|
walkerContext->repartitionSubquery = false;
|
|
walkerContext->expressionList = NIL;
|
|
|
|
if (CitusIsA(parentNode, MultiTable) && CitusIsA(childNode, MultiCollect))
|
|
{
|
|
walkerContext->repartitionSubquery = true;
|
|
|
|
/* find max of sort group ref index */
|
|
foreach(targetEntryCell, targetEntryList)
|
|
{
|
|
TargetEntry *targetEntry = (TargetEntry *) lfirst(targetEntryCell);
|
|
if (targetEntry->ressortgroupref > nextSortGroupRefIndex)
|
|
{
|
|
nextSortGroupRefIndex = targetEntry->ressortgroupref;
|
|
}
|
|
}
|
|
|
|
/* next group ref index starts from max group ref index + 1 */
|
|
nextSortGroupRefIndex++;
|
|
}
|
|
|
|
/* iterate over original target entries */
|
|
foreach(targetEntryCell, targetEntryList)
|
|
{
|
|
TargetEntry *originalTargetEntry = (TargetEntry *) lfirst(targetEntryCell);
|
|
Expr *originalExpression = originalTargetEntry->expr;
|
|
List *newExpressionList = NIL;
|
|
ListCell *newExpressionCell = NULL;
|
|
bool hasAggregates = contain_agg_clause((Node *) originalExpression);
|
|
|
|
walkerContext->expressionList = NIL;
|
|
walkerContext->createGroupByClause = false;
|
|
|
|
if (hasAggregates)
|
|
{
|
|
WorkerAggregateWalker((Node *) originalExpression, walkerContext);
|
|
|
|
newExpressionList = walkerContext->expressionList;
|
|
}
|
|
else
|
|
{
|
|
newExpressionList = list_make1(originalExpression);
|
|
}
|
|
|
|
/* now create target entries for each new expression */
|
|
foreach(newExpressionCell, newExpressionList)
|
|
{
|
|
Expr *newExpression = (Expr *) lfirst(newExpressionCell);
|
|
TargetEntry *newTargetEntry = copyObject(originalTargetEntry);
|
|
newTargetEntry->expr = newExpression;
|
|
|
|
/*
|
|
* Detect new targets of type Var and add it to group clause list.
|
|
* This case is expected only if the target entry has aggregates and
|
|
* it is inside a repartitioned subquery. We create group by entry
|
|
* for each Var in target list. This code does not check if this
|
|
* Var was already in the target list or in group by clauses.
|
|
*/
|
|
if (IsA(newExpression, Var) && walkerContext->createGroupByClause)
|
|
{
|
|
Var *column = (Var *) newExpression;
|
|
Oid lessThanOperator = InvalidOid;
|
|
Oid equalsOperator = InvalidOid;
|
|
bool hashable = false;
|
|
SortGroupClause *groupByClause = makeNode(SortGroupClause);
|
|
|
|
get_sort_group_operators(column->vartype, true, true, true,
|
|
&lessThanOperator, &equalsOperator, NULL,
|
|
&hashable);
|
|
groupByClause->eqop = equalsOperator;
|
|
groupByClause->hashable = hashable;
|
|
groupByClause->nulls_first = false;
|
|
groupByClause->sortop = lessThanOperator;
|
|
groupByClause->tleSortGroupRef = nextSortGroupRefIndex;
|
|
|
|
groupClauseList = lappend(groupClauseList, groupByClause);
|
|
|
|
newTargetEntry->ressortgroupref = nextSortGroupRefIndex;
|
|
|
|
nextSortGroupRefIndex++;
|
|
}
|
|
|
|
if (newTargetEntry->resname == NULL)
|
|
{
|
|
StringInfo columnNameString = makeStringInfo();
|
|
appendStringInfo(columnNameString, WORKER_COLUMN_FORMAT,
|
|
targetProjectionNumber);
|
|
|
|
newTargetEntry->resname = columnNameString->data;
|
|
}
|
|
|
|
/* force resjunk to false as we may need this on the master */
|
|
newTargetEntry->resjunk = false;
|
|
newTargetEntry->resno = targetProjectionNumber;
|
|
targetProjectionNumber++;
|
|
newTargetEntryList = lappend(newTargetEntryList, newTargetEntry);
|
|
}
|
|
}
|
|
|
|
/* we also need to add having expressions to worker target list */
|
|
if (havingQual != NULL)
|
|
{
|
|
List *newExpressionList = NIL;
|
|
ListCell *newExpressionCell = NULL;
|
|
|
|
/* reset walker context */
|
|
walkerContext->expressionList = NIL;
|
|
walkerContext->createGroupByClause = false;
|
|
|
|
WorkerAggregateWalker(havingQual, walkerContext);
|
|
newExpressionList = walkerContext->expressionList;
|
|
|
|
/* now create target entries for each new expression */
|
|
foreach(newExpressionCell, newExpressionList)
|
|
{
|
|
TargetEntry *newTargetEntry = makeNode(TargetEntry);
|
|
StringInfo columnNameString = makeStringInfo();
|
|
|
|
Expr *newExpression = (Expr *) lfirst(newExpressionCell);
|
|
newTargetEntry->expr = newExpression;
|
|
|
|
appendStringInfo(columnNameString, WORKER_COLUMN_FORMAT,
|
|
targetProjectionNumber);
|
|
newTargetEntry->resname = columnNameString->data;
|
|
|
|
/* force resjunk to false as we may need this on the master */
|
|
newTargetEntry->resjunk = false;
|
|
newTargetEntry->resno = targetProjectionNumber;
|
|
|
|
newTargetEntryList = lappend(newTargetEntryList, newTargetEntry);
|
|
targetProjectionNumber++;
|
|
}
|
|
}
|
|
|
|
workerExtendedOpNode = CitusMakeNode(MultiExtendedOp);
|
|
workerExtendedOpNode->targetList = newTargetEntryList;
|
|
workerExtendedOpNode->groupClauseList = groupClauseList;
|
|
|
|
/* if we can push down the limit, also set related fields */
|
|
workerExtendedOpNode->limitCount = WorkerLimitCount(originalOpNode);
|
|
workerExtendedOpNode->sortClauseList = WorkerSortClauseList(originalOpNode);
|
|
|
|
return workerExtendedOpNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* WorkerAggregateWalker walks over the original target entry expression, and
|
|
* creates the list of expression trees (potentially more than one) to execute
|
|
* on the worker nodes. The function creates new expressions for aggregates and
|
|
* columns; and recurses into expression_tree_walker() for all other expression
|
|
* types.
|
|
*/
|
|
static bool
|
|
WorkerAggregateWalker(Node *node, WorkerAggregateWalkerContext *walkerContext)
|
|
{
|
|
bool walkerResult = false;
|
|
if (node == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, Aggref))
|
|
{
|
|
Aggref *originalAggregate = (Aggref *) node;
|
|
List *workerAggregateList = WorkerAggregateExpressionList(originalAggregate,
|
|
walkerContext);
|
|
|
|
walkerContext->expressionList = list_concat(walkerContext->expressionList,
|
|
workerAggregateList);
|
|
}
|
|
else if (IsA(node, Var))
|
|
{
|
|
Var *originalColumn = (Var *) node;
|
|
walkerContext->expressionList = lappend(walkerContext->expressionList,
|
|
originalColumn);
|
|
}
|
|
else
|
|
{
|
|
walkerResult = expression_tree_walker(node, WorkerAggregateWalker,
|
|
(void *) walkerContext);
|
|
}
|
|
|
|
return walkerResult;
|
|
}
|
|
|
|
|
|
/*
|
|
* WorkerAggregateExpressionList takes in the original aggregate function, and
|
|
* determines the transformed aggregate functions to execute on worker nodes.
|
|
* The function then returns these aggregates in a list. It also creates
|
|
* group by clauses for newly added targets to be placed in the extended operator
|
|
* node.
|
|
*/
|
|
static List *
|
|
WorkerAggregateExpressionList(Aggref *originalAggregate,
|
|
WorkerAggregateWalkerContext *walkerContext)
|
|
{
|
|
AggregateType aggregateType = GetAggregateType(originalAggregate->aggfnoid);
|
|
List *workerAggregateList = NIL;
|
|
AggClauseCosts aggregateCosts;
|
|
|
|
if (aggregateType == AGGREGATE_COUNT && originalAggregate->aggdistinct &&
|
|
CountDistinctErrorRate == DISABLE_DISTINCT_APPROXIMATION &&
|
|
walkerContext->repartitionSubquery)
|
|
{
|
|
Aggref *aggregate = (Aggref *) copyObject(originalAggregate);
|
|
List *columnList = pull_var_clause_default((Node *) aggregate);
|
|
ListCell *columnCell = NULL;
|
|
foreach(columnCell, columnList)
|
|
{
|
|
Var *column = (Var *) lfirst(columnCell);
|
|
workerAggregateList = list_append_unique(workerAggregateList, column);
|
|
}
|
|
|
|
walkerContext->createGroupByClause = true;
|
|
}
|
|
else if (aggregateType == AGGREGATE_COUNT && originalAggregate->aggdistinct &&
|
|
CountDistinctErrorRate != DISABLE_DISTINCT_APPROXIMATION)
|
|
{
|
|
/*
|
|
* If the original aggregate is a count(distinct) approximation, we want
|
|
* to compute hll_add_agg(hll_hash(var), storageSize) on worker nodes.
|
|
*/
|
|
const AttrNumber firstArgumentId = 1;
|
|
const AttrNumber secondArgumentId = 2;
|
|
const int hashArgumentCount = 2;
|
|
const int addArgumentCount = 2;
|
|
|
|
TargetEntry *hashedColumnArgument = NULL;
|
|
TargetEntry *storageSizeArgument = NULL;
|
|
List *addAggregateArgumentList = NIL;
|
|
Aggref *addAggregateFunction = NULL;
|
|
|
|
/* init hll_hash() related variables */
|
|
Oid argumentType = AggregateArgumentType(originalAggregate);
|
|
TargetEntry *argument = (TargetEntry *) linitial(originalAggregate->args);
|
|
Expr *argumentExpression = copyObject(argument->expr);
|
|
|
|
/* extract schema name of hll */
|
|
Oid hllId = get_extension_oid(HLL_EXTENSION_NAME, false);
|
|
Oid hllSchemaOid = get_extension_schema(hllId);
|
|
const char *hllSchemaName = get_namespace_name(hllSchemaOid);
|
|
|
|
char *hashFunctionName = CountDistinctHashFunctionName(argumentType);
|
|
Oid hashFunctionId = FunctionOid(hllSchemaName, hashFunctionName,
|
|
hashArgumentCount);
|
|
Oid hashFunctionReturnType = get_func_rettype(hashFunctionId);
|
|
|
|
/* init hll_add_agg() related variables */
|
|
Oid addFunctionId = FunctionOid(hllSchemaName, HLL_ADD_AGGREGATE_NAME,
|
|
addArgumentCount);
|
|
Oid hllType = TypeOid(hllSchemaOid, HLL_TYPE_NAME);
|
|
int logOfStorageSize = CountDistinctStorageSize(CountDistinctErrorRate);
|
|
Const *logOfStorageSizeConst = MakeIntegerConst(logOfStorageSize);
|
|
|
|
/* construct hll_hash() expression */
|
|
FuncExpr *hashFunction = makeNode(FuncExpr);
|
|
hashFunction->funcid = hashFunctionId;
|
|
hashFunction->funcresulttype = hashFunctionReturnType;
|
|
hashFunction->args = list_make1(argumentExpression);
|
|
|
|
/* construct hll_add_agg() expression */
|
|
hashedColumnArgument = makeTargetEntry((Expr *) hashFunction,
|
|
firstArgumentId, NULL, false);
|
|
storageSizeArgument = makeTargetEntry((Expr *) logOfStorageSizeConst,
|
|
secondArgumentId, NULL, false);
|
|
addAggregateArgumentList = list_make2(hashedColumnArgument, storageSizeArgument);
|
|
|
|
addAggregateFunction = makeNode(Aggref);
|
|
addAggregateFunction->aggfnoid = addFunctionId;
|
|
addAggregateFunction->aggtype = hllType;
|
|
addAggregateFunction->args = addAggregateArgumentList;
|
|
addAggregateFunction->aggkind = AGGKIND_NORMAL;
|
|
|
|
workerAggregateList = lappend(workerAggregateList, addAggregateFunction);
|
|
}
|
|
else if (aggregateType == AGGREGATE_AVERAGE)
|
|
{
|
|
/*
|
|
* If the original aggregate is an average, we want to compute sum(var)
|
|
* and count(var) on worker nodes.
|
|
*/
|
|
Aggref *sumAggregate = copyObject(originalAggregate);
|
|
Aggref *countAggregate = copyObject(originalAggregate);
|
|
|
|
/* extract function names for sum and count */
|
|
const char *sumAggregateName = AggregateNames[AGGREGATE_SUM];
|
|
const char *countAggregateName = AggregateNames[AGGREGATE_COUNT];
|
|
|
|
/*
|
|
* Find the type of the expression over which we execute the aggregate.
|
|
* We then need to find the right sum function for that type.
|
|
*/
|
|
Oid argumentType = AggregateArgumentType(originalAggregate);
|
|
|
|
/* find function implementing sum over the original type */
|
|
sumAggregate->aggfnoid = AggregateFunctionOid(sumAggregateName, argumentType);
|
|
sumAggregate->aggtype = get_func_rettype(sumAggregate->aggfnoid);
|
|
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
sumAggregate->aggtranstype = InvalidOid;
|
|
sumAggregate->aggargtypes = list_make1_oid(argumentType);
|
|
sumAggregate->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
/* count has any input type */
|
|
countAggregate->aggfnoid = AggregateFunctionOid(countAggregateName, ANYOID);
|
|
countAggregate->aggtype = get_func_rettype(countAggregate->aggfnoid);
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
countAggregate->aggtranstype = InvalidOid;
|
|
countAggregate->aggargtypes = list_make1_oid(argumentType);
|
|
countAggregate->aggsplit = AGGSPLIT_SIMPLE;
|
|
#endif
|
|
|
|
workerAggregateList = lappend(workerAggregateList, sumAggregate);
|
|
workerAggregateList = lappend(workerAggregateList, countAggregate);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* All other aggregates are sent as they are to the worker nodes. These
|
|
* aggregate functions include sum, count, min, max, and array_agg.
|
|
*/
|
|
Aggref *workerAggregate = copyObject(originalAggregate);
|
|
workerAggregateList = lappend(workerAggregateList, workerAggregate);
|
|
}
|
|
|
|
|
|
/* Run AggRefs through cost machinery to mark required fields sanely */
|
|
memset(&aggregateCosts, 0, sizeof(aggregateCosts));
|
|
|
|
#if PG_VERSION_NUM >= 90600
|
|
get_agg_clause_costs(NULL, (Node *) workerAggregateList, AGGSPLIT_SIMPLE,
|
|
&aggregateCosts);
|
|
#else
|
|
count_agg_clauses(NULL, (Node *) workerAggregateList, &aggregateCosts);
|
|
#endif
|
|
|
|
return workerAggregateList;
|
|
}
|
|
|
|
|
|
/*
|
|
* GetAggregateType scans pg_catalog.pg_proc for the given aggregate oid, and
|
|
* finds the aggregate's name. The function then matches the aggregate's name to
|
|
* previously stored strings, and returns the appropriate aggregate type.
|
|
*/
|
|
static AggregateType
|
|
GetAggregateType(Oid aggFunctionId)
|
|
{
|
|
char *aggregateProcName = NULL;
|
|
uint32 aggregateCount = 0;
|
|
uint32 aggregateIndex = 0;
|
|
bool found = false;
|
|
|
|
/* look up the function name */
|
|
aggregateProcName = get_func_name(aggFunctionId);
|
|
if (aggregateProcName == NULL)
|
|
{
|
|
ereport(ERROR, (errmsg("cache lookup failed for function %u", aggFunctionId)));
|
|
}
|
|
|
|
aggregateCount = lengthof(AggregateNames);
|
|
for (aggregateIndex = 0; aggregateIndex < aggregateCount; aggregateIndex++)
|
|
{
|
|
const char *aggregateName = AggregateNames[aggregateIndex];
|
|
if (strncmp(aggregateName, aggregateProcName, NAMEDATALEN) == 0)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
ereport(ERROR, (errmsg("unsupported aggregate function %s", aggregateProcName)));
|
|
}
|
|
|
|
return aggregateIndex;
|
|
}
|
|
|
|
|
|
/* Extracts the type of the argument over which the aggregate is operating. */
|
|
static Oid
|
|
AggregateArgumentType(Aggref *aggregate)
|
|
{
|
|
List *argumentList = aggregate->args;
|
|
TargetEntry *argument = (TargetEntry *) linitial(argumentList);
|
|
Oid returnTypeId = exprType((Node *) argument->expr);
|
|
|
|
/* We currently support aggregates with only one argument; assert that. */
|
|
Assert(list_length(argumentList) == 1);
|
|
|
|
return returnTypeId;
|
|
}
|
|
|
|
|
|
/*
|
|
* AggregateFunctionOid performs a reverse lookup on aggregate function name,
|
|
* and returns the corresponding aggregate function oid for the given function
|
|
* name and input type.
|
|
*/
|
|
static Oid
|
|
AggregateFunctionOid(const char *functionName, Oid inputType)
|
|
{
|
|
Oid functionOid = InvalidOid;
|
|
Relation procRelation = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
HeapTuple heapTuple = NULL;
|
|
|
|
procRelation = heap_open(ProcedureRelationId, AccessShareLock);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_proc_proname,
|
|
BTEqualStrategyNumber, F_NAMEEQ, CStringGetDatum(functionName));
|
|
|
|
scanDescriptor = systable_beginscan(procRelation,
|
|
ProcedureNameArgsNspIndexId, true,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
/* loop until we find the right function */
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
while (HeapTupleIsValid(heapTuple))
|
|
{
|
|
Form_pg_proc procForm = (Form_pg_proc) GETSTRUCT(heapTuple);
|
|
int argumentCount = procForm->pronargs;
|
|
|
|
if (argumentCount == 1)
|
|
{
|
|
/* check if input type and found value type match */
|
|
if (procForm->proargtypes.values[0] == inputType)
|
|
{
|
|
functionOid = HeapTupleGetOid(heapTuple);
|
|
break;
|
|
}
|
|
}
|
|
Assert(argumentCount <= 1);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
}
|
|
|
|
if (functionOid == InvalidOid)
|
|
{
|
|
ereport(ERROR, (errmsg("no matching oid for function: %s", functionName)));
|
|
}
|
|
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(procRelation, AccessShareLock);
|
|
|
|
return functionOid;
|
|
}
|
|
|
|
|
|
/*
|
|
* FunctionOid looks for a function that has the given name and the given number
|
|
* of arguments, and returns the corresponding function's oid.
|
|
*/
|
|
Oid
|
|
FunctionOid(const char *schemaName, const char *functionName, int argumentCount)
|
|
{
|
|
FuncCandidateList functionList = NULL;
|
|
Oid functionOid = InvalidOid;
|
|
|
|
char *qualifiedFunctionName = quote_qualified_identifier(schemaName, functionName);
|
|
List *qualifiedFunctionNameList = stringToQualifiedNameList(qualifiedFunctionName);
|
|
List *argumentList = NIL;
|
|
const bool findVariadics = false;
|
|
const bool findDefaults = false;
|
|
const bool missingOK = true;
|
|
|
|
functionList = FuncnameGetCandidates(qualifiedFunctionNameList, argumentCount,
|
|
argumentList, findVariadics,
|
|
findDefaults, missingOK);
|
|
|
|
if (functionList == NULL)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("function \"%s\" does not exist", functionName)));
|
|
}
|
|
else if (functionList->next != NULL)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_AMBIGUOUS_FUNCTION),
|
|
errmsg("more than one function named \"%s\"", functionName)));
|
|
}
|
|
|
|
/* get function oid from function list's head */
|
|
functionOid = functionList->oid;
|
|
return functionOid;
|
|
}
|
|
|
|
|
|
/*
|
|
* TypeOid looks for a type that has the given name and schema, and returns the
|
|
* corresponding type's oid.
|
|
*/
|
|
static Oid
|
|
TypeOid(Oid schemaId, const char *typeName)
|
|
{
|
|
Oid typeOid;
|
|
|
|
typeOid = GetSysCacheOid2(TYPENAMENSP, PointerGetDatum(typeName),
|
|
ObjectIdGetDatum(schemaId));
|
|
|
|
return typeOid;
|
|
}
|
|
|
|
|
|
/*
|
|
* CountDistinctHashFunctionName resolves the hll_hash function name to use for
|
|
* the given input type, and returns this function name.
|
|
*/
|
|
static char *
|
|
CountDistinctHashFunctionName(Oid argumentType)
|
|
{
|
|
char *hashFunctionName = NULL;
|
|
|
|
/* resolve hash function name based on input argument type */
|
|
switch (argumentType)
|
|
{
|
|
case INT4OID:
|
|
{
|
|
hashFunctionName = pstrdup(HLL_HASH_INTEGER_FUNC_NAME);
|
|
break;
|
|
}
|
|
|
|
case INT8OID:
|
|
{
|
|
hashFunctionName = pstrdup(HLL_HASH_BIGINT_FUNC_NAME);
|
|
break;
|
|
}
|
|
|
|
case TEXTOID:
|
|
case BPCHAROID:
|
|
case VARCHAROID:
|
|
{
|
|
hashFunctionName = pstrdup(HLL_HASH_TEXT_FUNC_NAME);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
hashFunctionName = pstrdup(HLL_HASH_ANY_FUNC_NAME);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return hashFunctionName;
|
|
}
|
|
|
|
|
|
/*
|
|
* CountDistinctStorageSize takes in the desired precision for count distinct
|
|
* approximations, and returns the log-base-2 of storage space needed for the
|
|
* HyperLogLog algorithm.
|
|
*/
|
|
static int
|
|
CountDistinctStorageSize(double approximationErrorRate)
|
|
{
|
|
double desiredStorageSize = pow((1.04 / approximationErrorRate), 2);
|
|
double logOfDesiredStorageSize = log(desiredStorageSize) / log(2);
|
|
|
|
/* keep log2(storage size) inside allowed range */
|
|
int logOfStorageSize = (int) rint(logOfDesiredStorageSize);
|
|
if (logOfStorageSize < 4)
|
|
{
|
|
logOfStorageSize = 4;
|
|
}
|
|
else if (logOfStorageSize > 17)
|
|
{
|
|
logOfStorageSize = 17;
|
|
}
|
|
|
|
return logOfStorageSize;
|
|
}
|
|
|
|
|
|
/* Makes an integer constant node from the given value, and returns that node. */
|
|
static Const *
|
|
MakeIntegerConst(int32 integerValue)
|
|
{
|
|
const int typeCollationId = get_typcollation(INT4OID);
|
|
const int16 typeLength = get_typlen(INT4OID);
|
|
const int32 typeModifier = -1;
|
|
const bool typeIsNull = false;
|
|
const bool typePassByValue = true;
|
|
|
|
Datum integerDatum = Int32GetDatum(integerValue);
|
|
Const *integerConst = makeConst(INT4OID, typeModifier, typeCollationId, typeLength,
|
|
integerDatum, typeIsNull, typePassByValue);
|
|
|
|
return integerConst;
|
|
}
|
|
|
|
|
|
/* Makes a 64-bit integer constant node from the given value, and returns that node. */
|
|
static Const *
|
|
MakeIntegerConstInt64(int64 integerValue)
|
|
{
|
|
const int typeCollationId = get_typcollation(INT8OID);
|
|
const int16 typeLength = get_typlen(INT8OID);
|
|
const int32 typeModifier = -1;
|
|
const bool typeIsNull = false;
|
|
const bool typePassByValue = true;
|
|
|
|
Datum integer64Datum = Int64GetDatum(integerValue);
|
|
Const *integer64Const = makeConst(INT8OID, typeModifier, typeCollationId, typeLength,
|
|
integer64Datum, typeIsNull, typePassByValue);
|
|
|
|
return integer64Const;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfContainsUnsupportedAggregate extracts aggregate expressions from the
|
|
* logical plan, walks over them and uses helper functions to check if we can
|
|
* transform these aggregate expressions and push them down to worker nodes.
|
|
* These helper functions error out if we cannot transform the aggregates.
|
|
*/
|
|
static void
|
|
ErrorIfContainsUnsupportedAggregate(MultiNode *logicalPlanNode)
|
|
{
|
|
List *opNodeList = FindNodesOfType(logicalPlanNode, T_MultiExtendedOp);
|
|
MultiExtendedOp *extendedOpNode = (MultiExtendedOp *) linitial(opNodeList);
|
|
|
|
List *targetList = extendedOpNode->targetList;
|
|
|
|
#if (PG_VERSION_NUM >= 90600)
|
|
|
|
/*
|
|
* PVC_REJECT_PLACEHOLDERS is now implicit if PVC_INCLUDE_PLACEHOLDERS
|
|
* isn't specified.
|
|
*/
|
|
List *expressionList = pull_var_clause((Node *) targetList, PVC_INCLUDE_AGGREGATES);
|
|
#else
|
|
List *expressionList = pull_var_clause((Node *) targetList, PVC_INCLUDE_AGGREGATES,
|
|
PVC_REJECT_PLACEHOLDERS);
|
|
#endif
|
|
|
|
ListCell *expressionCell = NULL;
|
|
foreach(expressionCell, expressionList)
|
|
{
|
|
Node *expression = (Node *) lfirst(expressionCell);
|
|
Aggref *aggregateExpression = NULL;
|
|
AggregateType aggregateType = AGGREGATE_INVALID_FIRST;
|
|
|
|
/* only consider aggregate expressions */
|
|
if (!IsA(expression, Aggref))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* GetAggregateType errors out on unsupported aggregate types */
|
|
aggregateExpression = (Aggref *) expression;
|
|
aggregateType = GetAggregateType(aggregateExpression->aggfnoid);
|
|
Assert(aggregateType != AGGREGATE_INVALID_FIRST);
|
|
|
|
/*
|
|
* Check that we can transform the current aggregate expression. These
|
|
* functions error out on unsupported array_agg and aggregate (distinct)
|
|
* clauses.
|
|
*/
|
|
if (aggregateType == AGGREGATE_ARRAY_AGG)
|
|
{
|
|
ErrorIfUnsupportedArrayAggregate(aggregateExpression);
|
|
}
|
|
else if (aggregateExpression->aggdistinct)
|
|
{
|
|
ErrorIfUnsupportedAggregateDistinct(aggregateExpression, logicalPlanNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfUnsupportedArrayAggregate checks if we can transform the array aggregate
|
|
* expression and push it down to the worker node. If we cannot transform the
|
|
* aggregate, this function errors.
|
|
*/
|
|
static void
|
|
ErrorIfUnsupportedArrayAggregate(Aggref *arrayAggregateExpression)
|
|
{
|
|
/* if array_agg has order by, we error out */
|
|
if (arrayAggregateExpression->aggorder)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("array_agg with order by is unsupported")));
|
|
}
|
|
|
|
/* if array_agg has distinct, we error out */
|
|
if (arrayAggregateExpression->aggdistinct)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("array_agg (distinct) is unsupported")));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfUnsupportedAggregateDistinct checks if we can transform the aggregate
|
|
* (distinct expression) and push it down to the worker node. It handles count
|
|
* (distinct) separately to check if we can use distinct approximations. If we
|
|
* cannot transform the aggregate, this function errors.
|
|
*/
|
|
static void
|
|
ErrorIfUnsupportedAggregateDistinct(Aggref *aggregateExpression,
|
|
MultiNode *logicalPlanNode)
|
|
{
|
|
char *errorDetail = NULL;
|
|
bool distinctSupported = true;
|
|
List *repartitionNodeList = NIL;
|
|
Var *distinctColumn = NULL;
|
|
List *tableNodeList = NIL;
|
|
List *extendedOpNodeList = NIL;
|
|
MultiExtendedOp *extendedOpNode = NULL;
|
|
|
|
AggregateType aggregateType = GetAggregateType(aggregateExpression->aggfnoid);
|
|
|
|
/* check if logical plan includes a subquery */
|
|
List *subqueryMultiTableList = SubqueryMultiTableList(logicalPlanNode);
|
|
if (subqueryMultiTableList != NIL)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("distinct in the outermost query is unsupported")));
|
|
}
|
|
|
|
/*
|
|
* We partially support count(distinct) in subqueries, other distinct aggregates in
|
|
* subqueries are not supported yet.
|
|
*/
|
|
if (aggregateType == AGGREGATE_COUNT)
|
|
{
|
|
Node *aggregateArgument = (Node *) linitial(aggregateExpression->args);
|
|
List *columnList = pull_var_clause_default(aggregateArgument);
|
|
ListCell *columnCell = NULL;
|
|
foreach(columnCell, columnList)
|
|
{
|
|
Var *column = (Var *) lfirst(columnCell);
|
|
if (column->varattno <= 0)
|
|
{
|
|
ereport(ERROR, (errmsg("cannot compute count (distinct)"),
|
|
errdetail("Non-column references are not supported "
|
|
"yet")));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
List *multiTableNodeList = FindNodesOfType(logicalPlanNode, T_MultiTable);
|
|
ListCell *multiTableNodeCell = NULL;
|
|
foreach(multiTableNodeCell, multiTableNodeList)
|
|
{
|
|
MultiTable *multiTable = (MultiTable *) lfirst(multiTableNodeCell);
|
|
if (multiTable->relationId == SUBQUERY_RELATION_ID)
|
|
{
|
|
ereport(ERROR, (errmsg("cannot compute aggregate (distinct)"),
|
|
errdetail("Only count(distinct) aggregate is "
|
|
"supported in subqueries")));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if we have a count(distinct), and distinct approximation is enabled */
|
|
if (aggregateType == AGGREGATE_COUNT &&
|
|
CountDistinctErrorRate != DISABLE_DISTINCT_APPROXIMATION)
|
|
{
|
|
bool missingOK = true;
|
|
Oid distinctExtensionId = get_extension_oid(HLL_EXTENSION_NAME, missingOK);
|
|
|
|
/* if extension for distinct approximation is loaded, we are good */
|
|
if (distinctExtensionId != InvalidOid)
|
|
{
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR, (errmsg("cannot compute count (distinct) approximation"),
|
|
errhint("You need to have the hll extension loaded.")));
|
|
}
|
|
}
|
|
|
|
if (aggregateType == AGGREGATE_COUNT)
|
|
{
|
|
List *aggregateVarList = pull_var_clause_default((Node *) aggregateExpression);
|
|
if (aggregateVarList == NIL)
|
|
{
|
|
distinctSupported = false;
|
|
errorDetail = "aggregate (distinct) with no columns is unsupported";
|
|
}
|
|
}
|
|
|
|
repartitionNodeList = FindNodesOfType(logicalPlanNode, T_MultiPartition);
|
|
if (repartitionNodeList != NIL)
|
|
{
|
|
distinctSupported = false;
|
|
errorDetail = "aggregate (distinct) with table repartitioning is unsupported";
|
|
}
|
|
|
|
tableNodeList = FindNodesOfType(logicalPlanNode, T_MultiTable);
|
|
extendedOpNodeList = FindNodesOfType(logicalPlanNode, T_MultiExtendedOp);
|
|
extendedOpNode = (MultiExtendedOp *) linitial(extendedOpNodeList);
|
|
|
|
distinctColumn = AggregateDistinctColumn(aggregateExpression);
|
|
if (distinctSupported && distinctColumn == NULL)
|
|
{
|
|
/*
|
|
* If the query has a single table, and table is grouped by partition column,
|
|
* then we support count distincts even distinct column can not be identified.
|
|
*/
|
|
distinctSupported = TablePartitioningSupportsDistinct(tableNodeList,
|
|
extendedOpNode,
|
|
distinctColumn);
|
|
if (!distinctSupported)
|
|
{
|
|
errorDetail = "aggregate (distinct) on complex expressions is unsupported";
|
|
}
|
|
}
|
|
else if (distinctSupported)
|
|
{
|
|
bool supports = TablePartitioningSupportsDistinct(tableNodeList, extendedOpNode,
|
|
distinctColumn);
|
|
if (!supports)
|
|
{
|
|
distinctSupported = false;
|
|
errorDetail = "table partitioning is unsuitable for aggregate (distinct)";
|
|
}
|
|
}
|
|
|
|
/* if current aggregate expression isn't supported, error out */
|
|
if (!distinctSupported)
|
|
{
|
|
if (aggregateType == AGGREGATE_COUNT)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot compute aggregate (distinct)"),
|
|
errdetail("%s", errorDetail),
|
|
errhint("You can load the hll extension from contrib "
|
|
"packages and enable distinct approximations.")));
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot compute aggregate (distinct)"),
|
|
errdetail("%s", errorDetail)));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* AggregateDistinctColumn checks if the given aggregate expression's distinct
|
|
* clause is on a single column. If it is, the function finds and returns that
|
|
* column. Otherwise, the function returns null.
|
|
*/
|
|
static Var *
|
|
AggregateDistinctColumn(Aggref *aggregateExpression)
|
|
{
|
|
Var *aggregateColumn = NULL;
|
|
int aggregateArgumentCount = 0;
|
|
TargetEntry *aggregateTargetEntry = NULL;
|
|
|
|
/* only consider aggregates with distincts */
|
|
if (!aggregateExpression->aggdistinct)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
aggregateArgumentCount = list_length(aggregateExpression->args);
|
|
if (aggregateArgumentCount != 1)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
aggregateTargetEntry = (TargetEntry *) linitial(aggregateExpression->args);
|
|
if (!IsA(aggregateTargetEntry->expr, Var))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
aggregateColumn = (Var *) aggregateTargetEntry->expr;
|
|
return aggregateColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
* TablePartitioningSupportsDistinct walks over all tables in the given list and
|
|
* checks that each table's partitioning method is suitable for pushing down an
|
|
* aggregate (distinct) expression to worker nodes. For this, the function needs
|
|
* to check that task results do not overlap with one another on the distinct
|
|
* column.
|
|
*/
|
|
static bool
|
|
TablePartitioningSupportsDistinct(List *tableNodeList, MultiExtendedOp *opNode,
|
|
Var *distinctColumn)
|
|
{
|
|
bool distinctSupported = true;
|
|
ListCell *tableNodeCell = NULL;
|
|
|
|
foreach(tableNodeCell, tableNodeList)
|
|
{
|
|
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
|
|
Oid relationId = tableNode->relationId;
|
|
bool tableDistinctSupported = false;
|
|
char partitionMethod = 0;
|
|
List *shardList = NIL;
|
|
|
|
if (relationId == SUBQUERY_RELATION_ID)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/* if table has one shard, task results don't overlap */
|
|
shardList = LoadShardList(relationId);
|
|
if (list_length(shardList) == 1)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We need to check that task results don't overlap. We can only do this
|
|
* if table is range partitioned.
|
|
*/
|
|
partitionMethod = PartitionMethod(relationId);
|
|
|
|
if (partitionMethod == DISTRIBUTE_BY_RANGE ||
|
|
partitionMethod == DISTRIBUTE_BY_HASH)
|
|
{
|
|
Var *tablePartitionColumn = tableNode->partitionColumn;
|
|
bool groupedByPartitionColumn = false;
|
|
|
|
/* if distinct is on table partition column, we can push it down */
|
|
if (distinctColumn != NULL &&
|
|
tablePartitionColumn->varno == distinctColumn->varno &&
|
|
tablePartitionColumn->varattno == distinctColumn->varattno)
|
|
{
|
|
tableDistinctSupported = true;
|
|
}
|
|
|
|
/* if results are grouped by partition column, we can push down */
|
|
groupedByPartitionColumn = GroupedByColumn(opNode->groupClauseList,
|
|
opNode->targetList,
|
|
tablePartitionColumn);
|
|
if (groupedByPartitionColumn)
|
|
{
|
|
tableDistinctSupported = true;
|
|
}
|
|
}
|
|
|
|
if (!tableDistinctSupported)
|
|
{
|
|
distinctSupported = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return distinctSupported;
|
|
}
|
|
|
|
|
|
/*
|
|
* GroupedByColumn walks over group clauses in the given list, and checks if any
|
|
* of the group clauses is on the given column.
|
|
*/
|
|
static bool
|
|
GroupedByColumn(List *groupClauseList, List *targetList, Var *column)
|
|
{
|
|
bool groupedByColumn = false;
|
|
ListCell *groupClauseCell = NULL;
|
|
|
|
foreach(groupClauseCell, groupClauseList)
|
|
{
|
|
SortGroupClause *groupClause = (SortGroupClause *) lfirst(groupClauseCell);
|
|
TargetEntry *groupTargetEntry = get_sortgroupclause_tle(groupClause, targetList);
|
|
|
|
Expr *groupExpression = (Expr *) groupTargetEntry->expr;
|
|
if (IsA(groupExpression, Var))
|
|
{
|
|
Var *groupColumn = (Var *) groupExpression;
|
|
if (groupColumn->varno == column->varno &&
|
|
groupColumn->varattno == column->varattno)
|
|
{
|
|
groupedByColumn = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return groupedByColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfContainsUnsupportedSubquery extracts subquery multi table from the
|
|
* logical plan and uses helper functions to check if we can push down subquery
|
|
* to worker nodes. These helper functions error out if we cannot push down the
|
|
* the subquery.
|
|
*/
|
|
static void
|
|
ErrorIfContainsUnsupportedSubquery(MultiNode *logicalPlanNode)
|
|
{
|
|
Query *subquery = NULL;
|
|
List *extendedOpNodeList = NIL;
|
|
MultiTable *multiTable = NULL;
|
|
MultiExtendedOp *extendedOpNode = NULL;
|
|
bool outerQueryHasLimit = false;
|
|
|
|
/* check if logical plan includes a subquery */
|
|
List *subqueryMultiTableList = SubqueryMultiTableList(logicalPlanNode);
|
|
if (subqueryMultiTableList == NIL)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* currently in the planner we only allow one subquery in from-clause*/
|
|
Assert(list_length(subqueryMultiTableList) == 1);
|
|
|
|
multiTable = (MultiTable *) linitial(subqueryMultiTableList);
|
|
subquery = multiTable->subquery;
|
|
|
|
extendedOpNodeList = FindNodesOfType(logicalPlanNode, T_MultiExtendedOp);
|
|
extendedOpNode = (MultiExtendedOp *) linitial(extendedOpNodeList);
|
|
|
|
if (extendedOpNode->limitCount)
|
|
{
|
|
outerQueryHasLimit = true;
|
|
}
|
|
|
|
ErrorIfCannotPushdownSubquery(subquery, outerQueryHasLimit);
|
|
ErrorIfUnsupportedShardDistribution(subquery);
|
|
ErrorIfUnsupportedFilters(subquery);
|
|
}
|
|
|
|
|
|
/*
|
|
* SubqueryMultiTableList extracts multi tables in the given logical plan tree
|
|
* and returns subquery multi tables in a new list.
|
|
*/
|
|
List *
|
|
SubqueryMultiTableList(MultiNode *multiNode)
|
|
{
|
|
List *subqueryMultiTableList = NIL;
|
|
List *multiTableNodeList = FindNodesOfType(multiNode, T_MultiTable);
|
|
|
|
ListCell *multiTableNodeCell = NULL;
|
|
foreach(multiTableNodeCell, multiTableNodeList)
|
|
{
|
|
MultiTable *multiTable = (MultiTable *) lfirst(multiTableNodeCell);
|
|
Query *subquery = multiTable->subquery;
|
|
|
|
if (subquery != NULL)
|
|
{
|
|
subqueryMultiTableList = lappend(subqueryMultiTableList, multiTable);
|
|
}
|
|
}
|
|
|
|
return subqueryMultiTableList;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfCannotPushdownSubquery recursively checks if we can push down the given
|
|
* subquery to worker nodes. If we cannot push down the subquery, this function
|
|
* errors out.
|
|
*
|
|
* We can push down a subquery if it follows rules below. We support nested queries
|
|
* as long as they follow the same rules, and we recurse to validate each subquery
|
|
* for this given query.
|
|
* a. If there is an aggregate, it must be grouped on partition column.
|
|
* b. If there is a join, it must be between two regular tables or two subqueries.
|
|
* We don't support join between a regular table and a subquery. And columns on
|
|
* the join condition must be partition columns.
|
|
* c. If there is a distinct clause, it must be on the partition column.
|
|
*
|
|
* This function is very similar to ErrorIfQueryNotSupported() in logical
|
|
* planner, but we don't reuse it, because differently for subqueries we support
|
|
* a subset of distinct, union and left joins.
|
|
*
|
|
* Note that this list of checks is not exhaustive, there can be some cases
|
|
* which we let subquery to run but returned results would be wrong. Such as if
|
|
* a subquery has a group by on another subquery which includes order by with
|
|
* limit, we let this query to run, but results could be wrong depending on the
|
|
* features of underlying tables.
|
|
*/
|
|
static void
|
|
ErrorIfCannotPushdownSubquery(Query *subqueryTree, bool outerQueryHasLimit)
|
|
{
|
|
bool preconditionsSatisfied = true;
|
|
char *errorDetail = NULL;
|
|
Query *lateralQuery = NULL;
|
|
List *subqueryEntryList = NIL;
|
|
ListCell *rangeTableEntryCell = NULL;
|
|
|
|
ErrorIfUnsupportedTableCombination(subqueryTree);
|
|
|
|
if (subqueryTree->hasSubLinks)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Subqueries other than from-clause subqueries are unsupported";
|
|
}
|
|
|
|
if (subqueryTree->hasWindowFuncs)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Window functions are currently unsupported";
|
|
}
|
|
|
|
if (subqueryTree->limitOffset)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Offset clause is currently unsupported";
|
|
}
|
|
|
|
if (subqueryTree->limitCount && !outerQueryHasLimit)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Limit in subquery without limit in the outer query is unsupported";
|
|
}
|
|
|
|
if (subqueryTree->setOperations)
|
|
{
|
|
SetOperationStmt *setOperationStatement =
|
|
(SetOperationStmt *) subqueryTree->setOperations;
|
|
|
|
if (setOperationStatement->op == SETOP_UNION)
|
|
{
|
|
ErrorIfUnsupportedUnionQuery(subqueryTree);
|
|
}
|
|
else
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Intersect and Except are currently unsupported";
|
|
}
|
|
}
|
|
|
|
if (subqueryTree->hasRecursive)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Recursive queries are currently unsupported";
|
|
}
|
|
|
|
if (subqueryTree->cteList)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Common Table Expressions are currently unsupported";
|
|
}
|
|
|
|
if (subqueryTree->hasForUpdate)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "For Update/Share commands are currently unsupported";
|
|
}
|
|
|
|
/* group clause list must include partition column */
|
|
if (subqueryTree->groupClause)
|
|
{
|
|
List *groupClauseList = subqueryTree->groupClause;
|
|
List *targetEntryList = subqueryTree->targetList;
|
|
List *groupTargetEntryList = GroupTargetEntryList(groupClauseList,
|
|
targetEntryList);
|
|
bool groupOnPartitionColumn = TargetListOnPartitionColumn(subqueryTree,
|
|
groupTargetEntryList);
|
|
if (!groupOnPartitionColumn)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Group by list without partition column is currently "
|
|
"unsupported";
|
|
}
|
|
}
|
|
|
|
/* we don't support aggregates without group by */
|
|
if (subqueryTree->hasAggs && (subqueryTree->groupClause == NULL))
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Aggregates without group by are currently unsupported";
|
|
}
|
|
|
|
/* having clause without group by on partition column is not supported */
|
|
if (subqueryTree->havingQual && (subqueryTree->groupClause == NULL))
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Having qual without group by on partition column is "
|
|
"currently unsupported";
|
|
}
|
|
|
|
/*
|
|
* Check if join is supported. We check lateral joins differently, because
|
|
* lateral join representation in query tree is a bit different than normal
|
|
* join queries.
|
|
*/
|
|
lateralQuery = LateralQuery(subqueryTree);
|
|
if (lateralQuery != NULL)
|
|
{
|
|
bool supportedLateralQuery = SupportedLateralQuery(subqueryTree, lateralQuery);
|
|
if (!supportedLateralQuery)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "This type of lateral query in subquery is currently "
|
|
"unsupported";
|
|
}
|
|
}
|
|
else
|
|
{
|
|
List *joinTreeTableIndexList = NIL;
|
|
uint32 joiningTableCount = 0;
|
|
|
|
ExtractRangeTableIndexWalker((Node *) subqueryTree->jointree,
|
|
&joinTreeTableIndexList);
|
|
joiningTableCount = list_length(joinTreeTableIndexList);
|
|
|
|
/* if this is a join query, check if join clause is on partition columns */
|
|
if ((joiningTableCount > 1))
|
|
{
|
|
bool joinOnPartitionColumn = JoinOnPartitionColumn(subqueryTree);
|
|
if (!joinOnPartitionColumn)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Relations need to be joining on partition columns";
|
|
}
|
|
}
|
|
}
|
|
|
|
/* distinct clause list must include partition column */
|
|
if (subqueryTree->distinctClause)
|
|
{
|
|
List *distinctClauseList = subqueryTree->distinctClause;
|
|
List *targetEntryList = subqueryTree->targetList;
|
|
List *distinctTargetEntryList = GroupTargetEntryList(distinctClauseList,
|
|
targetEntryList);
|
|
bool distinctOnPartitionColumn =
|
|
TargetListOnPartitionColumn(subqueryTree, distinctTargetEntryList);
|
|
if (!distinctOnPartitionColumn)
|
|
{
|
|
preconditionsSatisfied = false;
|
|
errorDetail = "Distinct on columns without partition column is "
|
|
"currently unsupported";
|
|
}
|
|
}
|
|
|
|
/* finally check and error out if not satisfied */
|
|
if (!preconditionsSatisfied)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("%s", errorDetail)));
|
|
}
|
|
|
|
/* recursively do same check for subqueries of this query */
|
|
subqueryEntryList = SubqueryEntryList(subqueryTree);
|
|
foreach(rangeTableEntryCell, subqueryEntryList)
|
|
{
|
|
RangeTblEntry *rangeTableEntry =
|
|
(RangeTblEntry *) lfirst(rangeTableEntryCell);
|
|
|
|
Query *innerSubquery = rangeTableEntry->subquery;
|
|
ErrorIfCannotPushdownSubquery(innerSubquery, outerQueryHasLimit);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfUnsupportedTableCombination checks if the given query tree contains any
|
|
* unsupported range table combinations. For this, the function walks over all
|
|
* range tables in the join tree, and checks if they correspond to simple relations
|
|
* or subqueries. It also checks if there is a join between a regular table and
|
|
* a subquery and if join is on more than two range table entries.
|
|
*/
|
|
static void
|
|
ErrorIfUnsupportedTableCombination(Query *queryTree)
|
|
{
|
|
List *rangeTableList = queryTree->rtable;
|
|
List *joinTreeTableIndexList = NIL;
|
|
ListCell *joinTreeTableIndexCell = NULL;
|
|
bool unsupporteTableCombination = false;
|
|
char *errorDetail = NULL;
|
|
uint32 relationRangeTableCount = 0;
|
|
uint32 subqueryRangeTableCount = 0;
|
|
|
|
/*
|
|
* Extract all range table indexes from the join tree. Note that sub-queries
|
|
* that get pulled up by PostgreSQL don't appear in this join tree.
|
|
*/
|
|
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
|
|
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
|
|
{
|
|
/*
|
|
* Join tree's range table index starts from 1 in the query tree. But,
|
|
* list indexes start from 0.
|
|
*/
|
|
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
|
|
int rangeTableListIndex = joinTreeTableIndex - 1;
|
|
|
|
RangeTblEntry *rangeTableEntry =
|
|
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
|
|
|
|
/*
|
|
* Check if the range table in the join tree is a simple relation or a
|
|
* subquery.
|
|
*/
|
|
if (rangeTableEntry->rtekind == RTE_RELATION)
|
|
{
|
|
relationRangeTableCount++;
|
|
}
|
|
else if (rangeTableEntry->rtekind == RTE_SUBQUERY)
|
|
{
|
|
subqueryRangeTableCount++;
|
|
}
|
|
else
|
|
{
|
|
unsupporteTableCombination = true;
|
|
errorDetail = "Table expressions other than simple relations and "
|
|
"subqueries are currently unsupported";
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((subqueryRangeTableCount > 0) && (relationRangeTableCount > 0))
|
|
{
|
|
unsupporteTableCombination = true;
|
|
errorDetail = "Joins between regular tables and subqueries are unsupported";
|
|
}
|
|
|
|
if ((relationRangeTableCount > 2) || (subqueryRangeTableCount > 2))
|
|
{
|
|
unsupporteTableCombination = true;
|
|
errorDetail = "Joins between more than two relations and subqueries are "
|
|
"unsupported";
|
|
}
|
|
|
|
/* finally check and error out if not satisfied */
|
|
if (unsupporteTableCombination)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("%s", errorDetail)));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfUnsupportedUnionQuery checks if the given union query is a supported
|
|
* one., otherwise it errors out. For these purpose it checks tree conditions;
|
|
* a. Are count of partition column filters same for union subqueries.
|
|
* b. Are target lists of union subquries include partition column.
|
|
* c. Is it a union clause without All option.
|
|
*
|
|
* Note that we check equality of filters in ErrorIfUnsupportedFilters(). We
|
|
* allow leaf queries not having a filter clause on the partition column. We
|
|
* check if a leaf query has a filter on the partition column, it must be same
|
|
* with other queries or if leaf query must not have any filter on the partition
|
|
* column, both are ok. Because joins and nested queries are transitive, it is
|
|
* enough one leaf query to have a filter on the partition column. But unions
|
|
* are not transitive, so here we check if they have same count of filters on
|
|
* the partition column. If count is more than 0, we already checked that they
|
|
* are same, of if count is 0 then both don't have any filter on the partition
|
|
* column.
|
|
*/
|
|
static void
|
|
ErrorIfUnsupportedUnionQuery(Query *unionQuery)
|
|
{
|
|
bool supportedUnionQuery = true;
|
|
bool leftQueryOnPartitionColumn = false;
|
|
bool rightQueryOnPartitionColumn = false;
|
|
List *rangeTableList = unionQuery->rtable;
|
|
SetOperationStmt *unionStatement = (SetOperationStmt *) unionQuery->setOperations;
|
|
Query *leftQuery = NULL;
|
|
Query *rightQuery = NULL;
|
|
List *leftOpExpressionList = NIL;
|
|
List *rightOpExpressionList = NIL;
|
|
uint32 leftOpExpressionCount = 0;
|
|
uint32 rightOpExpressionCount = 0;
|
|
char *errorDetail = NULL;
|
|
|
|
RangeTblRef *leftRangeTableReference = (RangeTblRef *) unionStatement->larg;
|
|
RangeTblRef *rightRangeTableReference = (RangeTblRef *) unionStatement->rarg;
|
|
|
|
int leftTableIndex = leftRangeTableReference->rtindex - 1;
|
|
int rightTableIndex = rightRangeTableReference->rtindex - 1;
|
|
|
|
RangeTblEntry *leftRangeTableEntry = (RangeTblEntry *) list_nth(rangeTableList,
|
|
leftTableIndex);
|
|
RangeTblEntry *rightRangeTableEntry = (RangeTblEntry *) list_nth(rangeTableList,
|
|
rightTableIndex);
|
|
|
|
Assert(leftRangeTableEntry->rtekind == RTE_SUBQUERY);
|
|
Assert(rightRangeTableEntry->rtekind == RTE_SUBQUERY);
|
|
|
|
leftQuery = leftRangeTableEntry->subquery;
|
|
rightQuery = rightRangeTableEntry->subquery;
|
|
|
|
/*
|
|
* Check if subqueries of union have same count of filters on partition
|
|
* column.
|
|
*/
|
|
leftOpExpressionList = PartitionColumnOpExpressionList(leftQuery);
|
|
rightOpExpressionList = PartitionColumnOpExpressionList(rightQuery);
|
|
|
|
leftOpExpressionCount = list_length(leftOpExpressionList);
|
|
rightOpExpressionCount = list_length(rightOpExpressionList);
|
|
|
|
if (leftOpExpressionCount != rightOpExpressionCount)
|
|
{
|
|
supportedUnionQuery = false;
|
|
errorDetail = "Union clauses need to have same count of filters on "
|
|
"partition column";
|
|
}
|
|
|
|
/* check if union subqueries have partition column in their target lists */
|
|
leftQueryOnPartitionColumn = TargetListOnPartitionColumn(leftQuery,
|
|
leftQuery->targetList);
|
|
rightQueryOnPartitionColumn = TargetListOnPartitionColumn(rightQuery,
|
|
rightQuery->targetList);
|
|
|
|
if (!(leftQueryOnPartitionColumn && rightQueryOnPartitionColumn))
|
|
{
|
|
supportedUnionQuery = false;
|
|
errorDetail = "Union clauses need to select partition columns";
|
|
}
|
|
|
|
/* check if it is a union all operation */
|
|
if (unionStatement->all)
|
|
{
|
|
supportedUnionQuery = false;
|
|
errorDetail = "Union All clauses are currently unsupported";
|
|
}
|
|
|
|
/* finally check and error out if not satisfied */
|
|
if (!supportedUnionQuery)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("%s", errorDetail)));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* GroupTargetEntryList walks over group clauses in the given list, finds
|
|
* matching target entries and return them in a new list.
|
|
*/
|
|
List *
|
|
GroupTargetEntryList(List *groupClauseList, List *targetEntryList)
|
|
{
|
|
List *groupTargetEntryList = NIL;
|
|
ListCell *groupClauseCell = NULL;
|
|
|
|
foreach(groupClauseCell, groupClauseList)
|
|
{
|
|
SortGroupClause *groupClause = (SortGroupClause *) lfirst(groupClauseCell);
|
|
TargetEntry *groupTargetEntry =
|
|
get_sortgroupclause_tle(groupClause, targetEntryList);
|
|
groupTargetEntryList = lappend(groupTargetEntryList, groupTargetEntry);
|
|
}
|
|
|
|
return groupTargetEntryList;
|
|
}
|
|
|
|
|
|
/*
|
|
* TargetListOnPartitionColumn checks if at least one target list entry is on
|
|
* partition column.
|
|
*/
|
|
static bool
|
|
TargetListOnPartitionColumn(Query *query, List *targetEntryList)
|
|
{
|
|
bool targetListOnPartitionColumn = false;
|
|
List *compositeFieldList = NIL;
|
|
|
|
ListCell *targetEntryCell = NULL;
|
|
foreach(targetEntryCell, targetEntryList)
|
|
{
|
|
TargetEntry *targetEntry = (TargetEntry *) lfirst(targetEntryCell);
|
|
Expr *targetExpression = targetEntry->expr;
|
|
|
|
bool isPartitionColumn = IsPartitionColumnRecursive(targetExpression, query);
|
|
if (isPartitionColumn)
|
|
{
|
|
FieldSelect *compositeField = CompositeFieldRecursive(targetExpression,
|
|
query);
|
|
if (compositeField)
|
|
{
|
|
compositeFieldList = lappend(compositeFieldList, compositeField);
|
|
}
|
|
else
|
|
{
|
|
targetListOnPartitionColumn = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check composite fields */
|
|
if (!targetListOnPartitionColumn)
|
|
{
|
|
bool fullCompositeFieldList = FullCompositeFieldList(compositeFieldList);
|
|
if (fullCompositeFieldList)
|
|
{
|
|
targetListOnPartitionColumn = true;
|
|
}
|
|
}
|
|
|
|
return targetListOnPartitionColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
* IsPartitionColumnRecursive recursively checks if the given column is a partition
|
|
* column. If a column is referenced from a regular table, we directly check if
|
|
* it is a partition column. If a column is referenced from a subquery, then we
|
|
* recursively check that subquery until we reach the source of that column, and
|
|
* verify this column is a partition column. If a column is referenced from a
|
|
* join range table entry, then we resolve which join column it refers and
|
|
* recursively check this column with the same query.
|
|
*
|
|
* Note that if the given expression is a field of a composite type, then this
|
|
* function checks if this composite column is a partition column.
|
|
*/
|
|
static bool
|
|
IsPartitionColumnRecursive(Expr *columnExpression, Query *query)
|
|
{
|
|
bool isPartitionColumn = false;
|
|
Var *candidateColumn = NULL;
|
|
List *rangetableList = query->rtable;
|
|
Index rangeTableEntryIndex = 0;
|
|
RangeTblEntry *rangeTableEntry = NULL;
|
|
Expr *strippedColumnExpression = (Expr *) strip_implicit_coercions(
|
|
(Node *) columnExpression);
|
|
|
|
if (IsA(strippedColumnExpression, Var))
|
|
{
|
|
candidateColumn = (Var *) strippedColumnExpression;
|
|
}
|
|
else if (IsA(strippedColumnExpression, FieldSelect))
|
|
{
|
|
FieldSelect *compositeField = (FieldSelect *) strippedColumnExpression;
|
|
Expr *fieldExpression = compositeField->arg;
|
|
|
|
if (IsA(fieldExpression, Var))
|
|
{
|
|
candidateColumn = (Var *) fieldExpression;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("Only references to column fields are supported")));
|
|
}
|
|
}
|
|
|
|
if (candidateColumn == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
rangeTableEntryIndex = candidateColumn->varno - 1;
|
|
rangeTableEntry = list_nth(rangetableList, rangeTableEntryIndex);
|
|
|
|
if (rangeTableEntry->rtekind == RTE_RELATION)
|
|
{
|
|
Oid relationId = rangeTableEntry->relid;
|
|
Var *partitionColumn = PartitionKey(relationId);
|
|
|
|
if (candidateColumn->varattno == partitionColumn->varattno)
|
|
{
|
|
isPartitionColumn = true;
|
|
}
|
|
}
|
|
else if (rangeTableEntry->rtekind == RTE_SUBQUERY)
|
|
{
|
|
Query *subquery = rangeTableEntry->subquery;
|
|
List *targetEntryList = subquery->targetList;
|
|
AttrNumber targetEntryIndex = candidateColumn->varattno - 1;
|
|
TargetEntry *subqueryTargetEntry = list_nth(targetEntryList, targetEntryIndex);
|
|
|
|
Expr *subqueryExpression = subqueryTargetEntry->expr;
|
|
isPartitionColumn = IsPartitionColumnRecursive(subqueryExpression, subquery);
|
|
}
|
|
else if (rangeTableEntry->rtekind == RTE_JOIN)
|
|
{
|
|
List *joinColumnList = rangeTableEntry->joinaliasvars;
|
|
AttrNumber joinColumnIndex = candidateColumn->varattno - 1;
|
|
Expr *joinColumn = list_nth(joinColumnList, joinColumnIndex);
|
|
|
|
isPartitionColumn = IsPartitionColumnRecursive(joinColumn, query);
|
|
}
|
|
|
|
return isPartitionColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
* CompositeFieldRecursive recursively finds composite field in the query tree
|
|
* referred by given expression. If expression does not refer to a composite
|
|
* field, then it returns NULL.
|
|
*
|
|
* If expression is a field select we directly return composite field. If it is
|
|
* a column is referenced from a subquery, then we recursively check that subquery
|
|
* until we reach the source of that column, and find composite field. If this
|
|
* column is referenced from join range table entry, then we resolve which join
|
|
* column it refers and recursively use this column with the same query.
|
|
*/
|
|
static FieldSelect *
|
|
CompositeFieldRecursive(Expr *expression, Query *query)
|
|
{
|
|
FieldSelect *compositeField = NULL;
|
|
List *rangetableList = query->rtable;
|
|
Index rangeTableEntryIndex = 0;
|
|
RangeTblEntry *rangeTableEntry = NULL;
|
|
Var *candidateColumn = NULL;
|
|
|
|
if (IsA(expression, FieldSelect))
|
|
{
|
|
compositeField = (FieldSelect *) expression;
|
|
return compositeField;
|
|
}
|
|
|
|
if (IsA(expression, Var))
|
|
{
|
|
candidateColumn = (Var *) expression;
|
|
}
|
|
else
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
rangeTableEntryIndex = candidateColumn->varno - 1;
|
|
rangeTableEntry = list_nth(rangetableList, rangeTableEntryIndex);
|
|
|
|
if (rangeTableEntry->rtekind == RTE_SUBQUERY)
|
|
{
|
|
Query *subquery = rangeTableEntry->subquery;
|
|
List *targetEntryList = subquery->targetList;
|
|
AttrNumber targetEntryIndex = candidateColumn->varattno - 1;
|
|
TargetEntry *subqueryTargetEntry = list_nth(targetEntryList, targetEntryIndex);
|
|
|
|
Expr *subqueryExpression = subqueryTargetEntry->expr;
|
|
compositeField = CompositeFieldRecursive(subqueryExpression, subquery);
|
|
}
|
|
else if (rangeTableEntry->rtekind == RTE_JOIN)
|
|
{
|
|
List *joinColumnList = rangeTableEntry->joinaliasvars;
|
|
AttrNumber joinColumnIndex = candidateColumn->varattno - 1;
|
|
Expr *joinColumn = list_nth(joinColumnList, joinColumnIndex);
|
|
|
|
compositeField = CompositeFieldRecursive(joinColumn, query);
|
|
}
|
|
|
|
return compositeField;
|
|
}
|
|
|
|
|
|
/*
|
|
* FullCompositeFieldList gets a composite field list, and checks if all fields
|
|
* of composite type are used in the list.
|
|
*/
|
|
static bool
|
|
FullCompositeFieldList(List *compositeFieldList)
|
|
{
|
|
bool fullCompositeFieldList = true;
|
|
bool *compositeFieldArray = NULL;
|
|
uint32 compositeFieldCount = 0;
|
|
uint32 fieldIndex = 0;
|
|
|
|
ListCell *fieldSelectCell = NULL;
|
|
foreach(fieldSelectCell, compositeFieldList)
|
|
{
|
|
FieldSelect *fieldSelect = (FieldSelect *) lfirst(fieldSelectCell);
|
|
uint32 compositeFieldIndex = 0;
|
|
|
|
Expr *fieldExpression = fieldSelect->arg;
|
|
if (!IsA(fieldExpression, Var))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (compositeFieldArray == NULL)
|
|
{
|
|
uint32 index = 0;
|
|
Var *compositeColumn = (Var *) fieldExpression;
|
|
Oid compositeTypeId = compositeColumn->vartype;
|
|
Oid compositeRelationId = get_typ_typrelid(compositeTypeId);
|
|
|
|
/* get composite type attribute count */
|
|
Relation relation = relation_open(compositeRelationId, AccessShareLock);
|
|
compositeFieldCount = relation->rd_att->natts;
|
|
compositeFieldArray = palloc0(compositeFieldCount * sizeof(bool));
|
|
relation_close(relation, AccessShareLock);
|
|
|
|
for (index = 0; index < compositeFieldCount; index++)
|
|
{
|
|
compositeFieldArray[index] = false;
|
|
}
|
|
}
|
|
|
|
compositeFieldIndex = fieldSelect->fieldnum - 1;
|
|
compositeFieldArray[compositeFieldIndex] = true;
|
|
}
|
|
|
|
for (fieldIndex = 0; fieldIndex < compositeFieldCount; fieldIndex++)
|
|
{
|
|
if (!compositeFieldArray[fieldIndex])
|
|
{
|
|
fullCompositeFieldList = false;
|
|
}
|
|
}
|
|
|
|
if (compositeFieldCount == 0)
|
|
{
|
|
fullCompositeFieldList = false;
|
|
}
|
|
|
|
return fullCompositeFieldList;
|
|
}
|
|
|
|
|
|
/*
|
|
* LateralQuery walks over the given range table list and if there is a subquery
|
|
* columns with other sibling subquery.
|
|
*/
|
|
static Query *
|
|
LateralQuery(Query *query)
|
|
{
|
|
Query *lateralQuery = NULL;
|
|
List *rangeTableList = query->rtable;
|
|
|
|
ListCell *rangeTableCell = NULL;
|
|
foreach(rangeTableCell, rangeTableList)
|
|
{
|
|
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
|
|
if (rangeTableEntry->rtekind == RTE_SUBQUERY && rangeTableEntry->lateral)
|
|
{
|
|
lateralQuery = rangeTableEntry->subquery;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return lateralQuery;
|
|
}
|
|
|
|
|
|
/*
|
|
* SupportedLateralQuery checks if the given lateral query is joined on partition
|
|
* columns with another siblings subquery.
|
|
*/
|
|
static bool
|
|
SupportedLateralQuery(Query *parentQuery, Query *lateralQuery)
|
|
{
|
|
bool supportedLateralQuery = false;
|
|
List *outerCompositeFieldList = NIL;
|
|
List *localCompositeFieldList = NIL;
|
|
ListCell *qualifierCell = NULL;
|
|
|
|
List *qualifierList = QualifierList(lateralQuery->jointree);
|
|
foreach(qualifierCell, qualifierList)
|
|
{
|
|
OpExpr *operatorExpression = NULL;
|
|
List *argumentList = NIL;
|
|
bool equalsOperator = false;
|
|
Expr *leftArgument = NULL;
|
|
Expr *rightArgument = NULL;
|
|
Expr *outerQueryExpression = NULL;
|
|
Expr *localQueryExpression = NULL;
|
|
Var *leftColumn = NULL;
|
|
Var *rightColumn = NULL;
|
|
bool outerColumnIsPartitionColumn = false;
|
|
bool localColumnIsPartitionColumn = false;
|
|
|
|
Node *qualifier = (Node *) lfirst(qualifierCell);
|
|
if (!IsA(qualifier, OpExpr))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
operatorExpression = (OpExpr *) qualifier;
|
|
argumentList = operatorExpression->args;
|
|
|
|
/*
|
|
* Join clauses must have two arguments. Note that logic here use to find
|
|
* join clauses is very similar to IsJoinClause(). But we are not able to
|
|
* reuse it, because it calls pull_var_clause_default() which in return
|
|
* deep down calls pull_var_clause_walker(), and this function errors out
|
|
* for variable level other than 0 which is the case for lateral joins.
|
|
*/
|
|
if (list_length(argumentList) != 2)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
equalsOperator = OperatorImplementsEquality(operatorExpression->opno);
|
|
if (!equalsOperator)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* get left and right side of the expression */
|
|
leftArgument = (Expr *) linitial(argumentList);
|
|
rightArgument = (Expr *) lsecond(argumentList);
|
|
|
|
if (IsA(leftArgument, Var))
|
|
{
|
|
leftColumn = (Var *) leftArgument;
|
|
}
|
|
else if (IsA(leftArgument, FieldSelect))
|
|
{
|
|
FieldSelect *fieldSelect = (FieldSelect *) leftArgument;
|
|
Expr *fieldExpression = fieldSelect->arg;
|
|
|
|
if (!IsA(fieldExpression, Var))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
leftColumn = (Var *) fieldExpression;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (IsA(rightArgument, Var))
|
|
{
|
|
rightColumn = (Var *) rightArgument;
|
|
}
|
|
else if (IsA(rightArgument, FieldSelect))
|
|
{
|
|
FieldSelect *fieldSelect = (FieldSelect *) rightArgument;
|
|
Expr *fieldExpression = fieldSelect->arg;
|
|
|
|
if (!IsA(fieldExpression, Var))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
rightColumn = (Var *) fieldExpression;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (leftColumn->varlevelsup == 1 && rightColumn->varlevelsup == 0)
|
|
{
|
|
outerQueryExpression = leftArgument;
|
|
localQueryExpression = rightArgument;
|
|
}
|
|
else if (leftColumn->varlevelsup == 0 && rightColumn->varlevelsup == 1)
|
|
{
|
|
outerQueryExpression = rightArgument;
|
|
localQueryExpression = leftArgument;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
outerColumnIsPartitionColumn = IsPartitionColumnRecursive(outerQueryExpression,
|
|
parentQuery);
|
|
localColumnIsPartitionColumn = IsPartitionColumnRecursive(localQueryExpression,
|
|
lateralQuery);
|
|
|
|
if (outerColumnIsPartitionColumn && localColumnIsPartitionColumn)
|
|
{
|
|
FieldSelect *outerCompositeField =
|
|
CompositeFieldRecursive(outerQueryExpression, parentQuery);
|
|
FieldSelect *localCompositeField =
|
|
CompositeFieldRecursive(localQueryExpression, lateralQuery);
|
|
|
|
/*
|
|
* If partition colums are composite fields, add them to list to
|
|
* check later if all composite fields are used.
|
|
*/
|
|
if (outerCompositeField && localCompositeField)
|
|
{
|
|
outerCompositeFieldList = lappend(outerCompositeFieldList,
|
|
outerCompositeField);
|
|
localCompositeFieldList = lappend(localCompositeFieldList,
|
|
localCompositeField);
|
|
}
|
|
|
|
/* if both sides are not composite fields, they are normal columns */
|
|
if (!(outerCompositeField || localCompositeField))
|
|
{
|
|
supportedLateralQuery = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check composite fields */
|
|
if (!supportedLateralQuery)
|
|
{
|
|
bool outerFullCompositeFieldList =
|
|
FullCompositeFieldList(outerCompositeFieldList);
|
|
bool localFullCompositeFieldList =
|
|
FullCompositeFieldList(localCompositeFieldList);
|
|
|
|
if (outerFullCompositeFieldList && localFullCompositeFieldList)
|
|
{
|
|
supportedLateralQuery = true;
|
|
}
|
|
}
|
|
|
|
return supportedLateralQuery;
|
|
}
|
|
|
|
|
|
/*
|
|
* JoinOnPartitionColumn checks if both sides of at least one join clause are on
|
|
* partition columns.
|
|
*/
|
|
static bool
|
|
JoinOnPartitionColumn(Query *query)
|
|
{
|
|
bool joinOnPartitionColumn = false;
|
|
List *leftCompositeFieldList = NIL;
|
|
List *rightCompositeFieldList = NIL;
|
|
List *qualifierList = QualifierList(query->jointree);
|
|
List *joinClauseList = JoinClauseList(qualifierList);
|
|
|
|
ListCell *joinClauseCell = NULL;
|
|
foreach(joinClauseCell, joinClauseList)
|
|
{
|
|
OpExpr *joinClause = (OpExpr *) lfirst(joinClauseCell);
|
|
List *joinArgumentList = joinClause->args;
|
|
Expr *leftArgument = NULL;
|
|
Expr *rightArgument = NULL;
|
|
bool isLeftColumnPartitionColumn = false;
|
|
bool isRightColumnPartitionColumn = false;
|
|
|
|
/* get left and right side of the expression */
|
|
leftArgument = (Expr *) linitial(joinArgumentList);
|
|
rightArgument = (Expr *) lsecond(joinArgumentList);
|
|
|
|
isLeftColumnPartitionColumn = IsPartitionColumnRecursive(leftArgument, query);
|
|
isRightColumnPartitionColumn = IsPartitionColumnRecursive(rightArgument, query);
|
|
|
|
if (isLeftColumnPartitionColumn && isRightColumnPartitionColumn)
|
|
{
|
|
FieldSelect *leftCompositeField =
|
|
CompositeFieldRecursive(leftArgument, query);
|
|
FieldSelect *rightCompositeField =
|
|
CompositeFieldRecursive(rightArgument, query);
|
|
|
|
/*
|
|
* If partition colums are composite fields, add them to list to
|
|
* check later if all composite fields are used.
|
|
*/
|
|
if (leftCompositeField && rightCompositeField)
|
|
{
|
|
leftCompositeFieldList = lappend(leftCompositeFieldList,
|
|
leftCompositeField);
|
|
rightCompositeFieldList = lappend(rightCompositeFieldList,
|
|
rightCompositeField);
|
|
}
|
|
|
|
/* if both sides are not composite fields, they are normal columns */
|
|
if (!(leftCompositeField && rightCompositeField))
|
|
{
|
|
joinOnPartitionColumn = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check composite fields */
|
|
if (!joinOnPartitionColumn)
|
|
{
|
|
bool leftFullCompositeFieldList =
|
|
FullCompositeFieldList(leftCompositeFieldList);
|
|
bool rightFullCompositeFieldList =
|
|
FullCompositeFieldList(rightCompositeFieldList);
|
|
|
|
if (leftFullCompositeFieldList && rightFullCompositeFieldList)
|
|
{
|
|
joinOnPartitionColumn = true;
|
|
}
|
|
}
|
|
|
|
return joinOnPartitionColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfUnsupportedShardDistribution gets list of relations in the given query
|
|
* and checks if two conditions below hold for them, otherwise it errors out.
|
|
* a. Every relation is distributed by range or hash. This means shards are
|
|
* disjoint based on the partition column.
|
|
* b. All relations have 1-to-1 shard partitioning between them. This means
|
|
* shard count for every relation is same and for every shard in a relation
|
|
* there is exactly one shard in other relations with same min/max values.
|
|
*/
|
|
static void
|
|
ErrorIfUnsupportedShardDistribution(Query *query)
|
|
{
|
|
Oid firstTableRelationId = InvalidOid;
|
|
List *relationIdList = RelationIdList(query);
|
|
ListCell *relationIdCell = NULL;
|
|
uint32 relationIndex = 0;
|
|
uint32 rangeDistributedRelationCount = 0;
|
|
uint32 hashDistributedRelationCount = 0;
|
|
|
|
foreach(relationIdCell, relationIdList)
|
|
{
|
|
Oid relationId = lfirst_oid(relationIdCell);
|
|
char partitionMethod = PartitionMethod(relationId);
|
|
if (partitionMethod == DISTRIBUTE_BY_RANGE)
|
|
{
|
|
rangeDistributedRelationCount++;
|
|
}
|
|
else if (partitionMethod == DISTRIBUTE_BY_HASH)
|
|
{
|
|
hashDistributedRelationCount++;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("Currently range and hash partitioned "
|
|
"relations are supported")));
|
|
}
|
|
}
|
|
|
|
if ((rangeDistributedRelationCount > 0) && (hashDistributedRelationCount > 0))
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("A query including both range and hash "
|
|
"partitioned relations are unsupported")));
|
|
}
|
|
|
|
foreach(relationIdCell, relationIdList)
|
|
{
|
|
Oid relationId = lfirst_oid(relationIdCell);
|
|
bool coPartitionedTables = false;
|
|
Oid currentRelationId = relationId;
|
|
|
|
/* get shard list of first relation and continue for the next relation */
|
|
if (relationIndex == 0)
|
|
{
|
|
firstTableRelationId = relationId;
|
|
relationIndex++;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* check if this table has 1-1 shard partitioning with first table */
|
|
coPartitionedTables = CoPartitionedTables(firstTableRelationId,
|
|
currentRelationId);
|
|
if (!coPartitionedTables)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("Shards of relations in subquery need to "
|
|
"have 1-to-1 shard partitioning")));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* RelationIdList returns list of unique relation ids in query tree.
|
|
*/
|
|
List *
|
|
RelationIdList(Query *query)
|
|
{
|
|
List *rangeTableList = NIL;
|
|
List *tableEntryList = NIL;
|
|
List *relationIdList = NIL;
|
|
ListCell *tableEntryCell = NULL;
|
|
|
|
ExtractRangeTableRelationWalker((Node *) query, &rangeTableList);
|
|
tableEntryList = TableEntryList(rangeTableList);
|
|
|
|
foreach(tableEntryCell, tableEntryList)
|
|
{
|
|
TableEntry *tableEntry = (TableEntry *) lfirst(tableEntryCell);
|
|
Oid relationId = tableEntry->relationId;
|
|
|
|
relationIdList = list_append_unique_oid(relationIdList, relationId);
|
|
}
|
|
|
|
return relationIdList;
|
|
}
|
|
|
|
|
|
/*
|
|
* CoPartitionedTables checks if given two distributed tables have 1-to-1 shard
|
|
* partitioning. It uses shard interval array that are sorted on interval minimum
|
|
* values. Then it compares every shard interval in order and if any pair of
|
|
* shard intervals are not equal it returns false.
|
|
*/
|
|
static bool
|
|
CoPartitionedTables(Oid firstRelationId, Oid secondRelationId)
|
|
{
|
|
bool coPartitionedTables = true;
|
|
uint32 intervalIndex = 0;
|
|
DistTableCacheEntry *firstTableCache = DistributedTableCacheEntry(firstRelationId);
|
|
DistTableCacheEntry *secondTableCache = DistributedTableCacheEntry(secondRelationId);
|
|
ShardInterval **sortedFirstIntervalArray = firstTableCache->sortedShardIntervalArray;
|
|
ShardInterval **sortedSecondIntervalArray =
|
|
secondTableCache->sortedShardIntervalArray;
|
|
uint32 firstListShardCount = firstTableCache->shardIntervalArrayLength;
|
|
uint32 secondListShardCount = secondTableCache->shardIntervalArrayLength;
|
|
FmgrInfo *comparisonFunction = firstTableCache->shardIntervalCompareFunction;
|
|
|
|
if (firstListShardCount != secondListShardCount)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* if there are not any shards just return true */
|
|
if (firstListShardCount == 0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
Assert(comparisonFunction != NULL);
|
|
|
|
for (intervalIndex = 0; intervalIndex < firstListShardCount; intervalIndex++)
|
|
{
|
|
ShardInterval *firstInterval = sortedFirstIntervalArray[intervalIndex];
|
|
ShardInterval *secondInterval = sortedSecondIntervalArray[intervalIndex];
|
|
|
|
bool shardIntervalsEqual = ShardIntervalsEqual(comparisonFunction,
|
|
firstInterval,
|
|
secondInterval);
|
|
if (!shardIntervalsEqual)
|
|
{
|
|
coPartitionedTables = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return coPartitionedTables;
|
|
}
|
|
|
|
|
|
/*
|
|
* ShardIntervalsEqual checks if given shard intervals have equal min/max values.
|
|
*/
|
|
static bool
|
|
ShardIntervalsEqual(FmgrInfo *comparisonFunction, ShardInterval *firstInterval,
|
|
ShardInterval *secondInterval)
|
|
{
|
|
bool shardIntervalsEqual = false;
|
|
Datum firstMin = 0;
|
|
Datum firstMax = 0;
|
|
Datum secondMin = 0;
|
|
Datum secondMax = 0;
|
|
|
|
firstMin = firstInterval->minValue;
|
|
firstMax = firstInterval->maxValue;
|
|
secondMin = secondInterval->minValue;
|
|
secondMax = secondInterval->maxValue;
|
|
|
|
if (firstInterval->minValueExists && firstInterval->maxValueExists &&
|
|
secondInterval->minValueExists && secondInterval->maxValueExists)
|
|
{
|
|
Datum minDatum = CompareCall2(comparisonFunction, firstMin, secondMin);
|
|
Datum maxDatum = CompareCall2(comparisonFunction, firstMax, secondMax);
|
|
int firstComparison = DatumGetInt32(minDatum);
|
|
int secondComparison = DatumGetInt32(maxDatum);
|
|
|
|
if (firstComparison == 0 && secondComparison == 0)
|
|
{
|
|
shardIntervalsEqual = true;
|
|
}
|
|
}
|
|
|
|
return shardIntervalsEqual;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfUnsupportedFilters checks if all leaf queries in the given query have
|
|
* same filter on the partition column. Note that if there are queries without
|
|
* any filter on the partition column, they don't break this prerequisite.
|
|
*/
|
|
static void
|
|
ErrorIfUnsupportedFilters(Query *subquery)
|
|
{
|
|
List *queryList = NIL;
|
|
ListCell *queryCell = NULL;
|
|
List *subqueryOpExpressionList = NIL;
|
|
List *relationIdList = RelationIdList(subquery);
|
|
|
|
/*
|
|
* Get relation id of any relation in the subquery and create partiton column
|
|
* for this relation. We will use this column to replace columns on operator
|
|
* expressions on different tables. Then we compare these operator expressions
|
|
* to see if they consist of same operator and constant value.
|
|
*/
|
|
Oid relationId = linitial_oid(relationIdList);
|
|
Var *partitionColumn = PartitionColumn(relationId, 0);
|
|
|
|
ExtractQueryWalker((Node *) subquery, &queryList);
|
|
foreach(queryCell, queryList)
|
|
{
|
|
Query *query = (Query *) lfirst(queryCell);
|
|
List *opExpressionList = NIL;
|
|
List *newOpExpressionList = NIL;
|
|
|
|
bool leafQuery = LeafQuery(query);
|
|
if (!leafQuery)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
opExpressionList = PartitionColumnOpExpressionList(query);
|
|
if (opExpressionList == NIL)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
newOpExpressionList = ReplaceColumnsInOpExpressionList(opExpressionList,
|
|
partitionColumn);
|
|
|
|
if (subqueryOpExpressionList == NIL)
|
|
{
|
|
subqueryOpExpressionList = newOpExpressionList;
|
|
}
|
|
else
|
|
{
|
|
bool equalOpExpressionLists = EqualOpExpressionLists(subqueryOpExpressionList,
|
|
newOpExpressionList);
|
|
if (!equalOpExpressionLists)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot push down this subquery"),
|
|
errdetail("Currently all leaf queries need to "
|
|
"have same filters on partition column")));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ExtractQueryWalker walks over a query, and finds all queries in the query
|
|
* tree and returns these queries.
|
|
*/
|
|
bool
|
|
ExtractQueryWalker(Node *node, List **queryList)
|
|
{
|
|
bool walkerResult = false;
|
|
if (node == NULL)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, Query))
|
|
{
|
|
Query *query = (Query *) node;
|
|
|
|
(*queryList) = lappend(*queryList, query);
|
|
walkerResult = query_tree_walker(query, ExtractQueryWalker, queryList,
|
|
QTW_EXAMINE_RTES);
|
|
}
|
|
|
|
return walkerResult;
|
|
}
|
|
|
|
|
|
/*
|
|
* LeafQuery checks if the given query is a leaf query. Leaf queries have only
|
|
* simple relations in the join tree.
|
|
*/
|
|
bool
|
|
LeafQuery(Query *queryTree)
|
|
{
|
|
List *rangeTableList = queryTree->rtable;
|
|
List *joinTreeTableIndexList = NIL;
|
|
ListCell *joinTreeTableIndexCell = NULL;
|
|
bool leafQuery = true;
|
|
|
|
/*
|
|
* Extract all range table indexes from the join tree. Note that sub-queries
|
|
* that get pulled up by PostgreSQL don't appear in this join tree.
|
|
*/
|
|
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
|
|
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
|
|
{
|
|
/*
|
|
* Join tree's range table index starts from 1 in the query tree. But,
|
|
* list indexes start from 0.
|
|
*/
|
|
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
|
|
int rangeTableListIndex = joinTreeTableIndex - 1;
|
|
|
|
RangeTblEntry *rangeTableEntry =
|
|
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
|
|
|
|
/*
|
|
* Check if the range table in the join tree is a simple relation.
|
|
*/
|
|
if (rangeTableEntry->rtekind != RTE_RELATION)
|
|
{
|
|
leafQuery = false;
|
|
}
|
|
}
|
|
|
|
return leafQuery;
|
|
}
|
|
|
|
|
|
/*
|
|
* PartitionColumnOpExpressionList returns operator expressions which are on
|
|
* partition column in the query. This function walks over where clause list,
|
|
* finds operator expressions on partition column and returns them in a new list.
|
|
*/
|
|
List *
|
|
PartitionColumnOpExpressionList(Query *query)
|
|
{
|
|
List *whereClauseList = WhereClauseList(query->jointree);
|
|
List *partitionColumnOpExpressionList = NIL;
|
|
|
|
ListCell *whereClauseCell = NULL;
|
|
foreach(whereClauseCell, whereClauseList)
|
|
{
|
|
Node *whereNode = (Node *) lfirst(whereClauseCell);
|
|
Node *leftArgument = NULL;
|
|
Node *rightArgument = NULL;
|
|
Node *strippedLeftArgument = NULL;
|
|
Node *strippedRightArgument = NULL;
|
|
OpExpr *whereClause = NULL;
|
|
List *argumentList = NIL;
|
|
List *rangetableList = NIL;
|
|
uint32 argumentCount = 0;
|
|
Var *candidatePartitionColumn = NULL;
|
|
Var *partitionColumn = NULL;
|
|
Index rangeTableEntryIndex = 0;
|
|
RangeTblEntry *rangeTableEntry = NULL;
|
|
Oid relationId = InvalidOid;
|
|
|
|
if (!IsA(whereNode, OpExpr))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
whereClause = (OpExpr *) whereNode;
|
|
argumentList = whereClause->args;
|
|
|
|
/*
|
|
* Select clauses must have two arguments. Note that logic here use to
|
|
* find select clauses is very similar to IsSelectClause(). But we are
|
|
* not able to reuse it, because it calls pull_var_clause_default()
|
|
* which in return deep down calls pull_var_clause_walker(), and this
|
|
* function errors out for variable level other than 0 which is the case
|
|
* for lateral joins.
|
|
*/
|
|
argumentCount = list_length(argumentList);
|
|
if (argumentCount != 2)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
leftArgument = (Node *) linitial(argumentList);
|
|
rightArgument = (Node *) lsecond(argumentList);
|
|
strippedLeftArgument = strip_implicit_coercions(leftArgument);
|
|
strippedRightArgument = strip_implicit_coercions(rightArgument);
|
|
|
|
if (IsA(strippedLeftArgument, Var) && IsA(strippedRightArgument, Const))
|
|
{
|
|
candidatePartitionColumn = (Var *) strippedLeftArgument;
|
|
}
|
|
else if (IsA(strippedLeftArgument, Const) && IsA(strippedRightArgument, Var))
|
|
{
|
|
candidatePartitionColumn = (Var *) strippedRightArgument;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
rangetableList = query->rtable;
|
|
rangeTableEntryIndex = candidatePartitionColumn->varno - 1;
|
|
rangeTableEntry = list_nth(rangetableList, rangeTableEntryIndex);
|
|
|
|
Assert(rangeTableEntry->rtekind == RTE_RELATION);
|
|
|
|
relationId = rangeTableEntry->relid;
|
|
partitionColumn = PartitionKey(relationId);
|
|
|
|
if (candidatePartitionColumn->varattno == partitionColumn->varattno)
|
|
{
|
|
partitionColumnOpExpressionList = lappend(partitionColumnOpExpressionList,
|
|
whereClause);
|
|
}
|
|
}
|
|
|
|
return partitionColumnOpExpressionList;
|
|
}
|
|
|
|
|
|
/*
|
|
* ReplaceColumnsInOpExpressionList walks over the given operator expression
|
|
* list and copies every one them, replaces columns with the given new column
|
|
* and finally returns new copies in a new list of operator expressions.
|
|
*/
|
|
List *
|
|
ReplaceColumnsInOpExpressionList(List *opExpressionList, Var *newColumn)
|
|
{
|
|
List *newOpExpressionList = NIL;
|
|
|
|
ListCell *opExpressionCell = NULL;
|
|
foreach(opExpressionCell, opExpressionList)
|
|
{
|
|
OpExpr *opExpression = (OpExpr *) lfirst(opExpressionCell);
|
|
OpExpr *copyOpExpression = (OpExpr *) copyObject(opExpression);
|
|
List *argumentList = copyOpExpression->args;
|
|
List *newArgumentList = NIL;
|
|
|
|
Node *leftArgument = (Node *) linitial(argumentList);
|
|
Node *rightArgument = (Node *) lsecond(argumentList);
|
|
Node *strippedLeftArgument = strip_implicit_coercions(leftArgument);
|
|
Node *strippedRightArgument = strip_implicit_coercions(rightArgument);
|
|
|
|
if (IsA(strippedLeftArgument, Var))
|
|
{
|
|
newArgumentList = list_make2(newColumn, strippedRightArgument);
|
|
}
|
|
else if (IsA(strippedRightArgument, Var))
|
|
{
|
|
newArgumentList = list_make2(strippedLeftArgument, newColumn);
|
|
}
|
|
|
|
copyOpExpression->args = newArgumentList;
|
|
newOpExpressionList = lappend(newOpExpressionList, copyOpExpression);
|
|
}
|
|
|
|
return newOpExpressionList;
|
|
}
|
|
|
|
|
|
/*
|
|
* EqualOpExpressionLists checks if given two operator expression lists are
|
|
* equal.
|
|
*/
|
|
static bool
|
|
EqualOpExpressionLists(List *firstOpExpressionList, List *secondOpExpressionList)
|
|
{
|
|
bool equalOpExpressionLists = false;
|
|
ListCell *firstOpExpressionCell = NULL;
|
|
uint32 equalOpExpressionCount = 0;
|
|
uint32 firstOpExpressionCount = list_length(firstOpExpressionList);
|
|
uint32 secondOpExpressionCount = list_length(secondOpExpressionList);
|
|
|
|
if (firstOpExpressionCount != secondOpExpressionCount)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
foreach(firstOpExpressionCell, firstOpExpressionList)
|
|
{
|
|
OpExpr *firstOpExpression = (OpExpr *) lfirst(firstOpExpressionCell);
|
|
ListCell *secondOpExpressionCell = NULL;
|
|
|
|
foreach(secondOpExpressionCell, secondOpExpressionList)
|
|
{
|
|
OpExpr *secondOpExpression = (OpExpr *) lfirst(secondOpExpressionCell);
|
|
bool equalExpressions = equal(firstOpExpression, secondOpExpression);
|
|
|
|
if (equalExpressions)
|
|
{
|
|
equalOpExpressionCount++;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (equalOpExpressionCount == firstOpExpressionCount)
|
|
{
|
|
equalOpExpressionLists = true;
|
|
}
|
|
|
|
return equalOpExpressionLists;
|
|
}
|
|
|
|
|
|
/*
|
|
* WorkerLimitCount checks if the given extended node contains a limit node, and
|
|
* if that node can be pushed down. For this, the function checks if this limit
|
|
* count or a meaningful approximation of it can be pushed down to worker nodes.
|
|
* If they can, the function returns the limit count.
|
|
*
|
|
* The limit push-down decision tree is as follows:
|
|
* group by?
|
|
* 1/ \0
|
|
* order by? (exact pd)
|
|
* 1/ \0
|
|
* has order by agg? (no pd)
|
|
* 1/ \0
|
|
* can approximate? (exact pd)
|
|
* 1/ \0
|
|
* (approx pd) (no pd)
|
|
*
|
|
* When an offset is present, the offset value is added to limit because for a query
|
|
* with LIMIT x OFFSET y, (x+y) records should be pulled from the workers.
|
|
*
|
|
* If no limit is present or can be pushed down, then WorkerLimitCount
|
|
* returns null.
|
|
*/
|
|
static Node *
|
|
WorkerLimitCount(MultiExtendedOp *originalOpNode)
|
|
{
|
|
Node *workerLimitNode = NULL;
|
|
List *groupClauseList = originalOpNode->groupClauseList;
|
|
List *sortClauseList = originalOpNode->sortClauseList;
|
|
List *targetList = originalOpNode->targetList;
|
|
bool hasOrderByAggregate = HasOrderByAggregate(sortClauseList, targetList);
|
|
bool canPushDownLimit = false;
|
|
bool canApproximate = false;
|
|
|
|
/* no limit node to push down */
|
|
if (originalOpNode->limitCount == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If we don't have group by clauses, or if we have order by clauses without
|
|
* aggregates, we can push down the original limit. Else if we have order by
|
|
* clauses with commutative aggregates, we can push down approximate limits.
|
|
*/
|
|
if (groupClauseList == NIL)
|
|
{
|
|
canPushDownLimit = true;
|
|
}
|
|
else if (sortClauseList == NIL)
|
|
{
|
|
canPushDownLimit = false;
|
|
}
|
|
else if (!hasOrderByAggregate)
|
|
{
|
|
canPushDownLimit = true;
|
|
}
|
|
else
|
|
{
|
|
canApproximate = CanPushDownLimitApproximate(sortClauseList, targetList);
|
|
}
|
|
|
|
/* create the workerLimitNode according to the decisions above */
|
|
if (canPushDownLimit)
|
|
{
|
|
workerLimitNode = (Node *) copyObject(originalOpNode->limitCount);
|
|
}
|
|
else if (canApproximate)
|
|
{
|
|
Const *workerLimitConst = (Const *) copyObject(originalOpNode->limitCount);
|
|
int64 workerLimitCount = (int64) LimitClauseRowFetchCount;
|
|
workerLimitConst->constvalue = Int64GetDatum(workerLimitCount);
|
|
|
|
workerLimitNode = (Node *) workerLimitConst;
|
|
}
|
|
|
|
/*
|
|
* If offset clause is present and limit can be pushed down (whether exactly or
|
|
* approximately), add the offset value to limit on workers
|
|
*/
|
|
if (workerLimitNode != NULL && originalOpNode->limitOffset != NULL)
|
|
{
|
|
Const *workerLimitConst = (Const *) workerLimitNode;
|
|
Const *workerOffsetConst = (Const *) originalOpNode->limitOffset;
|
|
int64 workerLimitCount = DatumGetInt64(workerLimitConst->constvalue);
|
|
int64 workerOffsetCount = DatumGetInt64(workerOffsetConst->constvalue);
|
|
|
|
workerLimitCount = workerLimitCount + workerOffsetCount;
|
|
workerLimitNode = (Node *) MakeIntegerConstInt64(workerLimitCount);
|
|
}
|
|
|
|
/* display debug message on limit push down */
|
|
if (workerLimitNode != NULL)
|
|
{
|
|
Const *workerLimitConst = (Const *) workerLimitNode;
|
|
int64 workerLimitCount = DatumGetInt64(workerLimitConst->constvalue);
|
|
|
|
ereport(DEBUG1, (errmsg("push down of limit count: " INT64_FORMAT,
|
|
workerLimitCount)));
|
|
}
|
|
|
|
return workerLimitNode;
|
|
}
|
|
|
|
|
|
/*
|
|
* WorkerSortClauseList first checks if the given extended node contains a limit
|
|
* that can be pushed down. If it does, the function then checks if we need to
|
|
* add any sorting and grouping clauses to the sort list we push down for the
|
|
* limit. If we do, the function adds these clauses and returns them. Otherwise,
|
|
* the function returns null.
|
|
*/
|
|
static List *
|
|
WorkerSortClauseList(MultiExtendedOp *originalOpNode)
|
|
{
|
|
List *workerSortClauseList = NIL;
|
|
List *groupClauseList = originalOpNode->groupClauseList;
|
|
List *sortClauseList = originalOpNode->sortClauseList;
|
|
List *targetList = originalOpNode->targetList;
|
|
|
|
/* if no limit node, no need to push down sort clauses */
|
|
if (originalOpNode->limitCount == NULL)
|
|
{
|
|
return NIL;
|
|
}
|
|
|
|
/*
|
|
* If we are pushing down the limit, push down any order by clauses. Also if
|
|
* we are pushing down the limit because the order by clauses don't have any
|
|
* aggregates, add group by clauses to the order by list. We do this because
|
|
* rows that belong to the same grouping may appear in different "offsets"
|
|
* in different task results. By ordering on the group by clause, we ensure
|
|
* that query results are consistent.
|
|
*/
|
|
if (groupClauseList == NIL)
|
|
{
|
|
workerSortClauseList = originalOpNode->sortClauseList;
|
|
}
|
|
else if (sortClauseList != NIL)
|
|
{
|
|
bool orderByNonAggregates = !(HasOrderByAggregate(sortClauseList, targetList));
|
|
bool canApproximate = CanPushDownLimitApproximate(sortClauseList, targetList);
|
|
|
|
if (orderByNonAggregates)
|
|
{
|
|
workerSortClauseList = list_copy(sortClauseList);
|
|
workerSortClauseList = list_concat(workerSortClauseList, groupClauseList);
|
|
}
|
|
else if (canApproximate)
|
|
{
|
|
workerSortClauseList = originalOpNode->sortClauseList;
|
|
}
|
|
}
|
|
|
|
return workerSortClauseList;
|
|
}
|
|
|
|
|
|
/*
|
|
* CanPushDownLimitApproximate checks if we can push down the limit clause to
|
|
* the worker nodes, and get approximate and meaningful results. We can do this
|
|
* only when: (1) the user has enabled the limit approximation and (2) the query
|
|
* has order by clauses that are commutative.
|
|
*/
|
|
static bool
|
|
CanPushDownLimitApproximate(List *sortClauseList, List *targetList)
|
|
{
|
|
bool canApproximate = false;
|
|
|
|
/* user hasn't enabled the limit approximation */
|
|
if (LimitClauseRowFetchCount == DISABLE_LIMIT_APPROXIMATION)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (sortClauseList != NIL)
|
|
{
|
|
bool orderByAverage = HasOrderByAverage(sortClauseList, targetList);
|
|
bool orderByComplex = HasOrderByComplexExpression(sortClauseList, targetList);
|
|
|
|
/*
|
|
* If we don't have any order by average or any complex expressions with
|
|
* aggregates in them, we can meaningfully approximate.
|
|
*/
|
|
if (!orderByAverage && !orderByComplex)
|
|
{
|
|
canApproximate = true;
|
|
}
|
|
}
|
|
|
|
return canApproximate;
|
|
}
|
|
|
|
|
|
/*
|
|
* HasOrderByAggregate walks over the given order by clauses, and checks if we
|
|
* have an order by an aggregate function. If we do, the function returns true.
|
|
*/
|
|
static bool
|
|
HasOrderByAggregate(List *sortClauseList, List *targetList)
|
|
{
|
|
bool hasOrderByAggregate = false;
|
|
ListCell *sortClauseCell = NULL;
|
|
|
|
foreach(sortClauseCell, sortClauseList)
|
|
{
|
|
SortGroupClause *sortClause = (SortGroupClause *) lfirst(sortClauseCell);
|
|
Node *sortExpression = get_sortgroupclause_expr(sortClause, targetList);
|
|
|
|
bool containsAggregate = contain_agg_clause(sortExpression);
|
|
if (containsAggregate)
|
|
{
|
|
hasOrderByAggregate = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return hasOrderByAggregate;
|
|
}
|
|
|
|
|
|
/*
|
|
* HasOrderByAverage walks over the given order by clauses, and checks if we
|
|
* have an order by an average. If we do, the function returns true.
|
|
*/
|
|
static bool
|
|
HasOrderByAverage(List *sortClauseList, List *targetList)
|
|
{
|
|
bool hasOrderByAverage = false;
|
|
ListCell *sortClauseCell = NULL;
|
|
|
|
foreach(sortClauseCell, sortClauseList)
|
|
{
|
|
SortGroupClause *sortClause = (SortGroupClause *) lfirst(sortClauseCell);
|
|
Node *sortExpression = get_sortgroupclause_expr(sortClause, targetList);
|
|
|
|
/* if sort expression is an aggregate, check its type */
|
|
if (IsA(sortExpression, Aggref))
|
|
{
|
|
Aggref *aggregate = (Aggref *) sortExpression;
|
|
|
|
AggregateType aggregateType = GetAggregateType(aggregate->aggfnoid);
|
|
if (aggregateType == AGGREGATE_AVERAGE)
|
|
{
|
|
hasOrderByAverage = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return hasOrderByAverage;
|
|
}
|
|
|
|
|
|
/*
|
|
* HasOrderByComplexExpression walks over the given order by clauses, and checks
|
|
* if we have a nested expression that contains an aggregate function within it.
|
|
* If we do, the function returns true.
|
|
*/
|
|
static bool
|
|
HasOrderByComplexExpression(List *sortClauseList, List *targetList)
|
|
{
|
|
bool hasOrderByComplexExpression = false;
|
|
ListCell *sortClauseCell = NULL;
|
|
|
|
foreach(sortClauseCell, sortClauseList)
|
|
{
|
|
SortGroupClause *sortClause = (SortGroupClause *) lfirst(sortClauseCell);
|
|
Node *sortExpression = get_sortgroupclause_expr(sortClause, targetList);
|
|
bool nestedAggregate = false;
|
|
|
|
/* simple aggregate functions are ok */
|
|
if (IsA(sortExpression, Aggref))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
nestedAggregate = contain_agg_clause(sortExpression);
|
|
if (nestedAggregate)
|
|
{
|
|
hasOrderByComplexExpression = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return hasOrderByComplexExpression;
|
|
}
|
|
|
|
|
|
/*
|
|
* HasOrderByHllType walks over the given order by clauses, and checks if any of
|
|
* those clauses operate on hll data type. If they do, the function returns true.
|
|
*/
|
|
static bool
|
|
HasOrderByHllType(List *sortClauseList, List *targetList)
|
|
{
|
|
bool hasOrderByHllType = false;
|
|
Oid hllId = InvalidOid;
|
|
Oid hllSchemaOid = InvalidOid;
|
|
Oid hllTypeId = InvalidOid;
|
|
ListCell *sortClauseCell = NULL;
|
|
|
|
/* check whether HLL is loaded */
|
|
hllId = get_extension_oid(HLL_EXTENSION_NAME, true);
|
|
if (!OidIsValid(hllId))
|
|
{
|
|
return hasOrderByHllType;
|
|
}
|
|
|
|
hllSchemaOid = get_extension_schema(hllId);
|
|
hllTypeId = TypeOid(hllSchemaOid, HLL_TYPE_NAME);
|
|
|
|
foreach(sortClauseCell, sortClauseList)
|
|
{
|
|
SortGroupClause *sortClause = (SortGroupClause *) lfirst(sortClauseCell);
|
|
Node *sortExpression = get_sortgroupclause_expr(sortClause, targetList);
|
|
|
|
Oid sortColumnTypeId = exprType(sortExpression);
|
|
if (sortColumnTypeId == hllTypeId)
|
|
{
|
|
hasOrderByHllType = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return hasOrderByHllType;
|
|
}
|