citus/src/backend/distributed/planner/multi_logical_planner.c

2068 lines
61 KiB
C

/*-------------------------------------------------------------------------
*
* multi_logical_planner.c
*
* Routines for constructing a logical plan tree from the given Query tree
* structure. This new logical plan is based on multi-relational algebra rules.
*
* Copyright (c) 2012-2016, Citus Data, Inc.
*
* $Id$
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/nbtree.h"
#include "catalog/pg_am.h"
#include "commands/defrem.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_logical_optimizer.h"
#include "distributed/multi_logical_planner.h"
#include "distributed/multi_physical_planner.h"
#include "distributed/worker_protocol.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/prep.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/* Config variable managed via guc.c */
bool SubqueryPushdown = false; /* is subquery pushdown enabled */
/* Struct to differentiate different qualifier types in an expression tree walker */
typedef struct QualifierWalkerContext
{
List *baseQualifierList;
List *outerJoinQualifierList;
} QualifierWalkerContext;
/* Function pointer type definition for apply join rule functions */
typedef MultiNode *(*RuleApplyFunction) (MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static RuleApplyFunction RuleApplyFunctionArray[JOIN_RULE_LAST] = { 0 }; /* join rules */
/* Local functions forward declarations */
static MultiNode * MultiPlanTree(Query *queryTree);
static void ErrorIfQueryNotSupported(Query *queryTree);
static bool HasUnsupportedJoinWalker(Node *node, void *context);
static void ErrorIfSubqueryNotSupported(Query *subqueryTree);
static bool HasTablesample(Query *queryTree);
static bool HasOuterJoin(Query *queryTree);
static bool HasOuterJoinWalker(Node *node, void *maxJoinLevel);
static bool HasComplexJoinOrder(Query *queryTree);
static bool HasComplexRangeTableType(Query *queryTree);
static void ValidateClauseList(List *clauseList);
static bool ExtractFromExpressionWalker(Node *node,
QualifierWalkerContext *walkerContext);
static List * MultiTableNodeList(List *tableEntryList, List *rangeTableList);
static List * AddMultiCollectNodes(List *tableNodeList);
static MultiNode * MultiJoinTree(List *joinOrderList, List *collectTableList,
List *joinClauseList);
static MultiCollect * CollectNodeForTable(List *collectTableList, uint32 rangeTableId);
static MultiSelect * MultiSelectNode(List *whereClauseList);
static bool IsSelectClause(Node *clause);
static MultiProject * MultiProjectNode(List *targetEntryList);
static MultiExtendedOp * MultiExtendedOpNode(Query *queryTree);
/* Local functions forward declarations for applying joins */
static MultiNode * ApplyJoinRule(MultiNode *leftNode, MultiNode *rightNode,
JoinRuleType ruleType, Var *partitionColumn,
JoinType joinType, List *joinClauseList);
static RuleApplyFunction JoinRuleApplyFunction(JoinRuleType ruleType);
static MultiNode * ApplyBroadcastJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplyLocalJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplySinglePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplyDualPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
static MultiNode * ApplyCartesianProduct(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *joinClauses);
/*
* Local functions forward declarations for subquery pushdown. Note that these
* functions will be removed with upcoming subqery changes.
*/
static MultiNode * SubqueryPushdownMultiPlanTree(Query *queryTree,
List *subqueryEntryList);
static void ErrorIfSubqueryJoin(Query *queryTree);
static MultiTable * MultiSubqueryPushdownTable(RangeTblEntry *subqueryRangeTableEntry);
/*
* MultiLogicalPlanCreate takes in a parsed query tree, uses helper functions to
* create logical plan and adds a root node to top of it.
*/
MultiTreeRoot *
MultiLogicalPlanCreate(Query *queryTree)
{
MultiNode *multiQueryNode = NULL;
MultiTreeRoot *rootNode = NULL;
List *subqueryEntryList = SubqueryEntryList(queryTree);
if (subqueryEntryList != NIL)
{
if (SubqueryPushdown)
{
multiQueryNode = SubqueryPushdownMultiPlanTree(queryTree, subqueryEntryList);
}
else
{
ErrorIfSubqueryJoin(queryTree);
multiQueryNode = MultiPlanTree(queryTree);
}
}
else
{
multiQueryNode = MultiPlanTree(queryTree);
}
/* add a root node to serve as the permanent handle to the tree */
rootNode = CitusMakeNode(MultiTreeRoot);
SetChild((MultiUnaryNode *) rootNode, multiQueryNode);
return rootNode;
}
/*
* SubqueryEntryList finds the subquery nodes in the range table entry list, and
* builds a list of subquery range table entries from these subquery nodes. Range
* table entry list also includes subqueries which are pulled up. We don't want
* to add pulled up subqueries to list, so we walk over join tree indexes and
* check range table entries referenced in the join tree.
*/
List *
SubqueryEntryList(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *subqueryEntryList = NIL;
List *joinTreeTableIndexList = NIL;
ListCell *joinTreeTableIndexCell = NULL;
/*
* Extract all range table indexes from the join tree. Note that here we
* only walk over range table entries at this level and do not recurse into
* subqueries.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
{
/*
* Join tree's range table index starts from 1 in the query tree. But,
* list indexes start from 0.
*/
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
int rangeTableListIndex = joinTreeTableIndex - 1;
RangeTblEntry *rangeTableEntry =
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
if (rangeTableEntry->rtekind == RTE_SUBQUERY)
{
subqueryEntryList = lappend(subqueryEntryList, rangeTableEntry);
}
}
return subqueryEntryList;
}
/*
* MultiPlanTree takes in a parsed query tree and uses that tree to construct a
* logical plan. This plan is based on multi-relational algebra. This function
* creates the logical plan in several steps.
*
* First, the function checks if there is a subquery. If there is a subquery
* it recursively creates nested multi trees. If this query has a subquery, the
* function does not create any join trees and jumps to last step.
*
* If there is no subquery, the function calculates the join order using tables
* in the query and join clauses between the tables. Second, the function
* starts building the logical plan from the bottom-up, and begins with the table
* and collect nodes. Third, the function builds the join tree using the join
* order information and table nodes.
*
* In the last step, the function adds the select, project, aggregate, sort,
* group, and limit nodes if they appear in the original query tree.
*/
static MultiNode *
MultiPlanTree(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *targetEntryList = queryTree->targetList;
List *whereClauseList = NIL;
List *joinClauseList = NIL;
List *joinOrderList = NIL;
List *tableEntryList = NIL;
List *tableNodeList = NIL;
List *collectTableList = NIL;
List *subqueryEntryList = NIL;
MultiNode *joinTreeNode = NULL;
MultiSelect *selectNode = NULL;
MultiProject *projectNode = NULL;
MultiExtendedOp *extendedOpNode = NULL;
MultiNode *currentTopNode = NULL;
/* verify we can perform distributed planning on this query */
ErrorIfQueryNotSupported(queryTree);
/* extract where clause qualifiers and verify we can plan for them */
whereClauseList = WhereClauseList(queryTree->jointree);
ValidateClauseList(whereClauseList);
/*
* If we have a subquery, build a multi table node for the subquery and
* add a collect node on top of the multi table node.
*/
subqueryEntryList = SubqueryEntryList(queryTree);
if (subqueryEntryList != NIL)
{
RangeTblEntry *subqueryRangeTableEntry = NULL;
MultiCollect *subqueryCollectNode = CitusMakeNode(MultiCollect);
MultiTable *subqueryNode = NULL;
MultiNode *subqueryExtendedNode = NULL;
Query *subqueryTree = NULL;
List *whereClauseColumnList = NIL;
List *targetListColumnList = NIL;
List *columnList = NIL;
ListCell *columnCell = NULL;
subqueryRangeTableEntry = (RangeTblEntry *) linitial(subqueryEntryList);
subqueryTree = subqueryRangeTableEntry->subquery;
/* check if subquery satisfies preconditons */
ErrorIfSubqueryNotSupported(subqueryTree);
/* check if subquery has joining tables */
ErrorIfSubqueryJoin(subqueryTree);
subqueryNode = CitusMakeNode(MultiTable);
subqueryNode->relationId = SUBQUERY_RELATION_ID;
subqueryNode->rangeTableId = SUBQUERY_RANGE_TABLE_ID;
subqueryNode->partitionColumn = NULL;
subqueryNode->alias = NULL;
subqueryNode->referenceNames = NULL;
/*
* We disregard pulled subqueries. This changes order of range table list.
* We do not allow subquery joins, so we will have only one range table
* entry in range table list after dropping pulled subquery. For this
* reason, here we are updating columns in the most outer query for where
* clause list and target list accordingly.
*/
Assert(list_length(subqueryEntryList) == 1);
whereClauseColumnList = pull_var_clause_default((Node *) whereClauseList);
targetListColumnList = pull_var_clause_default((Node *) targetEntryList);
columnList = list_concat(whereClauseColumnList, targetListColumnList);
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
column->varno = 1;
}
/* recursively create child nested multitree */
subqueryExtendedNode = MultiPlanTree(subqueryTree);
SetChild((MultiUnaryNode *) subqueryCollectNode, (MultiNode *) subqueryNode);
SetChild((MultiUnaryNode *) subqueryNode, subqueryExtendedNode);
currentTopNode = (MultiNode *) subqueryCollectNode;
}
else
{
bool hasOuterJoin = false;
/*
* We calculate the join order using the list of tables in the query and
* the join clauses between them. Note that this function owns the table
* entry list's memory, and JoinOrderList() shallow copies the list's
* elements.
*/
joinClauseList = JoinClauseList(whereClauseList);
tableEntryList = TableEntryList(rangeTableList);
/* build the list of multi table nodes */
tableNodeList = MultiTableNodeList(tableEntryList, rangeTableList);
/* add collect nodes on top of the multi table nodes */
collectTableList = AddMultiCollectNodes(tableNodeList);
hasOuterJoin = HasOuterJoin(queryTree);
if (hasOuterJoin)
{
/* use the user-defined join order when there are outer joins */
joinOrderList = FixedJoinOrderList(queryTree->jointree, tableEntryList);
}
else
{
/* find best join order for commutative inner joins */
joinOrderList = JoinOrderList(tableEntryList, joinClauseList);
}
/* build join tree using the join order and collected tables */
joinTreeNode = MultiJoinTree(joinOrderList, collectTableList, joinClauseList);
currentTopNode = joinTreeNode;
}
Assert(currentTopNode != NULL);
/* build select node if the query has selection criteria */
selectNode = MultiSelectNode(whereClauseList);
if (selectNode != NULL)
{
SetChild((MultiUnaryNode *) selectNode, currentTopNode);
currentTopNode = (MultiNode *) selectNode;
}
/* build project node for the columns to project */
projectNode = MultiProjectNode(targetEntryList);
SetChild((MultiUnaryNode *) projectNode, currentTopNode);
currentTopNode = (MultiNode *) projectNode;
/*
* We build the extended operator node to capture aggregate functions, group
* clauses, sort clauses, limit/offset clauses, and expressions. We need to
* distinguish between aggregates and expressions; and we address this later
* in the logical optimizer.
*/
extendedOpNode = MultiExtendedOpNode(queryTree);
SetChild((MultiUnaryNode *) extendedOpNode, currentTopNode);
currentTopNode = (MultiNode *) extendedOpNode;
return currentTopNode;
}
/*
* ErrorIfQueryNotSupported checks that we can perform distributed planning for
* the given query. The checks in this function will be removed as we support
* more functionality in our distributed planning.
*/
static void
ErrorIfQueryNotSupported(Query *queryTree)
{
char *errorDetail = NULL;
bool hasTablesample = false;
bool hasUnsupportedJoin = false;
bool hasComplexJoinOrder = false;
bool hasComplexRangeTableType = false;
bool preconditionsSatisfied = true;
if (queryTree->hasSubLinks)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries other than in from-clause are currently unsupported";
}
if (queryTree->hasWindowFuncs)
{
preconditionsSatisfied = false;
errorDetail = "Window functions are currently unsupported";
}
if (queryTree->setOperations)
{
preconditionsSatisfied = false;
errorDetail = "Union, Intersect, or Except are currently unsupported";
}
if (queryTree->hasRecursive)
{
preconditionsSatisfied = false;
errorDetail = "Recursive queries are currently unsupported";
}
if (queryTree->cteList)
{
preconditionsSatisfied = false;
errorDetail = "Common Table Expressions are currently unsupported";
}
if (queryTree->hasForUpdate)
{
preconditionsSatisfied = false;
errorDetail = "For Update/Share commands are currently unsupported";
}
if (queryTree->distinctClause)
{
preconditionsSatisfied = false;
errorDetail = "Distinct clause is currently unsupported";
}
if (queryTree->groupingSets)
{
preconditionsSatisfied = false;
errorDetail = "Grouping sets, cube, and rollup is currently unsupported";
}
hasTablesample = HasTablesample(queryTree);
if (hasTablesample)
{
preconditionsSatisfied = false;
errorDetail = "Tablesample is currently unsupported";
}
hasUnsupportedJoin = HasUnsupportedJoinWalker((Node *) queryTree->jointree, NULL);
if (hasUnsupportedJoin)
{
preconditionsSatisfied = false;
errorDetail = "Join types other than inner/outer joins are currently unsupported";
}
hasComplexJoinOrder = HasComplexJoinOrder(queryTree);
if (hasComplexJoinOrder)
{
preconditionsSatisfied = false;
errorDetail = "Complex join orders are currently unsupported";
}
hasComplexRangeTableType = HasComplexRangeTableType(queryTree);
if (hasComplexRangeTableType)
{
preconditionsSatisfied = false;
errorDetail = "Complex table expressions are currently unsupported";
}
/* finally check and error out if not satisfied */
if (!preconditionsSatisfied)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot perform distributed planning on this query"),
errdetail("%s", errorDetail)));
}
}
/* HasTablesample returns tree if the query contains tablesample */
static bool
HasTablesample(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
ListCell *rangeTableEntryCell = NULL;
bool hasTablesample = false;
foreach(rangeTableEntryCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = lfirst(rangeTableEntryCell);
if (rangeTableEntry->tablesample)
{
hasTablesample = true;
break;
}
}
return hasTablesample;
}
/*
* HasUnsupportedJoinWalker returns tree if the query contains an unsupported
* join type. We currently support inner, left, right, full and anti joins.
* Semi joins are not supported. A full description of these join types is
* included in nodes/nodes.h.
*/
static bool
HasUnsupportedJoinWalker(Node *node, void *context)
{
bool hasUnsupportedJoin = false;
if (node == NULL)
{
return false;
}
if (IsA(node, JoinExpr))
{
JoinExpr *joinExpr = (JoinExpr *) node;
JoinType joinType = joinExpr->jointype;
bool outerJoin = IS_OUTER_JOIN(joinType);
if (!outerJoin && joinType != JOIN_INNER)
{
hasUnsupportedJoin = true;
}
}
if (!hasUnsupportedJoin)
{
hasUnsupportedJoin = expression_tree_walker(node, HasUnsupportedJoinWalker,
NULL);
}
return hasUnsupportedJoin;
}
/*
* ErrorIfSubqueryNotSupported checks that we can perform distributed planning for
* the given subquery.
*/
static void
ErrorIfSubqueryNotSupported(Query *subqueryTree)
{
char *errorDetail = NULL;
bool preconditionsSatisfied = true;
if (!subqueryTree->hasAggs)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries without aggregates are not supported yet";
}
if (subqueryTree->groupClause == NIL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries without group by clause are not supported yet";
}
if (subqueryTree->sortClause != NULL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries with order by clause are not supported yet";
}
if (subqueryTree->limitCount != NULL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries with limit are not supported yet";
}
if (subqueryTree->limitOffset != NULL)
{
preconditionsSatisfied = false;
errorDetail = "Subqueries with offset are not supported yet";
}
/* finally check and error out if not satisfied */
if (!preconditionsSatisfied)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot perform distributed planning on this query"),
errdetail("%s", errorDetail)));
}
}
/*
* HasOuterJoin returns true if query has a outer join.
*/
static bool
HasOuterJoin(Query *queryTree)
{
bool hasOuterJoin = HasOuterJoinWalker((Node *) queryTree->jointree, NULL);
return hasOuterJoin;
}
/*
* HasOuterJoinWalker returns true if the query has an outer join. The context
* parameter should be NULL.
*/
static bool
HasOuterJoinWalker(Node *node, void *context)
{
bool hasOuterJoin = false;
if (node == NULL)
{
return false;
}
if (IsA(node, JoinExpr))
{
JoinExpr *joinExpr = (JoinExpr *) node;
JoinType joinType = joinExpr->jointype;
if (IS_OUTER_JOIN(joinType))
{
hasOuterJoin = true;
}
}
if (!hasOuterJoin)
{
hasOuterJoin = expression_tree_walker(node, HasOuterJoinWalker, NULL);
}
return hasOuterJoin;
}
/*
* HasComplexJoinOrder returns true if join tree is not a left-handed tree i.e.
* it has a join expression in at least one right argument.
*/
static bool
HasComplexJoinOrder(Query *queryTree)
{
bool hasComplexJoinOrder = false;
List *joinList = NIL;
ListCell *joinCell = NULL;
joinList = JoinExprList(queryTree->jointree);
foreach(joinCell, joinList)
{
JoinExpr *joinExpr = lfirst(joinCell);
if (IsA(joinExpr->rarg, JoinExpr))
{
hasComplexJoinOrder = true;
break;
}
}
return hasComplexJoinOrder;
}
/*
* HasComplexRangeTableType checks if the given query tree contains any complex
* range table types. For this, the function walks over all range tables in the
* join tree, and checks if they correspond to simple relations or subqueries.
* If they don't, the function assumes the query has complex range tables.
*/
static bool
HasComplexRangeTableType(Query *queryTree)
{
List *rangeTableList = queryTree->rtable;
List *joinTreeTableIndexList = NIL;
ListCell *joinTreeTableIndexCell = NULL;
bool hasComplexRangeTableType = false;
/*
* Extract all range table indexes from the join tree. Note that sub-queries
* that get pulled up by PostgreSQL don't appear in this join tree.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
foreach(joinTreeTableIndexCell, joinTreeTableIndexList)
{
/*
* Join tree's range table index starts from 1 in the query tree. But,
* list indexes start from 0.
*/
int joinTreeTableIndex = lfirst_int(joinTreeTableIndexCell);
int rangeTableListIndex = joinTreeTableIndex - 1;
RangeTblEntry *rangeTableEntry =
(RangeTblEntry *) list_nth(rangeTableList, rangeTableListIndex);
/*
* Check if the range table in the join tree is a simple relation or a
* subquery.
*/
if (rangeTableEntry->rtekind != RTE_RELATION &&
rangeTableEntry->rtekind != RTE_SUBQUERY)
{
hasComplexRangeTableType = true;
}
/*
* Check if the subquery range table entry includes children inheritance.
*
* Note that PostgreSQL flattens out simple union all queries into an
* append relation, sets "inh" field of RangeTblEntry to true and deletes
* set operations. Here we check this for subqueries.
*/
if (rangeTableEntry->rtekind == RTE_SUBQUERY && rangeTableEntry->inh)
{
hasComplexRangeTableType = true;
}
}
return hasComplexRangeTableType;
}
/*
* ExtractRangeTableIndexWalker walks over a join tree, and finds all range
* table indexes in that tree.
*/
bool
ExtractRangeTableIndexWalker(Node *node, List **rangeTableIndexList)
{
bool walkerResult = false;
if (node == NULL)
{
return false;
}
if (IsA(node, RangeTblRef))
{
int rangeTableIndex = ((RangeTblRef *) node)->rtindex;
(*rangeTableIndexList) = lappend_int(*rangeTableIndexList, rangeTableIndex);
}
else
{
walkerResult = expression_tree_walker(node, ExtractRangeTableIndexWalker,
rangeTableIndexList);
}
return walkerResult;
}
/*
* WhereClauseList walks over the FROM expression in the query tree, and builds
* a list of all clauses from the expression tree. The function checks for both
* implicitly and explicitly defined clauses, but only selects INNER join
* explicit clauses, and skips any outer-join clauses. Explicit clauses are
* expressed as "SELECT ... FROM R1 INNER JOIN R2 ON R1.A = R2.A". Implicit
* joins differ in that they live in the WHERE clause, and are expressed as
* "SELECT ... FROM ... WHERE R1.a = R2.a".
*/
List *
WhereClauseList(FromExpr *fromExpr)
{
FromExpr *fromExprCopy = copyObject(fromExpr);
QualifierWalkerContext *walkerContext = palloc0(sizeof(QualifierWalkerContext));
List *whereClauseList = NIL;
ExtractFromExpressionWalker((Node *) fromExprCopy, walkerContext);
whereClauseList = walkerContext->baseQualifierList;
return whereClauseList;
}
/*
* QualifierList walks over the FROM expression in the query tree, and builds
* a list of all qualifiers from the expression tree. The function checks for
* both implicitly and explicitly defined qualifiers. Note that this function
* is very similar to WhereClauseList(), but QualifierList() also includes
* outer-join clauses.
*/
List *
QualifierList(FromExpr *fromExpr)
{
FromExpr *fromExprCopy = copyObject(fromExpr);
QualifierWalkerContext *walkerContext = palloc0(sizeof(QualifierWalkerContext));
List *qualifierList = NIL;
ExtractFromExpressionWalker((Node *) fromExprCopy, walkerContext);
qualifierList = list_concat(qualifierList, walkerContext->baseQualifierList);
qualifierList = list_concat(qualifierList, walkerContext->outerJoinQualifierList);
return qualifierList;
}
/*
* ValidateClauseList walks over the given list of clauses, and checks that we
* can recognize all the clauses. This function ensures that we do not drop an
* unsupported clause type on the floor, and thus prevents erroneous results.
*/
static void
ValidateClauseList(List *clauseList)
{
ListCell *clauseCell = NULL;
foreach(clauseCell, clauseList)
{
Node *clause = (Node *) lfirst(clauseCell);
bool selectClause = IsSelectClause(clause);
bool joinClause = IsJoinClause(clause);
bool orClause = or_clause(clause);
if (!(selectClause || joinClause || orClause))
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported clause type")));
}
}
}
/*
* JoinClauseList finds the join clauses from the given where clause expression
* list, and returns them. The function does not iterate into nested OR clauses
* and relies on find_duplicate_ors() in the optimizer to pull up factorizable
* OR clauses.
*/
List *
JoinClauseList(List *whereClauseList)
{
List *joinClauseList = NIL;
ListCell *whereClauseCell = NULL;
foreach(whereClauseCell, whereClauseList)
{
Node *whereClause = (Node *) lfirst(whereClauseCell);
if (IsJoinClause(whereClause))
{
joinClauseList = lappend(joinClauseList, whereClause);
}
}
return joinClauseList;
}
/*
* ExtractFromExpressionWalker walks over a FROM expression, and finds all
* implicit and explicit qualifiers in the expression. The function looks at
* join and from expression nodes to find qualifiers, and returns these
* qualifiers.
*
* Note that we don't want outer join clauses in regular outer join planning,
* but we need outer join clauses in subquery pushdown prerequisite checks.
* Therefore, outer join qualifiers are returned in a different list than other
* qualifiers inside the given walker context. For this reason, we return two
* qualifier lists.
*
* Note that we check if the qualifier node in join and from expression nodes
* is a list node. If it is not a list node which is the case for subqueries,
* then we run eval_const_expressions(), canonicalize_qual() and make_ands_implicit()
* on the qualifier node and get a list of flattened implicitly AND'ed qualifier
* list. Actually in the planer phase of PostgreSQL these functions also run on
* subqueries but differently from the outermost query, they are run on a copy
* of parse tree and changes do not get persisted as modifications to the original
* query tree.
*/
static bool
ExtractFromExpressionWalker(Node *node, QualifierWalkerContext *walkerContext)
{
bool walkerResult = false;
if (node == NULL)
{
return false;
}
/*
* Get qualifier lists of join and from expression nodes. Note that in the
* case of subqueries, PostgreSQL can skip simplifying, flattening and
* making ANDs implicit. If qualifiers node is not a list, then we run these
* preprocess routines on qualifiers node.
*/
if (IsA(node, JoinExpr))
{
List *joinQualifierList = NIL;
JoinExpr *joinExpression = (JoinExpr *) node;
Node *joinQualifiersNode = joinExpression->quals;
JoinType joinType = joinExpression->jointype;
if (joinQualifiersNode != NULL)
{
if (IsA(joinQualifiersNode, List))
{
joinQualifierList = (List *) joinQualifiersNode;
}
else
{
/* this part of code only run for subqueries */
Node *joinClause = eval_const_expressions(NULL, joinQualifiersNode);
joinClause = (Node *) canonicalize_qual((Expr *) joinClause);
joinQualifierList = make_ands_implicit((Expr *) joinClause);
}
}
/* return outer join clauses in a separate list */
if (joinType == JOIN_INNER)
{
walkerContext->baseQualifierList =
list_concat(walkerContext->baseQualifierList, joinQualifierList);
}
else if (IS_OUTER_JOIN(joinType))
{
walkerContext->outerJoinQualifierList =
list_concat(walkerContext->outerJoinQualifierList, joinQualifierList);
}
}
else if (IsA(node, FromExpr))
{
List *fromQualifierList = NIL;
FromExpr *fromExpression = (FromExpr *) node;
Node *fromQualifiersNode = fromExpression->quals;
if (fromQualifiersNode != NULL)
{
if (IsA(fromQualifiersNode, List))
{
fromQualifierList = (List *) fromQualifiersNode;
}
else
{
/* this part of code only run for subqueries */
Node *fromClause = eval_const_expressions(NULL, fromQualifiersNode);
fromClause = (Node *) canonicalize_qual((Expr *) fromClause);
fromQualifierList = make_ands_implicit((Expr *) fromClause);
}
walkerContext->baseQualifierList =
list_concat(walkerContext->baseQualifierList, fromQualifierList);
}
}
walkerResult = expression_tree_walker(node, ExtractFromExpressionWalker,
(void *) walkerContext);
return walkerResult;
}
/*
* IsJoinClause determines if the given node is a join clause according to our
* criteria. Our criteria defines a join clause as an equi join operator between
* two columns that belong to two different tables.
*/
bool
IsJoinClause(Node *clause)
{
bool isJoinClause = false;
OpExpr *operatorExpression = NULL;
List *argumentList = NIL;
Node *leftArgument = NULL;
Node *rightArgument = NULL;
List *leftColumnList = NIL;
List *rightColumnList = NIL;
if (!IsA(clause, OpExpr))
{
return false;
}
operatorExpression = (OpExpr *) clause;
argumentList = operatorExpression->args;
/* join clauses must have two arguments */
if (list_length(argumentList) != 2)
{
return false;
}
/* get left and right side of the expression */
leftArgument = (Node *) linitial(argumentList);
rightArgument = (Node *) lsecond(argumentList);
leftColumnList = pull_var_clause_default(leftArgument);
rightColumnList = pull_var_clause_default(rightArgument);
/* each side of the expression should have only one column */
if ((list_length(leftColumnList) == 1) && (list_length(rightColumnList) == 1))
{
Var *leftColumn = (Var *) linitial(leftColumnList);
Var *rightColumn = (Var *) linitial(rightColumnList);
bool equiJoin = false;
bool joinBetweenDifferentTables = false;
bool equalsOperator = OperatorImplementsEquality(operatorExpression->opno);
if (equalsOperator)
{
equiJoin = true;
}
if (leftColumn->varno != rightColumn->varno)
{
joinBetweenDifferentTables = true;
}
/* codifies our logic for determining if this node is a join clause */
if (equiJoin && joinBetweenDifferentTables)
{
isJoinClause = true;
}
}
return isJoinClause;
}
/*
* TableEntryList finds the regular relation nodes in the range table entry
* list, and builds a list of table entries from these regular relation nodes.
*/
List *
TableEntryList(List *rangeTableList)
{
List *tableEntryList = NIL;
ListCell *rangeTableCell = NULL;
uint32 tableId = 1; /* range table indices start at 1 */
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
TableEntry *tableEntry = (TableEntry *) palloc0(sizeof(TableEntry));
tableEntry->relationId = rangeTableEntry->relid;
tableEntry->rangeTableId = tableId;
tableEntryList = lappend(tableEntryList, tableEntry);
}
/*
* Increment tableId regardless so that table entry's tableId remains
* congruent with column's range table reference (varno).
*/
tableId++;
}
return tableEntryList;
}
/*
* MultiTableNodeList builds a list of MultiTable nodes from the given table
* entry list. A multi table node represents one entry from the range table
* list. These entries may belong to the same physical relation in the case of
* self-joins.
*/
static List *
MultiTableNodeList(List *tableEntryList, List *rangeTableList)
{
List *tableNodeList = NIL;
ListCell *tableEntryCell = NULL;
foreach(tableEntryCell, tableEntryList)
{
TableEntry *tableEntry = (TableEntry *) lfirst(tableEntryCell);
Oid relationId = tableEntry->relationId;
uint32 rangeTableId = tableEntry->rangeTableId;
Var *partitionColumn = PartitionColumn(relationId, rangeTableId);
RangeTblEntry *rangeTableEntry = rt_fetch(rangeTableId, rangeTableList);
MultiTable *tableNode = CitusMakeNode(MultiTable);
tableNode->subquery = NULL;
tableNode->relationId = relationId;
tableNode->rangeTableId = rangeTableId;
tableNode->partitionColumn = partitionColumn;
tableNode->alias = rangeTableEntry->alias;
tableNode->referenceNames = rangeTableEntry->eref;
tableNodeList = lappend(tableNodeList, tableNode);
}
return tableNodeList;
}
/* Adds a MultiCollect node on top of each MultiTable node in the given list. */
static List *
AddMultiCollectNodes(List *tableNodeList)
{
List *collectTableList = NIL;
ListCell *tableNodeCell = NULL;
foreach(tableNodeCell, tableNodeList)
{
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
MultiCollect *collectNode = CitusMakeNode(MultiCollect);
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) tableNode);
collectTableList = lappend(collectTableList, collectNode);
}
return collectTableList;
}
/*
* MultiJoinTree takes in the join order information and the list of tables, and
* builds a join tree by applying the corresponding join rules. The function
* builds a left deep tree, as expressed by the join order list.
*
* The function starts by setting the first table as the top node in the join
* tree. Then, the function iterates over the list of tables, and builds a new
* join node between the top of the join tree and the next table in the list.
* At each iteration, the function sets the top of the join tree to the newly
* built list. This results in a left deep join tree, and the function returns
* this tree after every table in the list has been joined.
*/
static MultiNode *
MultiJoinTree(List *joinOrderList, List *collectTableList, List *joinWhereClauseList)
{
MultiNode *currentTopNode = NULL;
ListCell *joinOrderCell = NULL;
bool firstJoinNode = true;
foreach(joinOrderCell, joinOrderList)
{
JoinOrderNode *joinOrderNode = (JoinOrderNode *) lfirst(joinOrderCell);
uint32 joinTableId = joinOrderNode->tableEntry->rangeTableId;
MultiCollect *collectNode = CollectNodeForTable(collectTableList, joinTableId);
if (firstJoinNode)
{
currentTopNode = (MultiNode *) collectNode;
firstJoinNode = false;
}
else
{
JoinRuleType joinRuleType = joinOrderNode->joinRuleType;
JoinType joinType = joinOrderNode->joinType;
Var *partitionColumn = joinOrderNode->partitionColumn;
MultiNode *newJoinNode = NULL;
List *joinClauseList = joinOrderNode->joinClauseList;
/*
* Build a join node between the top of our join tree and the next
* table in the join order.
*/
newJoinNode = ApplyJoinRule(currentTopNode, (MultiNode *) collectNode,
joinRuleType, partitionColumn, joinType,
joinClauseList);
/* the new join node becomes the top of our join tree */
currentTopNode = newJoinNode;
}
}
/* current top node points to the entire left deep join tree */
return currentTopNode;
}
/*
* CollectNodeForTable finds the MultiCollect node whose MultiTable node has the
* given range table identifier. Note that this function expects each collect
* node in the given list to have one table node as its child.
*/
static MultiCollect *
CollectNodeForTable(List *collectTableList, uint32 rangeTableId)
{
MultiCollect *collectNodeForTable = NULL;
ListCell *collectTableCell = NULL;
foreach(collectTableCell, collectTableList)
{
MultiCollect *collectNode = (MultiCollect *) lfirst(collectTableCell);
List *tableIdList = OutputTableIdList((MultiNode *) collectNode);
uint32 tableId = (uint32) linitial_int(tableIdList);
Assert(list_length(tableIdList) == 1);
if (tableId == rangeTableId)
{
collectNodeForTable = collectNode;
break;
}
}
Assert(collectNodeForTable != NULL);
return collectNodeForTable;
}
/*
* MultiSelectNode extracts the select clauses from the given where clause list,
* and builds a MultiSelect node from these clauses. If the expression tree does
* not have any select clauses, the function return null.
*/
static MultiSelect *
MultiSelectNode(List *whereClauseList)
{
List *selectClauseList = NIL;
MultiSelect *selectNode = NULL;
ListCell *whereClauseCell = NULL;
foreach(whereClauseCell, whereClauseList)
{
Node *whereClause = (Node *) lfirst(whereClauseCell);
if (IsSelectClause(whereClause) || or_clause(whereClause))
{
selectClauseList = lappend(selectClauseList, whereClause);
}
}
if (list_length(selectClauseList) > 0)
{
selectNode = CitusMakeNode(MultiSelect);
selectNode->selectClauseList = selectClauseList;
}
return selectNode;
}
/*
* IsSelectClause determines if the given node is a select clause according to
* our criteria. Our criteria defines a select clause as an expression that has
* zero or more columns belonging to only one table.
*/
static bool
IsSelectClause(Node *clause)
{
List *columnList = NIL;
ListCell *columnCell = NULL;
Var *firstColumn = NULL;
Index firstColumnTableId = 0;
bool isSelectClause = true;
NodeTag nodeTag = nodeTag(clause);
/* error out for subqueries in WHERE clause */
if (nodeTag == T_SubLink || nodeTag == T_SubPlan)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot perform distributed planning on this query"),
errdetail("Subqueries other than in from-clause are currently "
"unsupported")));
}
/* extract columns from the clause */
columnList = pull_var_clause_default(clause);
if (list_length(columnList) == 0)
{
return true;
}
/* get first column's tableId */
firstColumn = (Var *) linitial(columnList);
firstColumnTableId = firstColumn->varno;
/* check if all columns are from the same table */
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
if (column->varno != firstColumnTableId)
{
isSelectClause = false;
}
}
return isSelectClause;
}
/*
* MultiProjectNode builds the project node using the target entry information
* from the query tree. The project node only encapsulates projected columns,
* and does not include aggregates, group clauses, or project expressions.
*/
static MultiProject *
MultiProjectNode(List *targetEntryList)
{
MultiProject *projectNode = NULL;
List *uniqueColumnList = NIL;
List *columnList = NIL;
ListCell *columnCell = NULL;
/* extract the list of columns and remove any duplicates */
columnList = pull_var_clause_default((Node *) targetEntryList);
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
uniqueColumnList = list_append_unique(uniqueColumnList, column);
}
/* create project node with list of columns to project */
projectNode = CitusMakeNode(MultiProject);
projectNode->columnList = uniqueColumnList;
return projectNode;
}
/* Builds the extended operator node using fields from the given query tree. */
static MultiExtendedOp *
MultiExtendedOpNode(Query *queryTree)
{
MultiExtendedOp *extendedOpNode = CitusMakeNode(MultiExtendedOp);
extendedOpNode->targetList = queryTree->targetList;
extendedOpNode->groupClauseList = queryTree->groupClause;
extendedOpNode->sortClauseList = queryTree->sortClause;
extendedOpNode->limitCount = queryTree->limitCount;
extendedOpNode->limitOffset = queryTree->limitOffset;
extendedOpNode->havingQual = queryTree->havingQual;
return extendedOpNode;
}
/* Helper function to return the parent node of the given node. */
MultiNode *
ParentNode(MultiNode *multiNode)
{
MultiNode *parentNode = multiNode->parentNode;
return parentNode;
}
/* Helper function to return the child of the given unary node. */
MultiNode *
ChildNode(MultiUnaryNode *multiNode)
{
MultiNode *childNode = multiNode->childNode;
return childNode;
}
/* Helper function to return the grand child of the given unary node. */
MultiNode *
GrandChildNode(MultiUnaryNode *multiNode)
{
MultiNode *childNode = ChildNode(multiNode);
MultiNode *grandChildNode = ChildNode((MultiUnaryNode *) childNode);
return grandChildNode;
}
/* Sets the given child node as a child of the given unary parent node. */
void
SetChild(MultiUnaryNode *parent, MultiNode *child)
{
parent->childNode = child;
child->parentNode = (MultiNode *) parent;
}
/* Sets the given child node as a left child of the given parent node. */
void
SetLeftChild(MultiBinaryNode *parent, MultiNode *leftChild)
{
parent->leftChildNode = leftChild;
leftChild->parentNode = (MultiNode *) parent;
}
/* Sets the given child node as a right child of the given parent node. */
void
SetRightChild(MultiBinaryNode *parent, MultiNode *rightChild)
{
parent->rightChildNode = rightChild;
rightChild->parentNode = (MultiNode *) parent;
}
/* Returns true if the given node is a unary operator. */
bool
UnaryOperator(MultiNode *node)
{
bool unaryOperator = false;
if (CitusIsA(node, MultiTreeRoot) || CitusIsA(node, MultiTable) ||
CitusIsA(node, MultiCollect) || CitusIsA(node, MultiSelect) ||
CitusIsA(node, MultiProject) || CitusIsA(node, MultiPartition) ||
CitusIsA(node, MultiExtendedOp))
{
unaryOperator = true;
}
return unaryOperator;
}
/* Returns true if the given node is a binary operator. */
bool
BinaryOperator(MultiNode *node)
{
bool binaryOperator = false;
if (CitusIsA(node, MultiJoin) || CitusIsA(node, MultiCartesianProduct))
{
binaryOperator = true;
}
return binaryOperator;
}
/*
* OutputTableIdList finds all table identifiers that are output by the given
* multi node, and returns these identifiers in a new list.
*/
List *
OutputTableIdList(MultiNode *multiNode)
{
List *tableIdList = NIL;
List *tableNodeList = FindNodesOfType(multiNode, T_MultiTable);
ListCell *tableNodeCell = NULL;
foreach(tableNodeCell, tableNodeList)
{
MultiTable *tableNode = (MultiTable *) lfirst(tableNodeCell);
int tableId = (int) tableNode->rangeTableId;
if (tableId != SUBQUERY_RANGE_TABLE_ID)
{
tableIdList = lappend_int(tableIdList, tableId);
}
}
return tableIdList;
}
/*
* FindNodesOfType takes in a given logical plan tree, and recursively traverses
* the tree in preorder. The function finds all nodes of requested type during
* the traversal, and returns them in a list.
*/
List *
FindNodesOfType(MultiNode *node, int type)
{
List *nodeList = NIL;
int nodeType = T_Invalid;
/* terminal condition for recursion */
if (node == NULL)
{
return NIL;
}
/* current node has expected node type */
nodeType = CitusNodeTag(node);
if (nodeType == type)
{
nodeList = lappend(nodeList, node);
}
if (UnaryOperator(node))
{
MultiNode *childNode = ((MultiUnaryNode *) node)->childNode;
List *childNodeList = FindNodesOfType(childNode, type);
nodeList = list_concat(nodeList, childNodeList);
}
else if (BinaryOperator(node))
{
MultiNode *leftChildNode = ((MultiBinaryNode *) node)->leftChildNode;
MultiNode *rightChildNode = ((MultiBinaryNode *) node)->rightChildNode;
List *leftChildNodeList = FindNodesOfType(leftChildNode, type);
List *rightChildNodeList = FindNodesOfType(rightChildNode, type);
nodeList = list_concat(nodeList, leftChildNodeList);
nodeList = list_concat(nodeList, rightChildNodeList);
}
return nodeList;
}
/*
* IdentifyRTE assigns an identifier to an RTE, for tracking purposes.
*
* To be able to track RTEs through postgres' query planning, which copies and
* duplicate, and modifies them, we sometimes need to figure out whether two
* RTEs are copies of the same original RTE. For that we, hackishly, use a
* field normally unused in RTE_RELATION RTEs.
*
* The assigned identifier better be unique within a plantree.
*/
void
IdentifyRTE(RangeTblEntry *rte, int identifier)
{
Assert(rte->rtekind == RTE_RELATION);
Assert(rte->values_lists == NIL);
rte->values_lists = list_make1_int(identifier);
}
/* GetRTEIdentity returns the identity assigned with IdentifyRTE. */
int
GetRTEIdentity(RangeTblEntry *rte)
{
Assert(rte->rtekind == RTE_RELATION);
Assert(IsA(rte->values_lists, IntList));
Assert(list_length(rte->values_lists) == 1);
return linitial_int(rte->values_lists);
}
/*
* NeedsDistributedPlanning checks if the passed in query is a query running
* on a distributed table. If it is, we start distributed planning.
*
* For distributed relations it also assigns identifiers to the relevant RTEs.
*/
bool
NeedsDistributedPlanning(Query *queryTree)
{
CmdType commandType = queryTree->commandType;
List *rangeTableList = NIL;
ListCell *rangeTableCell = NULL;
bool hasLocalRelation = false;
bool hasDistributedRelation = false;
int rteIdentifier = 1;
if (commandType != CMD_SELECT && commandType != CMD_INSERT &&
commandType != CMD_UPDATE && commandType != CMD_DELETE)
{
return false;
}
/* extract range table entries for simple relations only */
ExtractRangeTableRelationWalker((Node *) queryTree, &rangeTableList);
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
/* check if relation is local or distributed */
Oid relationId = rangeTableEntry->relid;
if (IsDistributedTable(relationId))
{
hasDistributedRelation = true;
/*
* To be able to track individual RTEs through postgres' query
* planning, we need to be able to figure out whether an RTE is
* actually a copy of another, rather than a different one. We
* simply number the RTEs starting from 1.
*/
if (rangeTableEntry->rtekind == RTE_RELATION)
{
IdentifyRTE(rangeTableEntry, rteIdentifier++);
}
}
else
{
hasLocalRelation = true;
}
}
/* users can't mix local and distributed relations in one query */
if (hasLocalRelation && hasDistributedRelation)
{
ereport(ERROR, (errmsg("cannot plan queries that include both regular and "
"partitioned relations")));
}
return hasDistributedRelation;
}
/*
* ExtractRangeTableRelationWalker gathers all range table entries in a query
* and filters them to preserve only those of the RTE_RELATION type.
*/
bool
ExtractRangeTableRelationWalker(Node *node, List **rangeTableRelationList)
{
List *rangeTableList = NIL;
ListCell *rangeTableCell = NULL;
bool walkIsComplete = ExtractRangeTableEntryWalker(node, &rangeTableList);
foreach(rangeTableCell, rangeTableList)
{
RangeTblEntry *rangeTableEntry = (RangeTblEntry *) lfirst(rangeTableCell);
if (rangeTableEntry->rtekind == RTE_RELATION)
{
(*rangeTableRelationList) = lappend(*rangeTableRelationList, rangeTableEntry);
}
}
return walkIsComplete;
}
/*
* ExtractRangeTableEntryWalker walks over a query tree, and finds all range
* table entries. For recursing into the query tree, this function uses the
* query tree walker since the expression tree walker doesn't recurse into
* sub-queries.
*/
bool
ExtractRangeTableEntryWalker(Node *node, List **rangeTableList)
{
bool walkIsComplete = false;
if (node == NULL)
{
return false;
}
if (IsA(node, RangeTblEntry))
{
RangeTblEntry *rangeTable = (RangeTblEntry *) node;
(*rangeTableList) = lappend(*rangeTableList, rangeTable);
}
else if (IsA(node, Query))
{
walkIsComplete = query_tree_walker((Query *) node, ExtractRangeTableEntryWalker,
rangeTableList, QTW_EXAMINE_RTES);
}
else
{
walkIsComplete = expression_tree_walker(node, ExtractRangeTableEntryWalker,
rangeTableList);
}
return walkIsComplete;
}
/*
* pull_var_clause_default calls pull_var_clause with the most commonly used
* arguments for distributed planning.
*/
List *
pull_var_clause_default(Node *node)
{
#if (PG_VERSION_NUM >= 90600)
/*
* PVC_REJECT_PLACEHOLDERS is now implicit if PVC_INCLUDE_PLACEHOLDERS
* isn't specified.
*/
List *columnList = pull_var_clause(node, PVC_RECURSE_AGGREGATES);
#else
List *columnList = pull_var_clause(node, PVC_RECURSE_AGGREGATES,
PVC_REJECT_PLACEHOLDERS);
#endif
return columnList;
}
/*
* ApplyJoinRule finds the join rule application function that corresponds to
* the given join rule, and calls this function to create a new join node that
* joins the left and right nodes together.
*/
static MultiNode *
ApplyJoinRule(MultiNode *leftNode, MultiNode *rightNode, JoinRuleType ruleType,
Var *partitionColumn, JoinType joinType, List *joinClauseList)
{
RuleApplyFunction ruleApplyFunction = NULL;
MultiNode *multiNode = NULL;
List *applicableJoinClauses = NIL;
List *leftTableIdList = OutputTableIdList(leftNode);
List *rightTableIdList = OutputTableIdList(rightNode);
int rightTableIdCount PG_USED_FOR_ASSERTS_ONLY = 0;
uint32 rightTableId = 0;
rightTableIdCount = list_length(rightTableIdList);
Assert(rightTableIdCount == 1);
/* find applicable join clauses between the left and right data sources */
rightTableId = (uint32) linitial_int(rightTableIdList);
applicableJoinClauses = ApplicableJoinClauses(leftTableIdList, rightTableId,
joinClauseList);
/* call the join rule application function to create the new join node */
ruleApplyFunction = JoinRuleApplyFunction(ruleType);
multiNode = (*ruleApplyFunction)(leftNode, rightNode, partitionColumn,
joinType, applicableJoinClauses);
if (joinType != JOIN_INNER && CitusIsA(multiNode, MultiJoin))
{
MultiJoin *joinNode = (MultiJoin *) multiNode;
/* preserve non-join clauses for OUTER joins */
joinNode->joinClauseList = list_copy(joinClauseList);
}
return multiNode;
}
/*
* JoinRuleApplyFunction returns a function pointer for the rule application
* function; this rule application function corresponds to the given rule type.
* This function also initializes the rule application function array in a
* static code block, if the array has not been initialized.
*/
static RuleApplyFunction
JoinRuleApplyFunction(JoinRuleType ruleType)
{
static bool ruleApplyFunctionInitialized = false;
RuleApplyFunction ruleApplyFunction = NULL;
if (!ruleApplyFunctionInitialized)
{
RuleApplyFunctionArray[BROADCAST_JOIN] = &ApplyBroadcastJoin;
RuleApplyFunctionArray[LOCAL_PARTITION_JOIN] = &ApplyLocalJoin;
RuleApplyFunctionArray[SINGLE_PARTITION_JOIN] = &ApplySinglePartitionJoin;
RuleApplyFunctionArray[DUAL_PARTITION_JOIN] = &ApplyDualPartitionJoin;
RuleApplyFunctionArray[CARTESIAN_PRODUCT] = &ApplyCartesianProduct;
ruleApplyFunctionInitialized = true;
}
ruleApplyFunction = RuleApplyFunctionArray[ruleType];
Assert(ruleApplyFunction != NULL);
return ruleApplyFunction;
}
/*
* ApplyBroadcastJoin creates a new MultiJoin node that joins the left and the
* right node. The new node uses the broadcast join rule to perform the join.
*/
static MultiNode *
ApplyBroadcastJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
joinNode->joinRuleType = BROADCAST_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
return (MultiNode *) joinNode;
}
/*
* ApplyLocalJoin creates a new MultiJoin node that joins the left and the right
* node. The new node uses the local join rule to perform the join.
*/
static MultiNode *
ApplyLocalJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
joinNode->joinRuleType = LOCAL_PARTITION_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
return (MultiNode *) joinNode;
}
/*
* ApplySinglePartitionJoin creates a new MultiJoin node that joins the left and
* right node. The function also adds a MultiPartition node on top of the node
* (left or right) that is not partitioned on the join column.
*/
static MultiNode *
ApplySinglePartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
OpExpr *joinClause = NULL;
Var *leftColumn = NULL;
Var *rightColumn = NULL;
List *rightTableIdList = NIL;
uint32 rightTableId = 0;
uint32 partitionTableId = partitionColumn->varno;
/* create all operator structures up front */
MultiJoin *joinNode = CitusMakeNode(MultiJoin);
MultiCollect *collectNode = CitusMakeNode(MultiCollect);
MultiPartition *partitionNode = CitusMakeNode(MultiPartition);
/*
* We first find the appropriate join clause. Then, we compare the partition
* column against the join clause's columns. If one of the columns matches,
* we introduce a (re-)partition operator for the other column.
*/
joinClause = SinglePartitionJoinClause(partitionColumn, applicableJoinClauses);
Assert(joinClause != NULL);
leftColumn = LeftColumn(joinClause);
rightColumn = RightColumn(joinClause);
if (equal(partitionColumn, leftColumn))
{
partitionNode->partitionColumn = rightColumn;
partitionNode->splitPointTableId = partitionTableId;
}
else if (equal(partitionColumn, rightColumn))
{
partitionNode->partitionColumn = leftColumn;
partitionNode->splitPointTableId = partitionTableId;
}
/* determine the node the partition operator goes on top of */
rightTableIdList = OutputTableIdList(rightNode);
rightTableId = (uint32) linitial_int(rightTableIdList);
Assert(list_length(rightTableIdList) == 1);
/*
* If the right child node is partitioned on the partition key column, we
* add the partition operator on the left child node; and vice versa. Then,
* we add a collect operator on top of the partition operator, and always
* make sure that we have at most one relation on the right-hand side.
*/
if (partitionTableId == rightTableId)
{
SetChild((MultiUnaryNode *) partitionNode, leftNode);
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) partitionNode);
SetLeftChild((MultiBinaryNode *) joinNode, (MultiNode *) collectNode);
SetRightChild((MultiBinaryNode *) joinNode, rightNode);
}
else
{
SetChild((MultiUnaryNode *) partitionNode, rightNode);
SetChild((MultiUnaryNode *) collectNode, (MultiNode *) partitionNode);
SetLeftChild((MultiBinaryNode *) joinNode, leftNode);
SetRightChild((MultiBinaryNode *) joinNode, (MultiNode *) collectNode);
}
/* finally set join operator fields */
joinNode->joinRuleType = SINGLE_PARTITION_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
return (MultiNode *) joinNode;
}
/*
* ApplyDualPartitionJoin creates a new MultiJoin node that joins the left and
* right node. The function also adds two MultiPartition operators on top of
* both nodes to repartition these nodes' data on the join clause columns.
*/
static MultiNode *
ApplyDualPartitionJoin(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiJoin *joinNode = NULL;
OpExpr *joinClause = NULL;
MultiPartition *leftPartitionNode = NULL;
MultiPartition *rightPartitionNode = NULL;
MultiCollect *leftCollectNode = NULL;
MultiCollect *rightCollectNode = NULL;
Var *leftColumn = NULL;
Var *rightColumn = NULL;
List *rightTableIdList = NIL;
uint32 rightTableId = 0;
/* find the appropriate join clause */
joinClause = DualPartitionJoinClause(applicableJoinClauses);
Assert(joinClause != NULL);
leftColumn = LeftColumn(joinClause);
rightColumn = RightColumn(joinClause);
rightTableIdList = OutputTableIdList(rightNode);
rightTableId = (uint32) linitial_int(rightTableIdList);
Assert(list_length(rightTableIdList) == 1);
leftPartitionNode = CitusMakeNode(MultiPartition);
rightPartitionNode = CitusMakeNode(MultiPartition);
/* find the partition node each join clause column belongs to */
if (leftColumn->varno == rightTableId)
{
leftPartitionNode->partitionColumn = rightColumn;
rightPartitionNode->partitionColumn = leftColumn;
}
else
{
leftPartitionNode->partitionColumn = leftColumn;
rightPartitionNode->partitionColumn = rightColumn;
}
/* add partition operators on top of left and right nodes */
SetChild((MultiUnaryNode *) leftPartitionNode, leftNode);
SetChild((MultiUnaryNode *) rightPartitionNode, rightNode);
/* add collect operators on top of the two partition operators */
leftCollectNode = CitusMakeNode(MultiCollect);
rightCollectNode = CitusMakeNode(MultiCollect);
SetChild((MultiUnaryNode *) leftCollectNode, (MultiNode *) leftPartitionNode);
SetChild((MultiUnaryNode *) rightCollectNode, (MultiNode *) rightPartitionNode);
/* add join operator on top of the two collect operators */
joinNode = CitusMakeNode(MultiJoin);
joinNode->joinRuleType = DUAL_PARTITION_JOIN;
joinNode->joinType = joinType;
joinNode->joinClauseList = applicableJoinClauses;
SetLeftChild((MultiBinaryNode *) joinNode, (MultiNode *) leftCollectNode);
SetRightChild((MultiBinaryNode *) joinNode, (MultiNode *) rightCollectNode);
return (MultiNode *) joinNode;
}
/* Creates a cartesian product node that joins the left and the right node. */
static MultiNode *
ApplyCartesianProduct(MultiNode *leftNode, MultiNode *rightNode,
Var *partitionColumn, JoinType joinType,
List *applicableJoinClauses)
{
MultiCartesianProduct *cartesianNode = CitusMakeNode(MultiCartesianProduct);
SetLeftChild((MultiBinaryNode *) cartesianNode, leftNode);
SetRightChild((MultiBinaryNode *) cartesianNode, rightNode);
return (MultiNode *) cartesianNode;
}
/*
* SubqueryPushdownMultiTree creates logical plan for subquery pushdown logic.
* Note that this logic will be changed in next iterations, so we decoupled it
* from other parts of code although it causes some code duplication.
*/
static MultiNode *
SubqueryPushdownMultiPlanTree(Query *queryTree, List *subqueryEntryList)
{
List *targetEntryList = queryTree->targetList;
List *qualifierList = NIL;
List *qualifierColumnList = NIL;
List *targetListColumnList = NIL;
List *columnList = NIL;
ListCell *columnCell = NULL;
MultiCollect *subqueryCollectNode = CitusMakeNode(MultiCollect);
MultiTable *subqueryNode = NULL;
MultiSelect *selectNode = NULL;
MultiProject *projectNode = NULL;
MultiExtendedOp *extendedOpNode = NULL;
MultiNode *currentTopNode = NULL;
RangeTblEntry *subqueryRangeTableEntry = NULL;
/* verify we can perform distributed planning on this query */
ErrorIfQueryNotSupported(queryTree);
ErrorIfSubqueryJoin(queryTree);
/* extract qualifiers and verify we can plan for them */
qualifierList = QualifierList(queryTree->jointree);
ValidateClauseList(qualifierList);
/*
* We disregard pulled subqueries. This changes order of range table list.
* We do not allow subquery joins, so we will have only one range table
* entry in range table list after dropping pulled subquery. For this reason,
* here we are updating columns in the most outer query for where clause
* list and target list accordingly.
*/
Assert(list_length(subqueryEntryList) == 1);
qualifierColumnList = pull_var_clause_default((Node *) qualifierList);
targetListColumnList = pull_var_clause_default((Node *) targetEntryList);
columnList = list_concat(qualifierColumnList, targetListColumnList);
foreach(columnCell, columnList)
{
Var *column = (Var *) lfirst(columnCell);
column->varno = 1;
}
/* create multi node for the subquery */
subqueryRangeTableEntry = (RangeTblEntry *) linitial(subqueryEntryList);
subqueryNode = MultiSubqueryPushdownTable(subqueryRangeTableEntry);
SetChild((MultiUnaryNode *) subqueryCollectNode, (MultiNode *) subqueryNode);
currentTopNode = (MultiNode *) subqueryCollectNode;
/* build select node if the query has selection criteria */
selectNode = MultiSelectNode(qualifierList);
if (selectNode != NULL)
{
SetChild((MultiUnaryNode *) selectNode, currentTopNode);
currentTopNode = (MultiNode *) selectNode;
}
/* build project node for the columns to project */
projectNode = MultiProjectNode(targetEntryList);
SetChild((MultiUnaryNode *) projectNode, currentTopNode);
currentTopNode = (MultiNode *) projectNode;
/*
* We build the extended operator node to capture aggregate functions, group
* clauses, sort clauses, limit/offset clauses, and expressions. We need to
* distinguish between aggregates and expressions; and we address this later
* in the logical optimizer.
*/
extendedOpNode = MultiExtendedOpNode(queryTree);
SetChild((MultiUnaryNode *) extendedOpNode, currentTopNode);
currentTopNode = (MultiNode *) extendedOpNode;
return currentTopNode;
}
/*
* ErrorIfSubqueryJoin errors out if the given query is a join query. Note that
* this function will not be required once we implement subquery joins.
*/
static void
ErrorIfSubqueryJoin(Query *queryTree)
{
List *joinTreeTableIndexList = NIL;
uint32 joiningRangeTableCount = 0;
/*
* Extract all range table indexes from the join tree. Note that sub-queries
* that get pulled up by PostgreSQL don't appear in this join tree.
*/
ExtractRangeTableIndexWalker((Node *) queryTree->jointree, &joinTreeTableIndexList);
joiningRangeTableCount = list_length(joinTreeTableIndexList);
if (joiningRangeTableCount > 1)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot perform distributed planning on this query"),
errdetail("Join in subqueries is not supported yet")));
}
}
/*
* MultiSubqueryPushdownTable creates a MultiTable from the given subquery range
* table entry and returns it. Note that this sets subquery field of MultiTable
* to subquery of the given range table entry.
*/
static MultiTable *
MultiSubqueryPushdownTable(RangeTblEntry *subqueryRangeTableEntry)
{
Query *subquery = subqueryRangeTableEntry->subquery;
MultiTable *subqueryTableNode = CitusMakeNode(MultiTable);
subqueryTableNode->subquery = subquery;
subqueryTableNode->relationId = HEAP_ANALYTICS_SUBQUERY_RELATION_ID;
subqueryTableNode->rangeTableId = SUBQUERY_RANGE_TABLE_ID;
subqueryTableNode->partitionColumn = NULL;
subqueryTableNode->alias = subqueryRangeTableEntry->alias;
subqueryTableNode->referenceNames = subqueryRangeTableEntry->eref;
return subqueryTableNode;
}
/*
* OperatorImplementsEquality returns true if the given opno represents an
* equality operator. The function retrieves btree interpretation list for this
* opno and check if BTEqualStrategyNumber strategy is present.
*/
bool
OperatorImplementsEquality(Oid opno)
{
bool equalityOperator = false;
List *btreeIntepretationList = get_op_btree_interpretation(opno);
ListCell *btreeInterpretationCell = NULL;
foreach(btreeInterpretationCell, btreeIntepretationList)
{
OpBtreeInterpretation *btreeIntepretation = (OpBtreeInterpretation *)
lfirst(btreeInterpretationCell);
if (btreeIntepretation->strategy == BTEqualStrategyNumber)
{
equalityOperator = true;
break;
}
}
return equalityOperator;
}