citus/src/backend/columnar/columnar_reader.c

1695 lines
50 KiB
C

/*-------------------------------------------------------------------------
*
* columnar_reader.c
*
* This file contains function definitions for reading columnar tables. This
* includes the logic for reading file level metadata, reading row stripes,
* and skipping unrelated row chunks and columns.
*
* Copyright (c) 2016, Citus Data, Inc.
*
* $Id$
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "safe_lib.h"
#include "access/nbtree.h"
#include "access/xact.h"
#include "catalog/pg_am.h"
#include "commands/defrem.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/optimizer.h"
#include "optimizer/restrictinfo.h"
#include "storage/fd.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "columnar/columnar.h"
#include "columnar/columnar_storage.h"
#include "columnar/columnar_tableam.h"
#include "columnar/columnar_version_compat.h"
#include "distributed/listutils.h"
#define UNEXPECTED_STRIPE_READ_ERR_MSG \
"attempted to read an unexpected stripe while reading columnar " \
"table %s, stripe with id=" UINT64_FORMAT " is not flushed"
typedef struct ChunkGroupReadState
{
int64 currentRow;
int64 rowCount;
int columnCount;
List *projectedColumnList; /* borrowed reference */
ChunkData *chunkGroupData;
} ChunkGroupReadState;
typedef struct StripeReadState
{
int columnCount;
int64 rowCount;
int64 currentRow;
TupleDesc tupleDescriptor;
Relation relation;
int chunkGroupIndex;
int64 chunkGroupsFiltered;
MemoryContext stripeReadContext;
StripeBuffers *stripeBuffers; /* allocated in stripeReadContext */
List *projectedColumnList; /* borrowed reference */
ChunkGroupReadState *chunkGroupReadState; /* owned */
} StripeReadState;
struct ColumnarReadState
{
TupleDesc tupleDescriptor;
Relation relation;
StripeMetadata *currentStripeMetadata;
StripeReadState *stripeReadState;
/*
* Integer list of attribute numbers (1-indexed) for columns needed by the
* query.
*/
List *projectedColumnList;
List *whereClauseList;
List *whereClauseVars;
MemoryContext stripeReadContext;
int64 chunkGroupsFiltered;
/*
* Memory context guaranteed to be not freed during scan so we can
* safely use for any memory allocations regarding ColumnarReadState
* itself.
*/
MemoryContext scanContext;
Snapshot snapshot;
bool snapshotRegisteredByUs;
};
/* static function declarations */
static MemoryContext CreateStripeReadMemoryContext(void);
static bool ColumnarReadIsCurrentStripe(ColumnarReadState *readState,
uint64 rowNumber);
static StripeMetadata * ColumnarReadGetCurrentStripe(ColumnarReadState *readState);
static void ReadStripeRowByRowNumber(ColumnarReadState *readState,
uint64 rowNumber, Datum *columnValues,
bool *columnNulls);
static bool StripeReadIsCurrentChunkGroup(StripeReadState *stripeReadState,
int chunkGroupIndex);
static void ReadChunkGroupRowByRowOffset(ChunkGroupReadState *chunkGroupReadState,
StripeMetadata *stripeMetadata,
uint64 stripeRowOffset, Datum *columnValues,
bool *columnNulls);
static bool StripeReadInProgress(ColumnarReadState *readState);
static bool HasUnreadStripe(ColumnarReadState *readState);
static StripeReadState * BeginStripeRead(StripeMetadata *stripeMetadata, Relation rel,
TupleDesc tupleDesc, List *projectedColumnList,
List *whereClauseList, List *whereClauseVars,
MemoryContext stripeReadContext,
Snapshot snapshot);
static void AdvanceStripeRead(ColumnarReadState *readState);
static bool SnapshotMightSeeUnflushedStripes(Snapshot snapshot);
static bool ReadStripeNextRow(StripeReadState *stripeReadState, Datum *columnValues,
bool *columnNulls);
static ChunkGroupReadState * BeginChunkGroupRead(StripeBuffers *stripeBuffers, int
chunkIndex,
TupleDesc tupleDesc,
List *projectedColumnList,
MemoryContext cxt);
static void EndChunkGroupRead(ChunkGroupReadState *chunkGroupReadState);
static bool ReadChunkGroupNextRow(ChunkGroupReadState *chunkGroupReadState,
Datum *columnValues,
bool *columnNulls);
static StripeBuffers * LoadFilteredStripeBuffers(Relation relation,
StripeMetadata *stripeMetadata,
TupleDesc tupleDescriptor,
List *projectedColumnList,
List *whereClauseList,
List *whereClauseVars,
int64 *chunkGroupsFiltered,
Snapshot snapshot);
static ColumnBuffers * LoadColumnBuffers(Relation relation,
ColumnChunkSkipNode *chunkSkipNodeArray,
uint32 chunkCount, uint64 stripeOffset,
Form_pg_attribute attributeForm);
static bool * SelectedChunkMask(StripeSkipList *stripeSkipList,
List *whereClauseList, List *whereClauseVars,
int64 *chunkGroupsFiltered);
static Node * BuildBaseConstraint(Var *variable);
static List * GetClauseVars(List *clauses, int natts);
static OpExpr * MakeOpExpression(Var *variable, int16 strategyNumber);
static Oid GetOperatorByType(Oid typeId, Oid accessMethodId, int16 strategyNumber);
static void UpdateConstraint(Node *baseConstraint, Datum minValue, Datum maxValue);
static StripeSkipList * SelectedChunkSkipList(StripeSkipList *stripeSkipList,
bool *projectedColumnMask,
bool *selectedChunkMask);
static uint32 StripeSkipListRowCount(StripeSkipList *stripeSkipList);
static bool * ProjectedColumnMask(uint32 columnCount, List *projectedColumnList);
static void DeserializeBoolArray(StringInfo boolArrayBuffer, bool *boolArray,
uint32 boolArrayLength);
static void DeserializeDatumArray(StringInfo datumBuffer, bool *existsArray,
uint32 datumCount, bool datumTypeByValue,
int datumTypeLength, char datumTypeAlign,
Datum *datumArray);
static ChunkData * DeserializeChunkData(StripeBuffers *stripeBuffers, uint64 chunkIndex,
uint32 rowCount, TupleDesc tupleDescriptor,
List *projectedColumnList);
static Datum ColumnDefaultValue(TupleConstr *tupleConstraints,
Form_pg_attribute attributeForm);
/*
* ColumnarBeginRead initializes a columnar read operation. This function returns a
* read handle that's used during reading rows and finishing the read operation.
*
* projectedColumnList is an integer list of attribute numbers (1-indexed).
*/
ColumnarReadState *
ColumnarBeginRead(Relation relation, TupleDesc tupleDescriptor,
List *projectedColumnList, List *whereClauseList,
MemoryContext scanContext, Snapshot snapshot,
bool randomAccess)
{
/*
* We allocate all stripe specific data in the stripeReadContext, and reset
* this memory context before loading a new stripe. This is to avoid memory
* leaks.
*/
MemoryContext stripeReadContext = CreateStripeReadMemoryContext();
ColumnarReadState *readState = palloc0(sizeof(ColumnarReadState));
readState->relation = relation;
readState->projectedColumnList = projectedColumnList;
readState->whereClauseList = whereClauseList;
readState->whereClauseVars = GetClauseVars(whereClauseList, tupleDescriptor->natts);
readState->chunkGroupsFiltered = 0;
readState->tupleDescriptor = tupleDescriptor;
readState->stripeReadContext = stripeReadContext;
readState->stripeReadState = NULL;
readState->scanContext = scanContext;
/*
* Note that ColumnarReadFlushPendingWrites might update those two by
* registering a new snapshot.
*/
readState->snapshot = snapshot;
readState->snapshotRegisteredByUs = false;
if (!randomAccess)
{
/*
* When doing random access (i.e.: index scan), we don't need to flush
* pending writes until we need to read them.
* columnar_index_fetch_tuple would do so when needed.
*/
ColumnarReadFlushPendingWrites(readState);
/*
* AdvanceStripeRead sets currentStripeMetadata for the first stripe
* to read if not doing random access. Otherwise, reader (i.e.:
* ColumnarReadRowByRowNumber) would already decide the stripe to read
* on-the-fly.
*
* Moreover, Since we don't flush pending writes for random access,
* AdvanceStripeRead might encounter with stripe metadata entries due
* to current transaction's pending writes even when using an MVCC
* snapshot, but AdvanceStripeRead would throw an error for that.
* Note that this is not the case with for plain table scan methods
* (i.e.: SeqScan and Columnar CustomScan).
*
* For those reasons, we don't call AdvanceStripeRead if we will do
* random access.
*/
AdvanceStripeRead(readState);
}
return readState;
}
/*
* ColumnarReadFlushPendingWrites flushes pending writes for read operation
* and sets a new (registered) snapshot if necessary.
*
* If it sets a new snapshot, then sets snapshotRegisteredByUs to true to
* indicate that caller should unregister the snapshot after finishing read
* operation.
*
* Note that this function assumes that readState's relation and snapshot
* fields are already set.
*/
void
ColumnarReadFlushPendingWrites(ColumnarReadState *readState)
{
Assert(!readState->snapshotRegisteredByUs);
RelFileNumber relfilenumber = RelationPhysicalIdentifierNumber_compat(
RelationPhysicalIdentifier_compat(readState->relation));
FlushWriteStateForRelfilenumber(relfilenumber, GetCurrentSubTransactionId());
if (readState->snapshot == InvalidSnapshot || !IsMVCCSnapshot(readState->snapshot))
{
return;
}
/*
* If we flushed any pending writes, then we should guarantee that
* those writes are visible to us too. For this reason, if given
* snapshot is an MVCC snapshot, then we set its curcid to current
* command id.
*
* For simplicity, we do that even if we didn't flush any writes
* since we don't see any problem with that.
*
* XXX: We should either not update cid if we are executing a FETCH
* (from cursor) command, or we should have a better way to deal with
* pending writes, see the discussion in
* https://github.com/citusdata/citus/issues/5231.
*/
PushCopiedSnapshot(readState->snapshot);
/* now our snapshot is the active one */
UpdateActiveSnapshotCommandId();
Snapshot newSnapshot = GetActiveSnapshot();
RegisterSnapshot(newSnapshot);
/*
* To be able to use UpdateActiveSnapshotCommandId, we pushed the
* copied snapshot to the stack. However, we don't need to keep it
* there since we will anyway rely on ColumnarReadState->snapshot
* during read operation.
*
* Note that since we registered the snapshot already, we guarantee
* that PopActiveSnapshot won't free it.
*/
PopActiveSnapshot();
readState->snapshot = newSnapshot;
/* not forget to unregister it when finishing read operation */
readState->snapshotRegisteredByUs = true;
}
/*
* CreateStripeReadMemoryContext creates a memory context to be used when
* reading a stripe.
*/
static MemoryContext
CreateStripeReadMemoryContext()
{
return AllocSetContextCreate(CurrentMemoryContext, "Stripe Read Memory Context",
ALLOCSET_DEFAULT_SIZES);
}
/*
* ColumnarReadNextRow tries to read a row from the columnar table. On success, it sets
* column values, column nulls and rowNumber (if passed to be non-NULL), and returns true.
* If there are no more rows to read, the function returns false.
*/
bool
ColumnarReadNextRow(ColumnarReadState *readState, Datum *columnValues, bool *columnNulls,
uint64 *rowNumber)
{
while (true)
{
if (!StripeReadInProgress(readState))
{
if (!HasUnreadStripe(readState))
{
return false;
}
readState->stripeReadState = BeginStripeRead(readState->currentStripeMetadata,
readState->relation,
readState->tupleDescriptor,
readState->projectedColumnList,
readState->whereClauseList,
readState->whereClauseVars,
readState->stripeReadContext,
readState->snapshot);
}
if (!ReadStripeNextRow(readState->stripeReadState, columnValues, columnNulls))
{
AdvanceStripeRead(readState);
continue;
}
if (rowNumber)
{
*rowNumber = readState->currentStripeMetadata->firstRowNumber +
readState->stripeReadState->currentRow - 1;
}
return true;
}
return false;
}
/*
* ColumnarReadRowByRowNumberOrError is a wrapper around
* ColumnarReadRowByRowNumber that throws an error if tuple
* with rowNumber does not exist.
*/
void
ColumnarReadRowByRowNumberOrError(ColumnarReadState *readState,
uint64 rowNumber, Datum *columnValues,
bool *columnNulls)
{
if (!ColumnarReadRowByRowNumber(readState, rowNumber,
columnValues, columnNulls))
{
ereport(ERROR, (errmsg("cannot read from columnar table %s, tuple with "
"row number " UINT64_FORMAT " does not exist",
RelationGetRelationName(readState->relation),
rowNumber)));
}
}
/*
* ColumnarReadRowByRowNumber reads row with rowNumber from given relation
* into columnValues and columnNulls, and returns true. If no such row
* exists, then returns false.
*/
bool
ColumnarReadRowByRowNumber(ColumnarReadState *readState,
uint64 rowNumber, Datum *columnValues,
bool *columnNulls)
{
if (!ColumnarReadIsCurrentStripe(readState, rowNumber))
{
Relation columnarRelation = readState->relation;
Snapshot snapshot = readState->snapshot;
StripeMetadata *stripeMetadata = FindStripeByRowNumber(columnarRelation,
rowNumber, snapshot);
if (stripeMetadata == NULL)
{
/* no such row exists */
return false;
}
if (StripeWriteState(stripeMetadata) != STRIPE_WRITE_FLUSHED)
{
/*
* Callers are expected to skip stripes that are not flushed to
* disk yet or should wait for the writer xact to commit or abort,
* but let's be on the safe side.
*/
ereport(ERROR, (errmsg(UNEXPECTED_STRIPE_READ_ERR_MSG,
RelationGetRelationName(columnarRelation),
stripeMetadata->id)));
}
/* do the cleanup before reading a new stripe */
ColumnarResetRead(readState);
TupleDesc relationTupleDesc = RelationGetDescr(columnarRelation);
List *whereClauseList = NIL;
List *whereClauseVars = NIL;
MemoryContext stripeReadContext = readState->stripeReadContext;
readState->stripeReadState = BeginStripeRead(stripeMetadata,
columnarRelation,
relationTupleDesc,
readState->projectedColumnList,
whereClauseList,
whereClauseVars,
stripeReadContext,
snapshot);
readState->currentStripeMetadata = stripeMetadata;
}
ReadStripeRowByRowNumber(readState, rowNumber, columnValues, columnNulls);
return true;
}
/*
* ColumnarReadIsCurrentStripe returns true if stripe being read contains
* row with given rowNumber.
*/
static bool
ColumnarReadIsCurrentStripe(ColumnarReadState *readState, uint64 rowNumber)
{
if (!StripeReadInProgress(readState))
{
return false;
}
StripeMetadata *currentStripeMetadata = readState->currentStripeMetadata;
if (rowNumber >= currentStripeMetadata->firstRowNumber &&
rowNumber <= StripeGetHighestRowNumber(currentStripeMetadata))
{
return true;
}
return false;
}
/*
* ColumnarReadGetCurrentStripe returns StripeMetadata for the stripe that is
* being read.
*/
static StripeMetadata *
ColumnarReadGetCurrentStripe(ColumnarReadState *readState)
{
return readState->currentStripeMetadata;
}
/*
* ReadStripeRowByRowNumber reads row with rowNumber from given
* stripeReadState into columnValues and columnNulls.
* Errors out if no such row exists in the stripe being read.
*/
static void
ReadStripeRowByRowNumber(ColumnarReadState *readState,
uint64 rowNumber, Datum *columnValues,
bool *columnNulls)
{
StripeMetadata *stripeMetadata = ColumnarReadGetCurrentStripe(readState);
StripeReadState *stripeReadState = readState->stripeReadState;
if (rowNumber < stripeMetadata->firstRowNumber)
{
/* not expected but be on the safe side */
ereport(ERROR, (errmsg("row offset cannot be negative")));
}
/* find the exact chunk group to be read */
uint64 stripeRowOffset = rowNumber - stripeMetadata->firstRowNumber;
int chunkGroupIndex = stripeRowOffset / stripeMetadata->chunkGroupRowCount;
if (!StripeReadIsCurrentChunkGroup(stripeReadState, chunkGroupIndex))
{
if (stripeReadState->chunkGroupReadState)
{
EndChunkGroupRead(stripeReadState->chunkGroupReadState);
}
stripeReadState->chunkGroupIndex = chunkGroupIndex;
stripeReadState->chunkGroupReadState = BeginChunkGroupRead(
stripeReadState->stripeBuffers,
stripeReadState->chunkGroupIndex,
stripeReadState->tupleDescriptor,
stripeReadState->projectedColumnList,
stripeReadState->stripeReadContext);
}
ReadChunkGroupRowByRowOffset(stripeReadState->chunkGroupReadState,
stripeMetadata, stripeRowOffset,
columnValues, columnNulls);
}
/*
* StripeReadIsCurrentChunkGroup returns true if chunk group being read is
* the has given chunkGroupIndex in its stripe.
*/
static bool
StripeReadIsCurrentChunkGroup(StripeReadState *stripeReadState, int chunkGroupIndex)
{
if (!stripeReadState->chunkGroupReadState)
{
return false;
}
return (stripeReadState->chunkGroupIndex == chunkGroupIndex);
}
/*
* ReadChunkGroupRowByRowOffset reads row with stripeRowOffset from given
* chunkGroupReadState into columnValues and columnNulls.
* Errors out if no such row exists in the chunk group being read.
*/
static void
ReadChunkGroupRowByRowOffset(ChunkGroupReadState *chunkGroupReadState,
StripeMetadata *stripeMetadata,
uint64 stripeRowOffset, Datum *columnValues,
bool *columnNulls)
{
/* set the exact row number to be read from given chunk roup */
chunkGroupReadState->currentRow = stripeRowOffset %
stripeMetadata->chunkGroupRowCount;
if (!ReadChunkGroupNextRow(chunkGroupReadState, columnValues, columnNulls))
{
/* not expected but be on the safe side */
ereport(ERROR, (errmsg("could not find the row in stripe")));
}
}
/*
* StripeReadInProgress returns true if we already started reading a stripe.
*/
static bool
StripeReadInProgress(ColumnarReadState *readState)
{
return readState->stripeReadState != NULL;
}
/*
* HasUnreadStripe returns true if we still have stripes to read during current
* read operation.
*/
static bool
HasUnreadStripe(ColumnarReadState *readState)
{
return readState->currentStripeMetadata != NULL;
}
/*
* ColumnarRescan clears the position where we were scanning so that the next read starts at
* the beginning again
*/
void
ColumnarRescan(ColumnarReadState *readState, List *scanQual)
{
MemoryContext oldContext = MemoryContextSwitchTo(readState->scanContext);
ColumnarResetRead(readState);
/* set currentStripeMetadata for the first stripe to read */
AdvanceStripeRead(readState);
readState->chunkGroupsFiltered = 0;
readState->whereClauseList = copyObject(scanQual);
MemoryContextSwitchTo(oldContext);
}
/*
* Finishes a columnar read operation.
*/
void
ColumnarEndRead(ColumnarReadState *readState)
{
if (readState->snapshotRegisteredByUs)
{
/*
* init_columnar_read_state created a new snapshot and registered it,
* so now forget it.
*/
UnregisterSnapshot(readState->snapshot);
}
MemoryContextDelete(readState->stripeReadContext);
if (readState->currentStripeMetadata)
{
pfree(readState->currentStripeMetadata);
}
pfree(readState);
}
/*
* ColumnarResetRead resets the stripe and the chunk group that is
* being read currently (if any).
*/
void
ColumnarResetRead(ColumnarReadState *readState)
{
if (StripeReadInProgress(readState))
{
pfree(readState->currentStripeMetadata);
readState->currentStripeMetadata = NULL;
readState->stripeReadState = NULL;
MemoryContextReset(readState->stripeReadContext);
}
}
/*
* BeginStripeRead allocates state for reading a stripe.
*/
static StripeReadState *
BeginStripeRead(StripeMetadata *stripeMetadata, Relation rel, TupleDesc tupleDesc,
List *projectedColumnList, List *whereClauseList, List *whereClauseVars,
MemoryContext stripeReadContext, Snapshot snapshot)
{
MemoryContext oldContext = MemoryContextSwitchTo(stripeReadContext);
StripeReadState *stripeReadState = palloc0(sizeof(StripeReadState));
stripeReadState->relation = rel;
stripeReadState->tupleDescriptor = tupleDesc;
stripeReadState->columnCount = tupleDesc->natts;
stripeReadState->chunkGroupReadState = NULL;
stripeReadState->projectedColumnList = projectedColumnList;
stripeReadState->stripeReadContext = stripeReadContext;
stripeReadState->stripeBuffers = LoadFilteredStripeBuffers(rel,
stripeMetadata,
tupleDesc,
projectedColumnList,
whereClauseList,
whereClauseVars,
&stripeReadState->
chunkGroupsFiltered,
snapshot);
stripeReadState->rowCount = stripeReadState->stripeBuffers->rowCount;
MemoryContextSwitchTo(oldContext);
return stripeReadState;
}
/*
* AdvanceStripeRead updates chunkGroupsFiltered and sets
* currentStripeMetadata for next stripe read.
*/
static void
AdvanceStripeRead(ColumnarReadState *readState)
{
MemoryContext oldContext = MemoryContextSwitchTo(readState->scanContext);
/* if not read any stripes yet, start from the first one .. */
uint64 lastReadRowNumber = COLUMNAR_INVALID_ROW_NUMBER;
if (StripeReadInProgress(readState))
{
/* .. otherwise, continue with the next stripe */
lastReadRowNumber = StripeGetHighestRowNumber(readState->currentStripeMetadata);
readState->chunkGroupsFiltered +=
readState->stripeReadState->chunkGroupsFiltered;
}
readState->currentStripeMetadata = FindNextStripeByRowNumber(readState->relation,
lastReadRowNumber,
readState->snapshot);
if (readState->currentStripeMetadata &&
StripeWriteState(readState->currentStripeMetadata) != STRIPE_WRITE_FLUSHED &&
!SnapshotMightSeeUnflushedStripes(readState->snapshot))
{
/*
* To be on the safe side, error out if we don't expect to encounter
* with an un-flushed stripe. Otherwise, we will skip such stripes
* until finding a flushed one.
*/
ereport(ERROR, (errmsg(UNEXPECTED_STRIPE_READ_ERR_MSG,
RelationGetRelationName(readState->relation),
readState->currentStripeMetadata->id)));
}
while (readState->currentStripeMetadata &&
StripeWriteState(readState->currentStripeMetadata) != STRIPE_WRITE_FLUSHED)
{
readState->currentStripeMetadata =
FindNextStripeByRowNumber(readState->relation,
readState->currentStripeMetadata->firstRowNumber,
readState->snapshot);
}
readState->stripeReadState = NULL;
MemoryContextReset(readState->stripeReadContext);
MemoryContextSwitchTo(oldContext);
}
/*
* SnapshotMightSeeUnflushedStripes returns true if given snapshot is
* expected to see un-flushed stripes either because of other backends'
* pending writes or aborted transactions.
*/
static bool
SnapshotMightSeeUnflushedStripes(Snapshot snapshot)
{
if (snapshot == InvalidSnapshot)
{
return false;
}
switch (snapshot->snapshot_type)
{
case SNAPSHOT_ANY:
case SNAPSHOT_DIRTY:
case SNAPSHOT_NON_VACUUMABLE:
{
return true;
}
default:
return false;
}
}
/*
* ReadStripeNextRow: If more rows can be read from the current stripe, fill
* in non-NULL columnValues and return true. Otherwise, return false.
*
* On entry, all entries in columnNulls should be true; this function only
* sets non-NULL entries.
*
*/
static bool
ReadStripeNextRow(StripeReadState *stripeReadState, Datum *columnValues,
bool *columnNulls)
{
if (stripeReadState->currentRow >= stripeReadState->rowCount)
{
Assert(stripeReadState->currentRow == stripeReadState->rowCount);
return false;
}
while (true)
{
if (stripeReadState->chunkGroupReadState == NULL)
{
stripeReadState->chunkGroupReadState = BeginChunkGroupRead(
stripeReadState->stripeBuffers,
stripeReadState->
chunkGroupIndex,
stripeReadState->
tupleDescriptor,
stripeReadState->
projectedColumnList,
stripeReadState->
stripeReadContext);
}
if (!ReadChunkGroupNextRow(stripeReadState->chunkGroupReadState, columnValues,
columnNulls))
{
/* if this chunk group is exhausted, fetch the next one and loop */
EndChunkGroupRead(stripeReadState->chunkGroupReadState);
stripeReadState->chunkGroupReadState = NULL;
stripeReadState->chunkGroupIndex++;
continue;
}
stripeReadState->currentRow++;
return true;
}
Assert(stripeReadState->currentRow == stripeReadState->rowCount);
return false;
}
/*
* BeginChunkGroupRead allocates state for reading a chunk.
*/
static ChunkGroupReadState *
BeginChunkGroupRead(StripeBuffers *stripeBuffers, int chunkIndex, TupleDesc tupleDesc,
List *projectedColumnList, MemoryContext cxt)
{
uint32 chunkGroupRowCount =
stripeBuffers->selectedChunkGroupRowCounts[chunkIndex];
MemoryContext oldContext = MemoryContextSwitchTo(cxt);
ChunkGroupReadState *chunkGroupReadState = palloc0(sizeof(ChunkGroupReadState));
chunkGroupReadState->currentRow = 0;
chunkGroupReadState->rowCount = chunkGroupRowCount;
chunkGroupReadState->columnCount = tupleDesc->natts;
chunkGroupReadState->projectedColumnList = projectedColumnList;
chunkGroupReadState->chunkGroupData = DeserializeChunkData(stripeBuffers, chunkIndex,
chunkGroupRowCount,
tupleDesc,
projectedColumnList);
MemoryContextSwitchTo(oldContext);
return chunkGroupReadState;
}
/*
* EndChunkRead finishes a chunk read.
*/
static void
EndChunkGroupRead(ChunkGroupReadState *chunkGroupReadState)
{
FreeChunkData(chunkGroupReadState->chunkGroupData);
pfree(chunkGroupReadState);
}
/*
* ReadChunkGroupNextRow: if more rows can be read from the current chunk
* group, fill in non-NULL columnValues and return true. Otherwise, return
* false.
*
* On entry, all entries in columnNulls should be true; this function only
* sets non-NULL entries.
*/
static bool
ReadChunkGroupNextRow(ChunkGroupReadState *chunkGroupReadState, Datum *columnValues,
bool *columnNulls)
{
if (chunkGroupReadState->currentRow >= chunkGroupReadState->rowCount)
{
Assert(chunkGroupReadState->currentRow == chunkGroupReadState->rowCount);
return false;
}
/*
* Initialize to all-NULL. Only non-NULL projected attributes will be set.
*/
memset(columnNulls, true, sizeof(bool) * chunkGroupReadState->columnCount);
int attno;
foreach_declared_int(attno, chunkGroupReadState->projectedColumnList)
{
const ChunkData *chunkGroupData = chunkGroupReadState->chunkGroupData;
const int rowIndex = chunkGroupReadState->currentRow;
/* attno is 1-indexed; existsArray is 0-indexed */
const uint32 columnIndex = attno - 1;
if (chunkGroupData->existsArray[columnIndex][rowIndex])
{
columnValues[columnIndex] = chunkGroupData->valueArray[columnIndex][rowIndex];
columnNulls[columnIndex] = false;
}
}
chunkGroupReadState->currentRow++;
return true;
}
/*
* ColumnarReadChunkGroupsFiltered
*
* Return the number of chunk groups filtered during this read operation.
*/
int64
ColumnarReadChunkGroupsFiltered(ColumnarReadState *state)
{
return state->chunkGroupsFiltered;
}
/*
* CreateEmptyChunkDataArray creates data buffers to keep deserialized exist and
* value arrays for requested columns in columnMask.
*/
ChunkData *
CreateEmptyChunkData(uint32 columnCount, bool *columnMask, uint32 chunkGroupRowCount)
{
uint32 columnIndex = 0;
ChunkData *chunkData = palloc0(sizeof(ChunkData));
chunkData->existsArray = palloc0(columnCount * sizeof(bool *));
chunkData->valueArray = palloc0(columnCount * sizeof(Datum *));
chunkData->valueBufferArray = palloc0(columnCount * sizeof(StringInfo));
chunkData->columnCount = columnCount;
chunkData->rowCount = chunkGroupRowCount;
/* allocate chunk memory for deserialized data */
for (columnIndex = 0; columnIndex < columnCount; columnIndex++)
{
if (columnMask[columnIndex])
{
chunkData->existsArray[columnIndex] = palloc0(chunkGroupRowCount *
sizeof(bool));
chunkData->valueArray[columnIndex] = palloc0(chunkGroupRowCount *
sizeof(Datum));
chunkData->valueBufferArray[columnIndex] = NULL;
}
}
return chunkData;
}
/*
* FreeChunkData deallocates data buffers to keep deserialized exist and
* value arrays for requested columns in columnMask.
* ColumnChunkData->serializedValueBuffer lives in memory read/write context
* so it is deallocated automatically when the context is deleted.
*/
void
FreeChunkData(ChunkData *chunkData)
{
uint32 columnIndex = 0;
if (chunkData == NULL)
{
return;
}
for (columnIndex = 0; columnIndex < chunkData->columnCount; columnIndex++)
{
if (chunkData->existsArray[columnIndex] != NULL)
{
pfree(chunkData->existsArray[columnIndex]);
}
if (chunkData->valueArray[columnIndex] != NULL)
{
pfree(chunkData->valueArray[columnIndex]);
}
}
pfree(chunkData->existsArray);
pfree(chunkData->valueArray);
pfree(chunkData);
}
/* ColumnarTableRowCount returns the exact row count of a table using skiplists */
uint64
ColumnarTableRowCount(Relation relation)
{
ListCell *stripeMetadataCell = NULL;
uint64 totalRowCount = 0;
List *stripeList = StripesForRelfilelocator(RelationPhysicalIdentifier_compat(
relation));
foreach(stripeMetadataCell, stripeList)
{
StripeMetadata *stripeMetadata = (StripeMetadata *) lfirst(stripeMetadataCell);
totalRowCount += stripeMetadata->rowCount;
}
return totalRowCount;
}
/*
* LoadFilteredStripeBuffers reads serialized stripe data from the given file.
* The function skips over chunks whose rows are refuted by restriction qualifiers,
* and only loads columns that are projected in the query.
*/
static StripeBuffers *
LoadFilteredStripeBuffers(Relation relation, StripeMetadata *stripeMetadata,
TupleDesc tupleDescriptor, List *projectedColumnList,
List *whereClauseList, List *whereClauseVars,
int64 *chunkGroupsFiltered, Snapshot snapshot)
{
uint32 columnIndex = 0;
uint32 columnCount = tupleDescriptor->natts;
bool *projectedColumnMask = ProjectedColumnMask(columnCount, projectedColumnList);
StripeSkipList *stripeSkipList = ReadStripeSkipList(RelationPhysicalIdentifier_compat(
relation),
stripeMetadata->id,
tupleDescriptor,
stripeMetadata->chunkCount,
snapshot);
bool *selectedChunkMask = SelectedChunkMask(stripeSkipList, whereClauseList,
whereClauseVars, chunkGroupsFiltered);
StripeSkipList *selectedChunkSkipList =
SelectedChunkSkipList(stripeSkipList, projectedColumnMask,
selectedChunkMask);
/* load column data for projected columns */
ColumnBuffers **columnBuffersArray = palloc0(columnCount * sizeof(ColumnBuffers *));
for (columnIndex = 0; columnIndex < stripeMetadata->columnCount; columnIndex++)
{
if (projectedColumnMask[columnIndex])
{
ColumnChunkSkipNode *chunkSkipNode =
selectedChunkSkipList->chunkSkipNodeArray[columnIndex];
Form_pg_attribute attributeForm = TupleDescAttr(tupleDescriptor, columnIndex);
uint32 chunkCount = selectedChunkSkipList->chunkCount;
ColumnBuffers *columnBuffers = LoadColumnBuffers(relation, chunkSkipNode,
chunkCount,
stripeMetadata->fileOffset,
attributeForm);
columnBuffersArray[columnIndex] = columnBuffers;
}
}
StripeBuffers *stripeBuffers = palloc0(sizeof(StripeBuffers));
stripeBuffers->columnCount = columnCount;
stripeBuffers->rowCount = StripeSkipListRowCount(selectedChunkSkipList);
stripeBuffers->columnBuffersArray = columnBuffersArray;
stripeBuffers->selectedChunkGroupRowCounts =
selectedChunkSkipList->chunkGroupRowCounts;
return stripeBuffers;
}
/*
* LoadColumnBuffers reads serialized column data from the given file. These
* column data are laid out as sequential chunks in the file; and chunk positions
* and lengths are retrieved from the column chunk skip node array.
*/
static ColumnBuffers *
LoadColumnBuffers(Relation relation, ColumnChunkSkipNode *chunkSkipNodeArray,
uint32 chunkCount, uint64 stripeOffset,
Form_pg_attribute attributeForm)
{
uint32 chunkIndex = 0;
ColumnChunkBuffers **chunkBuffersArray =
palloc0(chunkCount * sizeof(ColumnChunkBuffers *));
for (chunkIndex = 0; chunkIndex < chunkCount; chunkIndex++)
{
chunkBuffersArray[chunkIndex] = palloc0(sizeof(ColumnChunkBuffers));
}
/*
* We first read the "exists" chunks. We don't read "values" array here,
* because "exists" chunks are stored sequentially on disk, and we want to
* minimize disk seeks.
*/
for (chunkIndex = 0; chunkIndex < chunkCount; chunkIndex++)
{
ColumnChunkSkipNode *chunkSkipNode = &chunkSkipNodeArray[chunkIndex];
uint64 existsOffset = stripeOffset + chunkSkipNode->existsChunkOffset;
StringInfo rawExistsBuffer = makeStringInfo();
enlargeStringInfo(rawExistsBuffer, chunkSkipNode->existsLength);
rawExistsBuffer->len = chunkSkipNode->existsLength;
ColumnarStorageRead(relation, existsOffset, rawExistsBuffer->data,
chunkSkipNode->existsLength);
chunkBuffersArray[chunkIndex]->existsBuffer = rawExistsBuffer;
}
/* then read "values" chunks, which are also stored sequentially on disk */
for (chunkIndex = 0; chunkIndex < chunkCount; chunkIndex++)
{
ColumnChunkSkipNode *chunkSkipNode = &chunkSkipNodeArray[chunkIndex];
CompressionType compressionType = chunkSkipNode->valueCompressionType;
uint64 valueOffset = stripeOffset + chunkSkipNode->valueChunkOffset;
StringInfo rawValueBuffer = makeStringInfo();
enlargeStringInfo(rawValueBuffer, chunkSkipNode->valueLength);
rawValueBuffer->len = chunkSkipNode->valueLength;
ColumnarStorageRead(relation, valueOffset, rawValueBuffer->data,
chunkSkipNode->valueLength);
chunkBuffersArray[chunkIndex]->valueBuffer = rawValueBuffer;
chunkBuffersArray[chunkIndex]->valueCompressionType = compressionType;
chunkBuffersArray[chunkIndex]->decompressedValueSize =
chunkSkipNode->decompressedValueSize;
}
ColumnBuffers *columnBuffers = palloc0(sizeof(ColumnBuffers));
columnBuffers->chunkBuffersArray = chunkBuffersArray;
return columnBuffers;
}
/*
* SelectedChunkMask walks over each column's chunks and checks if a chunk can
* be filtered without reading its data. The filtering happens when all rows in
* the chunk can be refuted by the given qualifier conditions.
*/
static bool *
SelectedChunkMask(StripeSkipList *stripeSkipList, List *whereClauseList,
List *whereClauseVars, int64 *chunkGroupsFiltered)
{
ListCell *columnCell = NULL;
uint32 chunkIndex = 0;
bool *selectedChunkMask = palloc0(stripeSkipList->chunkCount * sizeof(bool));
memset(selectedChunkMask, true, stripeSkipList->chunkCount * sizeof(bool));
foreach(columnCell, whereClauseVars)
{
Var *column = lfirst(columnCell);
uint32 columnIndex = column->varattno - 1;
/* if this column's data type doesn't have a comparator, skip it */
FmgrInfo *comparisonFunction = GetFunctionInfoOrNull(column->vartype,
BTREE_AM_OID,
BTORDER_PROC);
if (comparisonFunction == NULL)
{
continue;
}
Node *baseConstraint = BuildBaseConstraint(column);
for (chunkIndex = 0; chunkIndex < stripeSkipList->chunkCount; chunkIndex++)
{
ColumnChunkSkipNode *chunkSkipNodeArray =
stripeSkipList->chunkSkipNodeArray[columnIndex];
ColumnChunkSkipNode *chunkSkipNode = &chunkSkipNodeArray[chunkIndex];
/*
* A column chunk with comparable data type can miss min/max values
* if all values in the chunk are NULL.
*/
if (!chunkSkipNode->hasMinMax)
{
continue;
}
UpdateConstraint(baseConstraint, chunkSkipNode->minimumValue,
chunkSkipNode->maximumValue);
List *constraintList = list_make1(baseConstraint);
bool predicateRefuted =
predicate_refuted_by(constraintList, whereClauseList, false);
if (predicateRefuted && selectedChunkMask[chunkIndex])
{
selectedChunkMask[chunkIndex] = false;
*chunkGroupsFiltered += 1;
}
}
}
return selectedChunkMask;
}
/*
* GetFunctionInfoOrNull first resolves the operator for the given data type,
* access method, and support procedure. The function then uses the resolved
* operator's identifier to fill in a function manager object, and returns
* this object. This function is based on a similar function from CitusDB's code.
*/
FmgrInfo *
GetFunctionInfoOrNull(Oid typeId, Oid accessMethodId, int16 procedureId)
{
FmgrInfo *functionInfo = NULL;
/* get default operator class from pg_opclass for datum type */
Oid operatorClassId = GetDefaultOpClass(typeId, accessMethodId);
if (operatorClassId == InvalidOid)
{
return NULL;
}
Oid operatorFamilyId = get_opclass_family(operatorClassId);
if (operatorFamilyId == InvalidOid)
{
return NULL;
}
Oid operatorId = get_opfamily_proc(operatorFamilyId, typeId, typeId, procedureId);
if (operatorId != InvalidOid)
{
functionInfo = (FmgrInfo *) palloc0(sizeof(FmgrInfo));
/* fill in the FmgrInfo struct using the operatorId */
fmgr_info(operatorId, functionInfo);
}
return functionInfo;
}
/*
* BuildBaseConstraint builds and returns a base constraint. This constraint
* implements an expression in the form of (var <= max && var >= min), where
* min and max values represent a chunk's min and max values. These chunk
* values are filled in after the constraint is built. This function is based
* on a similar function from CitusDB's shard pruning logic.
*/
static Node *
BuildBaseConstraint(Var *variable)
{
OpExpr *lessThanExpr = MakeOpExpression(variable, BTLessEqualStrategyNumber);
OpExpr *greaterThanExpr = MakeOpExpression(variable, BTGreaterEqualStrategyNumber);
Node *baseConstraint = make_and_qual((Node *) lessThanExpr, (Node *) greaterThanExpr);
return baseConstraint;
}
/*
* GetClauseVars extracts the Vars from the given clauses for the purpose of
* building constraints that can be refuted by predicate_refuted_by(). It also
* deduplicates and sorts them.
*/
static List *
GetClauseVars(List *whereClauseList, int natts)
{
/*
* We don't recurse into or include aggregates, window functions, or
* PHVs. We don't expect any PHVs during execution; and Vars found inside
* an aggregate or window function aren't going to be useful in forming
* constraints that can be refuted.
*/
int flags = 0;
List *vars = pull_var_clause((Node *) whereClauseList, flags);
Var **deduplicate = palloc0(sizeof(Var *) * natts);
ListCell *lc;
foreach(lc, vars)
{
Node *node = lfirst(lc);
Assert(IsA(node, Var));
Var *var = (Var *) node;
int idx = var->varattno - 1;
if (deduplicate[idx] != NULL)
{
/* if they have the same varattno, the rest should be identical */
Assert(equal(var, deduplicate[idx]));
}
deduplicate[idx] = var;
}
List *whereClauseVars = NIL;
for (int i = 0; i < natts; i++)
{
Var *var = deduplicate[i];
if (var != NULL)
{
whereClauseVars = lappend(whereClauseVars, var);
}
}
pfree(deduplicate);
return whereClauseVars;
}
/*
* MakeOpExpression builds an operator expression node. This operator expression
* implements the operator clause as defined by the variable and the strategy
* number. The function is copied from CitusDB's shard pruning logic.
*/
static OpExpr *
MakeOpExpression(Var *variable, int16 strategyNumber)
{
Oid typeId = variable->vartype;
Oid typeModId = variable->vartypmod;
Oid collationId = variable->varcollid;
Oid accessMethodId = BTREE_AM_OID;
/* Load the operator from system catalogs */
Oid operatorId = GetOperatorByType(typeId, accessMethodId, strategyNumber);
Const *constantValue = makeNullConst(typeId, typeModId, collationId);
/* Now make the expression with the given variable and a null constant */
OpExpr *expression = (OpExpr *) make_opclause(operatorId,
InvalidOid, /* no result type yet */
false, /* no return set */
(Expr *) variable,
(Expr *) constantValue,
InvalidOid, collationId);
/* Set implementing function id and result type */
expression->opfuncid = get_opcode(operatorId);
expression->opresulttype = get_func_rettype(expression->opfuncid);
return expression;
}
/*
* GetOperatorByType returns operator Oid for the given type, access method,
* and strategy number. Note that this function incorrectly errors out when
* the given type doesn't have its own operator but can use another compatible
* type's default operator. The function is copied from CitusDB's shard pruning
* logic.
*/
static Oid
GetOperatorByType(Oid typeId, Oid accessMethodId, int16 strategyNumber)
{
/* Get default operator class from pg_opclass */
Oid operatorClassId = GetDefaultOpClass(typeId, accessMethodId);
Oid operatorFamily = get_opclass_family(operatorClassId);
Oid operatorId = get_opfamily_member(operatorFamily, typeId, typeId, strategyNumber);
return operatorId;
}
/*
* UpdateConstraint updates the base constraint with the given min/max values.
* The function is copied from CitusDB's shard pruning logic.
*/
static void
UpdateConstraint(Node *baseConstraint, Datum minValue, Datum maxValue)
{
BoolExpr *andExpr = (BoolExpr *) baseConstraint;
Node *lessThanExpr = (Node *) linitial(andExpr->args);
Node *greaterThanExpr = (Node *) lsecond(andExpr->args);
Node *minNode = get_rightop((Expr *) greaterThanExpr);
Node *maxNode = get_rightop((Expr *) lessThanExpr);
Assert(IsA(minNode, Const));
Assert(IsA(maxNode, Const));
Const *minConstant = (Const *) minNode;
Const *maxConstant = (Const *) maxNode;
minConstant->constvalue = minValue;
maxConstant->constvalue = maxValue;
minConstant->constisnull = false;
maxConstant->constisnull = false;
minConstant->constbyval = true;
maxConstant->constbyval = true;
}
/*
* SelectedChunkSkipList constructs a new StripeSkipList in which the
* non-selected chunks are removed from the given stripeSkipList.
*/
static StripeSkipList *
SelectedChunkSkipList(StripeSkipList *stripeSkipList, bool *projectedColumnMask,
bool *selectedChunkMask)
{
uint32 selectedChunkCount = 0;
uint32 chunkIndex = 0;
uint32 columnIndex = 0;
uint32 columnCount = stripeSkipList->columnCount;
uint32 selectedChunkIndex = 0;
for (chunkIndex = 0; chunkIndex < stripeSkipList->chunkCount; chunkIndex++)
{
if (selectedChunkMask[chunkIndex])
{
selectedChunkCount++;
}
}
ColumnChunkSkipNode **selectedChunkSkipNodeArray =
palloc0(columnCount * sizeof(ColumnChunkSkipNode *));
for (columnIndex = 0; columnIndex < columnCount; columnIndex++)
{
bool firstColumn = columnIndex == 0;
selectedChunkIndex = 0;
/* first column's chunk skip node is always read */
if (!projectedColumnMask[columnIndex] && !firstColumn)
{
selectedChunkSkipNodeArray[columnIndex] = NULL;
continue;
}
Assert(stripeSkipList->chunkSkipNodeArray[columnIndex] != NULL);
selectedChunkSkipNodeArray[columnIndex] = palloc0(selectedChunkCount *
sizeof(ColumnChunkSkipNode));
for (chunkIndex = 0; chunkIndex < stripeSkipList->chunkCount; chunkIndex++)
{
if (selectedChunkMask[chunkIndex])
{
selectedChunkSkipNodeArray[columnIndex][selectedChunkIndex] =
stripeSkipList->chunkSkipNodeArray[columnIndex][chunkIndex];
selectedChunkIndex++;
}
}
}
selectedChunkIndex = 0;
uint32 *chunkGroupRowCounts = palloc0(selectedChunkCount * sizeof(uint32));
for (chunkIndex = 0; chunkIndex < stripeSkipList->chunkCount; chunkIndex++)
{
if (selectedChunkMask[chunkIndex])
{
chunkGroupRowCounts[selectedChunkIndex++] =
stripeSkipList->chunkGroupRowCounts[chunkIndex];
}
}
StripeSkipList *selectedChunkSkipList = palloc0(sizeof(StripeSkipList));
selectedChunkSkipList->chunkSkipNodeArray = selectedChunkSkipNodeArray;
selectedChunkSkipList->chunkCount = selectedChunkCount;
selectedChunkSkipList->columnCount = stripeSkipList->columnCount;
selectedChunkSkipList->chunkGroupRowCounts = chunkGroupRowCounts;
return selectedChunkSkipList;
}
/*
* StripeSkipListRowCount counts the number of rows in the given stripeSkipList.
* To do this, the function finds the first column, and sums up row counts across
* all chunks for that column.
*/
static uint32
StripeSkipListRowCount(StripeSkipList *stripeSkipList)
{
uint32 stripeSkipListRowCount = 0;
uint32 chunkIndex = 0;
uint32 *chunkGroupRowCounts = stripeSkipList->chunkGroupRowCounts;
for (chunkIndex = 0; chunkIndex < stripeSkipList->chunkCount; chunkIndex++)
{
uint32 chunkGroupRowCount = chunkGroupRowCounts[chunkIndex];
stripeSkipListRowCount += chunkGroupRowCount;
}
return stripeSkipListRowCount;
}
/*
* ProjectedColumnMask returns a boolean array in which the projected columns
* from the projected column list are marked as true.
*/
static bool *
ProjectedColumnMask(uint32 columnCount, List *projectedColumnList)
{
bool *projectedColumnMask = palloc0(columnCount * sizeof(bool));
int attno;
foreach_declared_int(attno, projectedColumnList)
{
/* attno is 1-indexed; projectedColumnMask is 0-indexed */
int columnIndex = attno - 1;
projectedColumnMask[columnIndex] = true;
}
return projectedColumnMask;
}
/*
* DeserializeBoolArray reads an array of bits from the given buffer and stores
* it in provided bool array.
*/
static void
DeserializeBoolArray(StringInfo boolArrayBuffer, bool *boolArray,
uint32 boolArrayLength)
{
uint32 boolArrayIndex = 0;
uint32 maximumBoolCount = boolArrayBuffer->len * 8;
if (boolArrayLength > maximumBoolCount)
{
ereport(ERROR, (errmsg("insufficient data for reading boolean array")));
}
for (boolArrayIndex = 0; boolArrayIndex < boolArrayLength; boolArrayIndex++)
{
uint32 byteIndex = boolArrayIndex / 8;
uint32 bitIndex = boolArrayIndex % 8;
uint8 bitmask = (1 << bitIndex);
uint8 shiftedBit = (boolArrayBuffer->data[byteIndex] & bitmask);
if (shiftedBit == 0)
{
boolArray[boolArrayIndex] = false;
}
else
{
boolArray[boolArrayIndex] = true;
}
}
}
/*
* DeserializeDatumArray reads an array of datums from the given buffer and stores
* them in provided datumArray. If a value is marked as false in the exists array,
* the function assumes that the datum isn't in the buffer, and simply skips it.
*/
static void
DeserializeDatumArray(StringInfo datumBuffer, bool *existsArray, uint32 datumCount,
bool datumTypeByValue, int datumTypeLength,
char datumTypeAlign, Datum *datumArray)
{
uint32 datumIndex = 0;
uint32 currentDatumDataOffset = 0;
for (datumIndex = 0; datumIndex < datumCount; datumIndex++)
{
if (!existsArray[datumIndex])
{
continue;
}
char *currentDatumDataPointer = datumBuffer->data + currentDatumDataOffset;
datumArray[datumIndex] = fetch_att(currentDatumDataPointer, datumTypeByValue,
datumTypeLength);
currentDatumDataOffset = att_addlength_datum(currentDatumDataOffset,
datumTypeLength,
datumArray[datumIndex]);
currentDatumDataOffset = att_align_nominal(currentDatumDataOffset,
datumTypeAlign);
if (currentDatumDataOffset > datumBuffer->len)
{
ereport(ERROR, (errmsg("insufficient data left in datum buffer")));
}
}
}
/*
* DeserializeChunkGroupData deserializes requested data chunk for all columns and
* stores in chunkDataArray. It uncompresses serialized data if necessary. The
* function also deallocates data buffers used for previous chunk, and compressed
* data buffers for the current chunk which will not be needed again. If a column
* data is not present serialized buffer, then default value (or null) is used
* to fill value array.
*/
static ChunkData *
DeserializeChunkData(StripeBuffers *stripeBuffers, uint64 chunkIndex,
uint32 rowCount, TupleDesc tupleDescriptor,
List *projectedColumnList)
{
int columnIndex = 0;
bool *columnMask = ProjectedColumnMask(tupleDescriptor->natts, projectedColumnList);
ChunkData *chunkData = CreateEmptyChunkData(tupleDescriptor->natts, columnMask,
rowCount);
for (columnIndex = 0; columnIndex < stripeBuffers->columnCount; columnIndex++)
{
Form_pg_attribute attributeForm = TupleDescAttr(tupleDescriptor, columnIndex);
ColumnBuffers *columnBuffers = stripeBuffers->columnBuffersArray[columnIndex];
bool columnAdded = false;
if (columnBuffers == NULL && columnMask[columnIndex])
{
columnAdded = true;
}
if (columnBuffers != NULL)
{
ColumnChunkBuffers *chunkBuffers =
columnBuffers->chunkBuffersArray[chunkIndex];
/* decompress and deserialize current chunk's data */
StringInfo valueBuffer =
DecompressBuffer(chunkBuffers->valueBuffer,
chunkBuffers->valueCompressionType,
chunkBuffers->decompressedValueSize);
DeserializeBoolArray(chunkBuffers->existsBuffer,
chunkData->existsArray[columnIndex],
rowCount);
DeserializeDatumArray(valueBuffer, chunkData->existsArray[columnIndex],
rowCount, attributeForm->attbyval,
attributeForm->attlen, attributeForm->attalign,
chunkData->valueArray[columnIndex]);
/* store current chunk's data buffer to be freed at next chunk read */
chunkData->valueBufferArray[columnIndex] = valueBuffer;
}
else if (columnAdded)
{
/*
* This is a column that was added after creation of this stripe.
* So we use either the default value or NULL.
*/
if (attributeForm->atthasdef)
{
int rowIndex = 0;
Datum defaultValue = ColumnDefaultValue(tupleDescriptor->constr,
attributeForm);
for (rowIndex = 0; rowIndex < rowCount; rowIndex++)
{
chunkData->existsArray[columnIndex][rowIndex] = true;
chunkData->valueArray[columnIndex][rowIndex] = defaultValue;
}
}
else
{
memset(chunkData->existsArray[columnIndex], false,
rowCount * sizeof(bool));
}
}
}
return chunkData;
}
/*
* ColumnDefaultValue returns default value for given column. Only const values
* are supported. The function errors on any other default value expressions.
*/
static Datum
ColumnDefaultValue(TupleConstr *tupleConstraints, Form_pg_attribute attributeForm)
{
Node *defaultValueNode = NULL;
int defValIndex = 0;
for (defValIndex = 0; defValIndex < tupleConstraints->num_defval; defValIndex++)
{
AttrDefault attrDefault = tupleConstraints->defval[defValIndex];
if (attrDefault.adnum == attributeForm->attnum)
{
defaultValueNode = stringToNode(attrDefault.adbin);
break;
}
}
Assert(defaultValueNode != NULL);
/* try reducing the default value node to a const node */
defaultValueNode = eval_const_expressions(NULL, defaultValueNode);
if (IsA(defaultValueNode, Const))
{
Const *constNode = (Const *) defaultValueNode;
return constNode->constvalue;
}
else
{
const char *columnName = NameStr(attributeForm->attname);
ereport(ERROR, (errmsg("unsupported default value for column \"%s\"", columnName),
errhint("Expression is either mutable or "
"does not evaluate to constant value")));
}
}