citus/src/test/regress/sql/query_single_shard_table.sql

1693 lines
57 KiB
PL/PgSQL

CREATE SCHEMA query_single_shard_table;
SET search_path TO query_single_shard_table;
SET citus.next_shard_id TO 1620000;
SET citus.shard_count TO 32;
SET citus.shard_replication_factor TO 1;
SET client_min_messages TO NOTICE;
CREATE TABLE nullkey_c1_t1(a int, b int);
CREATE TABLE nullkey_c1_t2(a int, b int);
SELECT create_distributed_table('nullkey_c1_t1', null, colocate_with=>'none');
SELECT create_distributed_table('nullkey_c1_t2', null, colocate_with=>'nullkey_c1_t1');
INSERT INTO nullkey_c1_t1 SELECT i, i FROM generate_series(1, 8) i;
INSERT INTO nullkey_c1_t2 SELECT i, i FROM generate_series(2, 7) i;
CREATE TABLE nullkey_c2_t1(a int, b int);
CREATE TABLE nullkey_c2_t2(a int, b int);
SELECT create_distributed_table('nullkey_c2_t1', null, colocate_with=>'none');
SELECT create_distributed_table('nullkey_c2_t2', null, colocate_with=>'nullkey_c2_t1', distribution_type=>null);
INSERT INTO nullkey_c2_t1 SELECT i, i FROM generate_series(2, 7) i;
INSERT INTO nullkey_c2_t2 SELECT i, i FROM generate_series(1, 8) i;
CREATE TABLE nullkey_c3_t1(a int, b int);
SELECT create_distributed_table('nullkey_c3_t1', null, colocate_with=>'none');
INSERT INTO nullkey_c3_t1 SELECT i, i FROM generate_series(1, 8) i;
RESET citus.shard_replication_factor;
CREATE TABLE reference_table(a int, b int);
SELECT create_reference_table('reference_table');
INSERT INTO reference_table SELECT i, i FROM generate_series(0, 5) i;
CREATE TABLE distributed_table(a int, b int);
SELECT create_distributed_table('distributed_table', 'a');
INSERT INTO distributed_table SELECT i, i FROM generate_series(3, 8) i;
CREATE TABLE citus_local_table(a int, b int);
SELECT citus_add_local_table_to_metadata('citus_local_table');
INSERT INTO citus_local_table SELECT i, i FROM generate_series(0, 10) i;
CREATE TABLE postgres_local_table(a int, b int);
INSERT INTO postgres_local_table SELECT i, i FROM generate_series(5, 10) i;
CREATE TABLE articles_hash (
id bigint NOT NULL,
author_id bigint NOT NULL,
title varchar(20) NOT NULL,
word_count integer
);
INSERT INTO articles_hash VALUES ( 4, 4, 'altdorfer', 14551),( 5, 5, 'aruru', 11389),
(13, 3, 'aseyev', 2255),(15, 5, 'adversa', 3164),
(18, 8, 'assembly', 911),(19, 9, 'aubergiste', 4981),
(28, 8, 'aerophyte', 5454),(29, 9, 'amateur', 9524),
(42, 2, 'ausable', 15885),(43, 3, 'affixal', 12723),
(49, 9, 'anyone', 2681),(50, 10, 'anjanette', 19519);
SET citus.shard_replication_factor TO 1;
SELECT create_distributed_table('articles_hash', null, colocate_with=>'none');
CREATE TABLE raw_events_first (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint, UNIQUE(user_id, value_1));
SELECT create_distributed_table('raw_events_first', null, colocate_with=>'none', distribution_type=>null);
CREATE TABLE raw_events_second (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint, UNIQUE(user_id, value_1));
SELECT create_distributed_table('raw_events_second', null, colocate_with=>'raw_events_first', distribution_type=>null);
CREATE TABLE agg_events (user_id int, value_1_agg int, value_2_agg int, value_3_agg float, value_4_agg bigint, agg_time timestamp, UNIQUE(user_id, value_1_agg));
SELECT create_distributed_table('agg_events', null, colocate_with=>'raw_events_first', distribution_type=>null);
CREATE TABLE users_ref_table (user_id int);
SELECT create_reference_table('users_ref_table');
INSERT INTO raw_events_first VALUES (1, '1970-01-01', 10, 100, 1000.1, 10000), (3, '1971-01-01', 30, 300, 3000.1, 30000),
(5, '1972-01-01', 50, 500, 5000.1, 50000), (2, '1973-01-01', 20, 200, 2000.1, 20000),
(4, '1974-01-01', 40, 400, 4000.1, 40000), (6, '1975-01-01', 60, 600, 6000.1, 60000);
CREATE TABLE modify_fast_path(key int, value_1 int, value_2 text);
SELECT create_distributed_table('modify_fast_path', null);
CREATE TABLE modify_fast_path_reference(key int, value_1 int, value_2 text);
SELECT create_reference_table('modify_fast_path_reference');
CREATE TABLE bigserial_test (x int, y int, z bigserial);
SELECT create_distributed_table('bigserial_test', null);
RESET citus.shard_replication_factor;
CREATE TABLE append_table (text_col text, a int);
SELECT create_distributed_table('append_table', 'a', 'append');
SELECT master_create_empty_shard('append_table') AS shardid1 \gset
SELECT master_create_empty_shard('append_table') AS shardid2 \gset
SELECT master_create_empty_shard('append_table') AS shardid3 \gset
COPY append_table (text_col, a) FROM STDIN WITH (format 'csv', append_to_shard :shardid1);
abc,234
bcd,123
bcd,234
cde,345
def,456
efg,234
\.
COPY append_table (text_col, a) FROM STDIN WITH (format 'csv', append_to_shard :shardid2);
abc,123
efg,123
hij,123
hij,234
ijk,1
jkl,0
\.
CREATE TABLE range_table(a int, b int);
SELECT create_distributed_table('range_table', 'a', 'range');
CALL public.create_range_partitioned_shards('range_table', '{"0","25"}','{"24","49"}');
INSERT INTO range_table VALUES (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 50);
\set users_table_data_file :abs_srcdir '/data/users_table.data'
\set events_table_data_file :abs_srcdir '/data/events_table.data'
SET citus.shard_replication_factor TO 1;
CREATE TABLE users_table (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint);
SELECT create_distributed_table('users_table', null, colocate_with=>'none');
\set client_side_copy_command '\\copy users_table FROM ' :'users_table_data_file' ' WITH CSV;'
:client_side_copy_command
CREATE TABLE non_colocated_users_table (id int, value int);
SELECT create_distributed_table('non_colocated_users_table', null, colocate_with => 'none');
INSERT INTO non_colocated_users_table (id, value) VALUES(1, 2),(2, 3),(3,4);
CREATE TABLE colocated_events_table (user_id int, time timestamp, event_type int, value_2 int, value_3 float, value_4 bigint);
SELECT create_distributed_table('colocated_events_table', null, colocate_with=>'users_table');
\set client_side_copy_command '\\copy colocated_events_table FROM ' :'events_table_data_file' ' WITH CSV;'
:client_side_copy_command
CREATE TABLE non_colocated_events_table (user_id int, time timestamp, event_type int, value_2 int, value_3 float, value_4 bigint);
SELECT create_distributed_table('non_colocated_events_table', null, colocate_with=>'non_colocated_users_table');
\set client_side_copy_command '\\copy non_colocated_events_table FROM ' :'events_table_data_file' ' WITH CSV;'
:client_side_copy_command
CREATE TABLE users_table_local AS SELECT * FROM users_table;
CREATE TABLE colocated_users_table (id int, value int);
SELECT create_distributed_table('colocated_users_table', null, colocate_with => 'users_table');
INSERT INTO colocated_users_table (id, value) VALUES(1, 2),(2, 3),(3,4);
CREATE TABLE users_reference_table (like users_table including all);
SELECT create_reference_table('users_reference_table');
CREATE TABLE events_reference_table (like colocated_events_table including all);
SELECT create_reference_table('events_reference_table');
CREATE FUNCTION func() RETURNS TABLE (id int, value int) AS $$
SELECT 1, 2
$$ LANGUAGE SQL;
SET client_min_messages to DEBUG2;
-- simple insert
INSERT INTO nullkey_c1_t1 VALUES (1,2), (2,2), (3,4);
INSERT INTO nullkey_c1_t2 VALUES (1,3), (3,4), (5,1), (6,2);
INSERT INTO nullkey_c2_t1 VALUES (1,0), (2,5), (4,3), (5,2);
INSERT INTO nullkey_c2_t2 VALUES (2,4), (3,2), (5,2), (7,4);
-- simple select
SELECT * FROM nullkey_c1_t1 ORDER BY 1,2;
-- for update / share
SELECT * FROM modify_fast_path WHERE key = 1 FOR UPDATE;
SELECT * FROM modify_fast_path WHERE key = 1 FOR SHARE;
SELECT * FROM modify_fast_path FOR UPDATE;
SELECT * FROM modify_fast_path FOR SHARE;
-- cartesian product with different table types
-- with other table types
SELECT COUNT(*) FROM distributed_table d1, nullkey_c1_t1;
SELECT COUNT(*) FROM reference_table d1, nullkey_c1_t1;
SELECT COUNT(*) FROM citus_local_table d1, nullkey_c1_t1;
SELECT COUNT(*) FROM postgres_local_table d1, nullkey_c1_t1;
-- with a colocated single-shard table
SELECT COUNT(*) FROM nullkey_c1_t1 d1, nullkey_c1_t2;
-- with a non-colocated single-shard table
SELECT COUNT(*) FROM nullkey_c1_t1 d1, nullkey_c2_t1;
-- First, show that nullkey_c1_t1 and nullkey_c3_t1 are not colocated.
SELECT
(SELECT colocationid FROM pg_dist_partition WHERE logicalrelid = 'query_single_shard_table.nullkey_c1_t1'::regclass) !=
(SELECT colocationid FROM pg_dist_partition WHERE logicalrelid = 'query_single_shard_table.nullkey_c3_t1'::regclass);
-- Now verify that we can join them via router planner because it doesn't care
-- about whether two tables are colocated or not but physical location of shards
-- when citus.enable_non_colocated_router_query_pushdown is set to on.
SET citus.enable_non_colocated_router_query_pushdown TO ON;
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN nullkey_c3_t1 USING(a);
SET citus.enable_non_colocated_router_query_pushdown TO OFF;
SET citus.enable_repartition_joins TO ON;
SET client_min_messages TO DEBUG1;
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN nullkey_c3_t1 USING(a);
SET client_min_messages TO DEBUG2;
SET citus.enable_repartition_joins TO OFF;
RESET citus.enable_non_colocated_router_query_pushdown;
-- colocated join between single-shard tables
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN nullkey_c1_t2 USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN nullkey_c1_t2 USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN nullkey_c1_t2 USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT * FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE EXISTS (
SELECT * FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b IN (
SELECT b+1 FROM nullkey_c1_t2 t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b NOT IN (
SELECT a FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a
);
-- non-colocated inner joins between single-shard tables
SET client_min_messages to DEBUG1;
SET citus.enable_repartition_joins TO ON;
SELECT * FROM nullkey_c1_t1 JOIN nullkey_c2_t1 USING(a) ORDER BY 1,2,3;
SELECT * FROM (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 JOIN nullkey_c2_t1 USING(a) ORDER BY 1,2,3;
SELECT * FROM nullkey_c2_t1 JOIN (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 USING(a) ORDER BY 1,2,3;
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a
) q USING(a);
SET citus.enable_repartition_joins TO OFF;
SET client_min_messages to DEBUG2;
-- non-colocated outer joins between single-shard tables
SELECT * FROM nullkey_c1_t1 LEFT JOIN nullkey_c2_t2 USING(a) ORDER BY 1,2,3 LIMIT 4;
SELECT * FROM nullkey_c1_t1 FULL JOIN nullkey_c2_t2 USING(a) ORDER BY 1,2,3 LIMIT 4;
SELECT * FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a
) q USING(a) ORDER BY 1,2,3 OFFSET 3 LIMIT 4;
SELECT COUNT(*) FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE EXISTS (
SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b IN (
SELECT b+1 FROM nullkey_c2_t2 t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b NOT IN (
SELECT a FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a
);
-- join with a reference table
SELECT COUNT(*) FROM nullkey_c1_t1, reference_table WHERE nullkey_c1_t1.a = reference_table.a;
WITH cte_1 AS
(SELECT * FROM nullkey_c1_t1, reference_table WHERE nullkey_c1_t1.a = reference_table.a ORDER BY 1,2,3,4 FOR UPDATE)
SELECT COUNT(*) FROM cte_1;
-- join with postgres / citus local tables
SELECT * FROM nullkey_c1_t1 JOIN postgres_local_table USING(a) ORDER BY 1,2,3;
SELECT * FROM nullkey_c1_t1 JOIN citus_local_table USING(a) ORDER BY 1,2,3;
SET citus.local_table_join_policy TO 'prefer-distributed';
SELECT * FROM nullkey_c1_t1 JOIN citus_local_table USING(a) ORDER BY 1,2,3;
RESET citus.local_table_join_policy;
-- join with a distributed table
SET citus.enable_repartition_joins TO ON;
SET client_min_messages TO DEBUG1;
SELECT * FROM distributed_table d1 JOIN nullkey_c1_t1 USING(a) ORDER BY 1,2,3;
SELECT * FROM (SELECT * FROM distributed_table) d1 JOIN nullkey_c1_t1 USING(a) ORDER BY 1,2,3;
SELECT * FROM nullkey_c1_t1 JOIN (SELECT * FROM distributed_table) d1 USING(a) ORDER BY 1,2,3;
SELECT * FROM distributed_table d1 JOIN (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 USING(a) ORDER BY 1,2,3;
SELECT * FROM (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 JOIN distributed_table d1 USING(a) ORDER BY 1,2,3;
-- test joins with non-colocated distributed tables, by using subqueries
SELECT * FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM distributed_table) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM (SELECT * FROM nullkey_c1_t1) t1 JOIN nullkey_c2_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM distributed_table t1 JOIN (SELECT * FROM nullkey_c1_t1) t2 USING (a) JOIN (SELECT b as a FROM distributed_table) t3 USING (a) ORDER BY 1,2,3 LIMIT 1;
SELECT * FROM (SELECT * FROM nullkey_c2_t1) t1 JOIN nullkey_c1_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c2_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM distributed_table) t2 USING (a) JOIN (SELECT * FROM distributed_table) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM (SELECT * FROM nullkey_c1_t1) t1 JOIN nullkey_c2_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c2_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM distributed_table t1 JOIN (SELECT * FROM nullkey_c1_t1) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM (SELECT * FROM nullkey_c2_t1) t1 JOIN nullkey_c1_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM nullkey_c1_t1) t2 USING (a) JOIN distributed_table t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM nullkey_c1_t1 t1 JOIN nullkey_c1_t1 t2 USING (a) JOIN nullkey_c2_t1 t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM (SELECT * FROM distributed_table) t1 JOIN distributed_table t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT * FROM (SELECT * FROM nullkey_c2_t1) t1 JOIN nullkey_c2_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1;
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT * FROM distributed_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT *, random() FROM distributed_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM distributed_table t1
JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
SET client_min_messages TO DEBUG2;
SET citus.enable_repartition_joins TO OFF;
-- outer joins with different table types
SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN reference_table USING(a);
SELECT COUNT(*) FROM reference_table LEFT JOIN nullkey_c1_t1 USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN citus_local_table USING(a);
SELECT COUNT(*) FROM citus_local_table LEFT JOIN nullkey_c1_t1 USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN postgres_local_table USING(a);
SELECT COUNT(*) FROM postgres_local_table LEFT JOIN nullkey_c1_t1 USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN citus_local_table USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN postgres_local_table USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN reference_table USING(a);
SET citus.enable_repartition_joins TO ON;
SET client_min_messages TO DEBUG1;
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN append_table USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN range_table USING(a);
SET client_min_messages TO DEBUG2;
SET citus.enable_repartition_joins TO OFF;
SET citus.enable_non_colocated_router_query_pushdown TO ON;
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN range_table USING(a) WHERE range_table.a = 20;
SET citus.enable_non_colocated_router_query_pushdown TO OFF;
SET citus.enable_repartition_joins TO ON;
SET client_min_messages TO DEBUG1;
SELECT COUNT(*) FROM nullkey_c1_t1 JOIN range_table USING(a) WHERE range_table.a = 20;
SET client_min_messages TO DEBUG2;
SET citus.enable_repartition_joins TO OFF;
RESET citus.enable_non_colocated_router_query_pushdown;
-- lateral / semi / anti joins with different table types
-- with a reference table
SELECT COUNT(*) FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM reference_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE EXISTS (
SELECT * FROM reference_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE NOT EXISTS (
SELECT * FROM reference_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b IN (
SELECT b+1 FROM reference_table t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b NOT IN (
SELECT a FROM reference_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT * FROM reference_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM reference_table t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM reference_table t1
WHERE EXISTS (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM reference_table t1
WHERE t1.b IN (
SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM reference_table t1
WHERE t1.b NOT IN (
SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM reference_table t1
JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
-- with a distributed table
SELECT COUNT(*) FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM distributed_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE EXISTS (
SELECT * FROM distributed_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE NOT EXISTS (
SELECT * FROM distributed_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b IN (
SELECT b+1 FROM distributed_table t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b NOT IN (
SELECT a FROM distributed_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM distributed_table t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM distributed_table t1
WHERE EXISTS (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM distributed_table t1
WHERE t1.b IN (
SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM distributed_table t1
WHERE t1.b NOT IN (
SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
-- with postgres / citus local tables
SELECT COUNT(*) FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE EXISTS (
SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE NOT EXISTS (
SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b + random() IN (
SELECT b+1 FROM citus_local_table t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b NOT IN (
SELECT a FROM citus_local_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a
) q USING(a);
-- The following and a few other tests in this file unnecessarily go through
-- recursive planning. This is because we recursive plan distributed tables
-- when they are referred in the inner side of an outer join, if the outer
-- side is a recurring rel. In future, we can optimize that such that we
-- can skip recursively planning the single-shard table because such a join
-- wouldn't result in returning recurring tuples.
--
-- And specifically for the tests that contains a sublink (as below), things
-- get even more interesting. We try to recursively plan the single-shard
-- table but we cannot do so due to the sublink. However, the final query
-- can go through router planner and hence is supported.
SELECT COUNT(*) FROM citus_local_table t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM postgres_local_table t1
LEFT JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM citus_local_table t1
WHERE EXISTS (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM citus_local_table t1
WHERE t1.b + random() IN (
SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM citus_local_table t1
WHERE t1.b NOT IN (
SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM citus_local_table t1
JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
LEFT JOIN LATERAL (
SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE EXISTS (
SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE NOT EXISTS (
SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b + random() IN (
SELECT b+1 FROM postgres_local_table t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
WHERE t1.b NOT IN (
SELECT a FROM postgres_local_table t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM nullkey_c1_t1 t1
JOIN LATERAL (
SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a
) q USING(a);
SELECT COUNT(*) FROM postgres_local_table t1
WHERE EXISTS (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM postgres_local_table t1
WHERE t1.b + random() IN (
SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a
);
SELECT COUNT(*) FROM postgres_local_table t1
WHERE t1.b NOT IN (
SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
);
SELECT COUNT(*) FROM postgres_local_table t1
JOIN LATERAL (
SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a
) q USING(a);
-- insert .. select
-- between two colocated single-shard tables
-- The target list of "distributed statement"s that we send to workers
-- differ(*) in Postgres versions < 15. For this reason, we temporarily
-- disable debug messages here and run the EXPLAIN'ed version of the
-- command.
--
-- (*): < SELECT a, b > vs < SELECT table_name.a, table_name.b >
SET client_min_messages TO WARNING;
EXPLAIN (ANALYZE TRUE, TIMING FALSE, COSTS FALSE, SUMMARY FALSE, VERBOSE FALSE)
INSERT INTO nullkey_c1_t1 SELECT * FROM nullkey_c1_t2;
SET client_min_messages TO DEBUG2;
-- between two non-colocated single-shard tables
INSERT INTO nullkey_c1_t1 SELECT * FROM nullkey_c2_t1;
-- between a single-shard table and a table of different type
SET client_min_messages TO WARNING;
EXPLAIN (ANALYZE TRUE, TIMING FALSE, COSTS FALSE, SUMMARY FALSE, VERBOSE FALSE)
INSERT INTO nullkey_c1_t1 SELECT * FROM reference_table;
SET client_min_messages TO DEBUG2;
INSERT INTO nullkey_c1_t1 SELECT * FROM distributed_table;
INSERT INTO nullkey_c1_t1 SELECT * FROM citus_local_table;
INSERT INTO nullkey_c1_t1 SELECT * FROM postgres_local_table;
INSERT INTO reference_table SELECT * FROM nullkey_c1_t1;
INSERT INTO distributed_table SELECT * FROM nullkey_c1_t1;
INSERT INTO citus_local_table SELECT * FROM nullkey_c1_t1;
INSERT INTO postgres_local_table SELECT * FROM nullkey_c1_t1;
-- test subquery
SELECT count(*) FROM
(
SELECT * FROM (SELECT * FROM nullkey_c1_t2) as subquery_inner
) AS subquery_top;
-- test cte inlining
WITH cte_nullkey_c1_t1 AS (SELECT * FROM nullkey_c1_t1),
cte_postgres_local_table AS (SELECT * FROM postgres_local_table),
cte_distributed_table AS (SELECT * FROM distributed_table)
SELECT COUNT(*) FROM cte_distributed_table, cte_nullkey_c1_t1, cte_postgres_local_table
WHERE cte_nullkey_c1_t1.a > 3 AND cte_distributed_table.a < 5;
-- test recursive ctes
WITH level_0 AS (
WITH level_1 AS (
WITH RECURSIVE level_2_recursive(x) AS (
VALUES (1)
UNION ALL
SELECT a + 1 FROM nullkey_c1_t1 JOIN level_2_recursive ON (a = x) WHERE a < 2
)
SELECT * FROM level_2_recursive RIGHT JOIN reference_table ON (level_2_recursive.x = reference_table.a)
)
SELECT * FROM level_1
)
SELECT COUNT(*) FROM level_0;
WITH level_0 AS (
WITH level_1 AS (
WITH RECURSIVE level_2_recursive(x) AS (
VALUES (1)
UNION ALL
SELECT a + 1 FROM nullkey_c1_t1 JOIN level_2_recursive ON (a = x) WHERE a < 100
)
SELECT * FROM level_2_recursive JOIN distributed_table ON (level_2_recursive.x = distributed_table.a)
)
SELECT * FROM level_1
)
SELECT COUNT(*) FROM level_0;
-- grouping set
SELECT
id, substring(title, 2, 1) AS subtitle, count(*)
FROM articles_hash
WHERE author_id = 1 or author_id = 2
GROUP BY GROUPING SETS ((id),(subtitle))
ORDER BY id, subtitle;
-- subquery in SELECT clause
SELECT a.title AS name, (SELECT a2.id FROM articles_hash a2 WHERE a.id = a2.id LIMIT 1)
AS special_price FROM articles_hash a
ORDER BY 1,2;
-- test having clause
SELECT COUNT(*), b FROM nullkey_c1_t1 GROUP BY 2
HAVING (SELECT COUNT(*) FROM nullkey_c1_t2) > 0
ORDER BY 1,2;
SELECT COUNT(*), b FROM nullkey_c1_t1 GROUP BY 2
HAVING (SELECT COUNT(*) FROM nullkey_c2_t1) > 0
ORDER BY 1,2;
SELECT COUNT(*), b FROM nullkey_c1_t1 GROUP BY 2
HAVING (SELECT COUNT(*) FROM distributed_table) > 0
ORDER BY 1,2;
SELECT COUNT(*), b FROM nullkey_c1_t1 t4 GROUP BY 2
HAVING (
SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM nullkey_c1_t2) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a)
WHERE t2.b > t4.b
) > 5
ORDER BY 1,2;
SELECT COUNT(*), b FROM distributed_table t4 GROUP BY 2
HAVING (
SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM distributed_table) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a)
WHERE t2.b > t4.b
) > 5
ORDER BY 1,2;
-- test prepared statements
-- prepare queries can be router plannable
PREPARE author_1_articles as
SELECT *
FROM articles_hash
WHERE author_id = 1;
EXECUTE author_1_articles;
EXECUTE author_1_articles;
EXECUTE author_1_articles;
EXECUTE author_1_articles;
EXECUTE author_1_articles;
EXECUTE author_1_articles;
-- parametric prepare queries can be router plannable
PREPARE author_articles(int) as
SELECT *
FROM articles_hash
WHERE author_id = $1;
EXECUTE author_articles(1);
EXECUTE author_articles(1);
EXECUTE author_articles(1);
EXECUTE author_articles(1);
EXECUTE author_articles(1);
EXECUTE author_articles(1);
EXECUTE author_articles(NULL);
EXECUTE author_articles(NULL);
EXECUTE author_articles(NULL);
EXECUTE author_articles(NULL);
EXECUTE author_articles(NULL);
EXECUTE author_articles(NULL);
EXECUTE author_articles(NULL);
PREPARE author_articles_update(int) AS
UPDATE articles_hash SET title = 'test' WHERE author_id = $1;
EXECUTE author_articles_update(NULL);
EXECUTE author_articles_update(NULL);
EXECUTE author_articles_update(NULL);
EXECUTE author_articles_update(NULL);
EXECUTE author_articles_update(NULL);
EXECUTE author_articles_update(NULL);
EXECUTE author_articles_update(NULL);
-- More tests with insert .. select.
--
-- The target list of "distributed statement"s that we send to workers
-- might differ(*) in Postgres versions < 15 and they are reported when
-- "log level >= DEBUG2". For this reason, we set log level to DEBUG1 to
-- avoid reporting them.
--
-- DEBUG1 still allows reporting the reason why given INSERT .. SELECT
-- query is not distributed / requires pull-to-coordinator.
SET client_min_messages TO DEBUG1;
INSERT INTO bigserial_test (x, y) SELECT x, y FROM bigserial_test;
INSERT INTO bigserial_test (x, y) SELECT a, a FROM reference_table;
INSERT INTO agg_events
(user_id)
SELECT f2.id FROM
(SELECT
id
FROM (SELECT users_ref_table.user_id AS id
FROM raw_events_first,
users_ref_table
WHERE raw_events_first.user_id = users_ref_table.user_id ) AS foo) as f
INNER JOIN
(SELECT v4,
v1,
id
FROM (SELECT SUM(raw_events_second.value_4) AS v4,
SUM(raw_events_first.value_1) AS v1,
raw_events_second.user_id AS id
FROM raw_events_first,
raw_events_second
WHERE raw_events_first.user_id = raw_events_second.user_id
GROUP BY raw_events_second.user_id
HAVING SUM(raw_events_second.value_4) > 1000) AS foo2 ) as f2
ON (f.id = f2.id)
WHERE f.id IN (SELECT user_id
FROM raw_events_second);
-- upsert with returning
INSERT INTO agg_events AS ae
(
user_id,
value_1_agg,
agg_time
)
SELECT user_id,
value_1,
time
FROM raw_events_first
ON conflict (user_id, value_1_agg)
DO UPDATE
SET agg_time = EXCLUDED.agg_time
WHERE ae.agg_time < EXCLUDED.agg_time
RETURNING user_id, value_1_agg;
-- using a left join
INSERT INTO agg_events (user_id)
SELECT
raw_events_first.user_id
FROM
raw_events_first LEFT JOIN raw_events_second ON raw_events_first.user_id = raw_events_second.user_id
WHERE raw_events_second.user_id = 10 OR raw_events_second.user_id = 11;
INSERT INTO agg_events (user_id)
SELECT
users_ref_table.user_id
FROM
users_ref_table LEFT JOIN raw_events_second ON users_ref_table.user_id = raw_events_second.user_id
WHERE raw_events_second.user_id = 10 OR raw_events_second.user_id = 11;
INSERT INTO agg_events (user_id)
SELECT COALESCE(raw_events_first.user_id, users_ref_table.user_id)
FROM raw_events_first
RIGHT JOIN (users_ref_table LEFT JOIN raw_events_second ON users_ref_table.user_id = raw_events_second.user_id)
ON raw_events_first.user_id = users_ref_table.user_id;
-- using a full join
INSERT INTO agg_events (user_id, value_1_agg)
SELECT t1.user_id AS col1,
t2.user_id AS col2
FROM raw_events_first t1
FULL JOIN raw_events_second t2
ON t1.user_id = t2.user_id;
-- using semi join
INSERT INTO raw_events_second
(user_id)
SELECT user_id
FROM raw_events_first
WHERE user_id IN (SELECT raw_events_second.user_id
FROM raw_events_second, raw_events_first
WHERE raw_events_second.user_id = raw_events_first.user_id AND raw_events_first.user_id = 200);
-- using lateral join
INSERT INTO raw_events_second
(user_id)
SELECT user_id
FROM raw_events_first
WHERE NOT EXISTS (SELECT 1
FROM raw_events_second
WHERE raw_events_second.user_id =raw_events_first.user_id);
INSERT INTO raw_events_second
(user_id)
SELECT user_id
FROM users_ref_table
WHERE NOT EXISTS (SELECT 1
FROM raw_events_second
WHERE raw_events_second.user_id = users_ref_table.user_id);
-- using inner join
INSERT INTO agg_events (user_id)
SELECT raw_events_first.user_id
FROM raw_events_first INNER JOIN raw_events_second ON raw_events_first.user_id = raw_events_second.value_1
WHERE raw_events_first.value_1 IN (10, 11,12) OR raw_events_second.user_id IN (1,2,3,4);
INSERT INTO agg_events (user_id)
SELECT raw_events_first.user_id
FROM raw_events_first INNER JOIN users_ref_table ON raw_events_first.user_id = users_ref_table.user_id
WHERE raw_events_first.value_1 IN (10, 11,12) OR users_ref_table.user_id IN (1,2,3,4);
-- limit / offset clause
INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first LIMIT 1;
INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first OFFSET 1;
INSERT INTO agg_events (user_id) SELECT users_ref_table.user_id FROM users_ref_table LIMIT 1;
-- using a materialized cte
WITH cte AS MATERIALIZED
(SELECT max(value_1)+1 as v1_agg, user_id FROM raw_events_first GROUP BY user_id)
INSERT INTO agg_events (value_1_agg, user_id)
SELECT v1_agg, user_id FROM cte;
INSERT INTO raw_events_second
WITH cte AS MATERIALIZED (SELECT * FROM raw_events_first)
SELECT user_id * 1000, time, value_1, value_2, value_3, value_4 FROM cte;
INSERT INTO raw_events_second (user_id)
WITH cte AS MATERIALIZED (SELECT * FROM users_ref_table)
SELECT user_id FROM cte;
-- using a regular cte
WITH cte AS (SELECT * FROM raw_events_first)
INSERT INTO raw_events_second
SELECT user_id * 7000, time, value_1, value_2, value_3, value_4 FROM cte;
INSERT INTO raw_events_second
WITH cte AS (SELECT * FROM raw_events_first)
SELECT * FROM cte;
INSERT INTO agg_events
WITH sub_cte AS (SELECT 1)
SELECT
raw_events_first.user_id, (SELECT * FROM sub_cte)
FROM
raw_events_first;
-- we still support complex joins via INSERT's cte list ..
WITH cte AS (
SELECT DISTINCT(reference_table.a) AS a, 1 AS b
FROM distributed_table RIGHT JOIN reference_table USING (a)
)
INSERT INTO raw_events_second (user_id, value_1)
SELECT (a+5)*-1, b FROM cte;
-- .. and via SELECT's cte list too
INSERT INTO raw_events_second (user_id, value_1)
WITH cte AS (
SELECT DISTINCT(reference_table.a) AS a, 1 AS b
FROM distributed_table RIGHT JOIN reference_table USING (a)
)
SELECT (a+5)*2, b FROM cte;
-- using set operations
INSERT INTO
raw_events_first(user_id)
(SELECT user_id FROM raw_events_first) INTERSECT
(SELECT user_id FROM raw_events_first);
INSERT INTO
raw_events_first(user_id)
(SELECT user_id FROM users_ref_table) INTERSECT
(SELECT user_id FROM raw_events_first);
-- group by clause inside subquery
INSERT INTO agg_events
(user_id)
SELECT f2.id FROM
(SELECT
id
FROM (SELECT raw_events_second.user_id AS id
FROM raw_events_first,
raw_events_second
WHERE raw_events_first.user_id = raw_events_second.user_id ) AS foo) as f
INNER JOIN
(SELECT v4,
v1,
id
FROM (SELECT SUM(raw_events_second.value_4) AS v4,
SUM(raw_events_first.value_1) AS v1,
raw_events_second.user_id AS id
FROM raw_events_first,
raw_events_second
WHERE raw_events_first.user_id = raw_events_second.user_id
GROUP BY raw_events_second.user_id
HAVING SUM(raw_events_second.value_4) > 1000) AS foo2 ) as f2
ON (f.id = f2.id)
WHERE f.id IN (SELECT user_id
FROM raw_events_second);
-- group by clause inside lateral subquery
INSERT INTO agg_events (user_id, value_4_agg)
SELECT
averages.user_id, avg(averages.value_4)
FROM
(SELECT
t1.user_id
FROM
raw_events_second t1 JOIN raw_events_second t2 on (t1.user_id = t2.user_id)
) reference_ids
JOIN LATERAL
(SELECT
user_id, value_4
FROM
raw_events_first) as averages ON averages.value_4 = reference_ids.user_id
GROUP BY averages.user_id;
-- using aggregates
INSERT INTO agg_events
(value_3_agg,
value_4_agg,
value_1_agg,
value_2_agg,
user_id)
SELECT SUM(value_3),
Count(value_4),
user_id,
SUM(value_1),
Avg(value_2)
FROM raw_events_first
GROUP BY user_id;
INSERT INTO agg_events (value_3_agg, value_1_agg)
SELECT AVG(user_id), SUM(user_id)
FROM users_ref_table
GROUP BY user_id;
-- using generate_series
INSERT INTO raw_events_first (user_id, value_1, value_2)
SELECT s, s, s FROM generate_series(1, 5) s;
CREATE SEQUENCE insert_select_test_seq;
-- nextval() expression in select's targetlist
INSERT INTO raw_events_first (user_id, value_1, value_2)
SELECT s, nextval('insert_select_test_seq'), (random()*10)::int
FROM generate_series(100, 105) s;
-- non-immutable function
INSERT INTO modify_fast_path (key, value_1) VALUES (2,1) RETURNING value_1, random() * key;
SET client_min_messages TO DEBUG2;
-- update / delete
UPDATE nullkey_c1_t1 SET a = 1 WHERE b = 5;
UPDATE nullkey_c1_t1 SET a = 1 WHERE a = 5;
UPDATE nullkey_c1_t1 SET a = random();
UPDATE nullkey_c1_t1 SET a = 1 WHERE a = random();
DELETE FROM nullkey_c1_t1 WHERE b = 5;
DELETE FROM nullkey_c1_t1 WHERE a = random();
-- simple update queries between different table types / colocated tables
UPDATE nullkey_c1_t1 SET b = 5 FROM nullkey_c1_t2 WHERE nullkey_c1_t1.b = nullkey_c1_t2.b;
UPDATE nullkey_c1_t1 SET b = 5 FROM nullkey_c2_t1 WHERE nullkey_c1_t1.b = nullkey_c2_t1.b;
UPDATE nullkey_c1_t1 SET b = 5 FROM reference_table WHERE nullkey_c1_t1.b = reference_table.b;
UPDATE nullkey_c1_t1 SET b = 5 FROM distributed_table WHERE nullkey_c1_t1.b = distributed_table.b;
UPDATE nullkey_c1_t1 SET b = 5 FROM distributed_table WHERE nullkey_c1_t1.b = distributed_table.a;
UPDATE nullkey_c1_t1 SET b = 5 FROM citus_local_table WHERE nullkey_c1_t1.b = citus_local_table.b;
UPDATE nullkey_c1_t1 SET b = 5 FROM postgres_local_table WHERE nullkey_c1_t1.b = postgres_local_table.b;
UPDATE reference_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = reference_table.b;
UPDATE distributed_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.b;
UPDATE distributed_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.a;
UPDATE citus_local_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = citus_local_table.b;
UPDATE postgres_local_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = postgres_local_table.b;
-- simple delete queries between different table types / colocated tables
DELETE FROM nullkey_c1_t1 USING nullkey_c1_t2 WHERE nullkey_c1_t1.b = nullkey_c1_t2.b;
DELETE FROM nullkey_c1_t1 USING nullkey_c2_t1 WHERE nullkey_c1_t1.b = nullkey_c2_t1.b;
DELETE FROM nullkey_c1_t1 USING reference_table WHERE nullkey_c1_t1.b = reference_table.b;
DELETE FROM nullkey_c1_t1 USING distributed_table WHERE nullkey_c1_t1.b = distributed_table.b;
DELETE FROM nullkey_c1_t1 USING distributed_table WHERE nullkey_c1_t1.b = distributed_table.a;
DELETE FROM nullkey_c1_t1 USING citus_local_table WHERE nullkey_c1_t1.b = citus_local_table.b;
DELETE FROM nullkey_c1_t1 USING postgres_local_table WHERE nullkey_c1_t1.b = postgres_local_table.b;
DELETE FROM reference_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = reference_table.b;
DELETE FROM distributed_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.b;
DELETE FROM distributed_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.a;
DELETE FROM citus_local_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = citus_local_table.b;
DELETE FROM postgres_local_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = postgres_local_table.b;
-- slightly more complex update queries
UPDATE nullkey_c1_t1 SET b = 5 WHERE nullkey_c1_t1.b IN (SELECT b FROM distributed_table);
WITH cte AS materialized(
SELECT * FROM distributed_table
)
UPDATE nullkey_c1_t1 SET b = 5 FROM cte WHERE nullkey_c1_t1.b = cte.a;
WITH cte AS (
SELECT reference_table.a AS a, 1 AS b
FROM distributed_table RIGHT JOIN reference_table USING (a)
)
UPDATE nullkey_c1_t1 SET b = 5 WHERE nullkey_c1_t1.b IN (SELECT b FROM cte);
UPDATE nullkey_c1_t1 SET b = 5 FROM reference_table WHERE EXISTS (
SELECT 1 FROM reference_table LEFT JOIN nullkey_c1_t1 USING (a) WHERE nullkey_c1_t1.b IS NULL
);
UPDATE nullkey_c1_t1 tx SET b = (
SELECT nullkey_c1_t2.b FROM nullkey_c1_t2 JOIN nullkey_c1_t1 ON (nullkey_c1_t1.a != nullkey_c1_t2.a) WHERE nullkey_c1_t1.a = tx.a ORDER BY 1 LIMIT 1
);
UPDATE nullkey_c1_t1 tx SET b = t2.b FROM nullkey_c1_t1 t1 JOIN nullkey_c1_t2 t2 ON (t1.a = t2.a);
WITH cte AS (
SELECT * FROM nullkey_c1_t2 ORDER BY 1,2 LIMIT 10
)
UPDATE nullkey_c1_t1 SET b = 5 WHERE nullkey_c1_t1.a IN (SELECT b FROM cte);
UPDATE modify_fast_path SET value_1 = value_1 + 12 * value_1 WHERE key = 1;
UPDATE modify_fast_path SET value_1 = NULL WHERE value_1 = 15 AND (key = 1 OR value_2 = 'citus');
UPDATE modify_fast_path SET value_1 = 5 WHERE key = 2 RETURNING value_1 * 15, value_1::numeric * 16;
UPDATE modify_fast_path
SET value_1 = 1
FROM modify_fast_path_reference
WHERE
modify_fast_path.key = modify_fast_path_reference.key AND
modify_fast_path.key = 1 AND
modify_fast_path_reference.key = 1;
PREPARE p1 (int, int, int) AS
UPDATE modify_fast_path SET value_1 = value_1 + $1 WHERE key = $2 AND value_1 = $3;
EXECUTE p1(1,1,1);
EXECUTE p1(2,2,2);
EXECUTE p1(3,3,3);
EXECUTE p1(4,4,4);
EXECUTE p1(5,5,5);
EXECUTE p1(6,6,6);
EXECUTE p1(7,7,7);
PREPARE prepared_zero_shard_update(int) AS UPDATE modify_fast_path SET value_1 = 1 WHERE key = $1 AND false;
EXECUTE prepared_zero_shard_update(1);
EXECUTE prepared_zero_shard_update(2);
EXECUTE prepared_zero_shard_update(3);
EXECUTE prepared_zero_shard_update(4);
EXECUTE prepared_zero_shard_update(5);
EXECUTE prepared_zero_shard_update(6);
EXECUTE prepared_zero_shard_update(7);
-- slightly more complex delete queries
DELETE FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b IN (SELECT b FROM distributed_table);
WITH cte AS materialized(
SELECT * FROM distributed_table
)
DELETE FROM nullkey_c1_t1 USING cte WHERE nullkey_c1_t1.b = cte.a;
WITH cte AS (
SELECT reference_table.a AS a, 1 AS b
FROM distributed_table RIGHT JOIN reference_table USING (a)
)
DELETE FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b IN (SELECT b FROM cte);
DELETE FROM nullkey_c1_t1 USING reference_table WHERE EXISTS (
SELECT 1 FROM reference_table LEFT JOIN nullkey_c1_t1 USING (a) WHERE nullkey_c1_t1.b IS NULL
);
DELETE FROM nullkey_c1_t1 tx USING nullkey_c1_t1 t1 JOIN nullkey_c1_t2 t2 ON (t1.a = t2.a);
WITH cte AS (
SELECT * FROM nullkey_c1_t2 ORDER BY 1,2 LIMIT 10
)
DELETE FROM nullkey_c1_t1 WHERE nullkey_c1_t1.a IN (SELECT b FROM cte);
DELETE FROM modify_fast_path WHERE value_1 = 15 AND (key = 1 OR value_2 = 'citus');
DELETE FROM modify_fast_path WHERE key = 2 RETURNING value_1 * 15, value_1::numeric * 16;
DELETE FROM modify_fast_path
USING modify_fast_path_reference
WHERE
modify_fast_path.key = modify_fast_path_reference.key AND
modify_fast_path.key = 1 AND
modify_fast_path_reference.key = 1;
PREPARE p2 (int, int, int) AS
DELETE FROM modify_fast_path WHERE key = ($2)*$1 AND value_1 = $3;
EXECUTE p2(1,1,1);
EXECUTE p2(2,2,2);
EXECUTE p2(3,3,3);
EXECUTE p2(4,4,4);
EXECUTE p2(5,5,5);
EXECUTE p2(6,6,6);
EXECUTE p2(7,7,7);
PREPARE prepared_zero_shard_delete(int) AS DELETE FROM modify_fast_path WHERE key = $1 AND false;
EXECUTE prepared_zero_shard_delete(1);
EXECUTE prepared_zero_shard_delete(2);
EXECUTE prepared_zero_shard_delete(3);
EXECUTE prepared_zero_shard_delete(4);
EXECUTE prepared_zero_shard_delete(5);
EXECUTE prepared_zero_shard_delete(6);
EXECUTE prepared_zero_shard_delete(7);
-- test modifying ctes
WITH cte AS (
UPDATE modify_fast_path SET value_1 = value_1 + 1 WHERE key = 1 RETURNING *
)
SELECT * FROM cte;
WITH cte AS (
DELETE FROM modify_fast_path WHERE key = 1 RETURNING *
)
SELECT * FROM modify_fast_path;
WITH cte AS (
DELETE FROM modify_fast_path WHERE key = 1 RETURNING *
)
SELECT * FROM modify_fast_path_reference WHERE key IN (SELECT key FROM cte);
WITH cte AS (
DELETE FROM reference_table WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c1_t1 WHERE a IN (SELECT a FROM cte);
WITH cte AS (
DELETE FROM nullkey_c1_t1 WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c1_t2 WHERE a IN (SELECT a FROM cte);
WITH cte AS (
DELETE FROM nullkey_c1_t1 WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c2_t1 WHERE a IN (SELECT a FROM cte);
WITH cte AS (
DELETE FROM nullkey_c1_t1 WHERE a = 1 RETURNING *
)
SELECT * FROM distributed_table WHERE a IN (SELECT a FROM cte);
-- Below two queries fail very late when
-- citus.enable_non_colocated_router_query_pushdown is set to on.
SET citus.enable_non_colocated_router_query_pushdown TO ON;
WITH cte AS (
DELETE FROM distributed_table WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c1_t1 WHERE a IN (SELECT a FROM cte);
WITH cte AS (
DELETE FROM distributed_table WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c1_t1 WHERE b IN (SELECT b FROM cte);
SET citus.enable_non_colocated_router_query_pushdown TO OFF;
WITH cte AS (
DELETE FROM distributed_table WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c1_t1 WHERE a IN (SELECT a FROM cte);
WITH cte AS (
DELETE FROM distributed_table WHERE a = 1 RETURNING *
)
SELECT * FROM nullkey_c1_t1 WHERE b IN (SELECT b FROM cte);
RESET citus.enable_non_colocated_router_query_pushdown;
WITH cte AS (
UPDATE modify_fast_path SET value_1 = value_1 + 1 WHERE key = 1 RETURNING *
)
UPDATE modify_fast_path SET value_1 = value_1 + 1 WHERE key = 1;
WITH cte AS (
DELETE FROM modify_fast_path WHERE key = 1 RETURNING *
)
DELETE FROM modify_fast_path WHERE key = 1;
-- test window functions
SELECT
user_id, avg(avg(value_3)) OVER (PARTITION BY user_id, MIN(value_2))
FROM
raw_events_first
GROUP BY
1
ORDER BY
2 DESC NULLS LAST, 1 DESC;
SELECT
user_id, max(value_1) OVER (PARTITION BY user_id, MIN(value_2))
FROM (
SELECT
DISTINCT us.user_id, us.value_2, us.value_1, random() as r1
FROM
raw_events_first as us, raw_events_second
WHERE
us.user_id = raw_events_second.user_id
ORDER BY
user_id, value_2
) s
GROUP BY
1, value_1
ORDER BY
2 DESC, 1;
SELECT
DISTINCT ON (raw_events_second.user_id, rnk) raw_events_second.user_id, rank() OVER my_win AS rnk
FROM
raw_events_second, raw_events_first
WHERE
raw_events_first.user_id = raw_events_second.user_id
WINDOW
my_win AS (PARTITION BY raw_events_second.user_id, raw_events_first.value_1 ORDER BY raw_events_second.time DESC)
ORDER BY
rnk DESC, 1 DESC
LIMIT 10;
-- more tests with ctes and subqueries
-- CTEs are recursively planned, and subquery foo is also recursively planned.
-- Then the final plan becomes a router plan.
WITH cte AS MATERIALIZED (
WITH local_cte AS MATERIALIZED (
SELECT * FROM users_table_local
),
dist_cte AS MATERIALIZED (
SELECT user_id FROM colocated_events_table
)
SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id
)
SELECT count(*)
FROM cte,
(
SELECT DISTINCT users_table.user_id
FROM users_table, colocated_events_table
WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4)
ORDER BY 1 DESC LIMIT 5
) AS foo
WHERE foo.user_id = cte.user_id;
-- CTEs are colocated, route entire query.
WITH cte1 AS (
SELECT * FROM users_table WHERE user_id = 1
), cte2 AS (
SELECT * FROM colocated_events_table WHERE user_id = 1
)
SELECT cte1.user_id, cte1.value_1, cte2.user_id, cte2.event_type
FROM cte1, cte2
ORDER BY cte1.user_id, cte1.value_1, cte2.user_id, cte2.event_type
LIMIT 5;
-- CTEs aren't colocated, CTEs become intermediate results.
WITH cte1 AS MATERIALIZED (
SELECT * FROM users_table WHERE user_id = 1
), cte2 AS MATERIALIZED (
SELECT * FROM non_colocated_events_table WHERE user_id = 6
)
SELECT cte1.user_id, cte1.value_1, cte2.user_id, cte2.user_id
FROM cte1, cte2
ORDER BY cte1.user_id, cte1.value_1, cte2.user_id, cte2.event_type
LIMIT 5;
-- users_table & colocated_users_table are colocated, route entire query.
WITH cte1 AS (
SELECT * FROM users_table WHERE user_id = 1
)
UPDATE colocated_users_table dt SET value = cte1.value_1
FROM cte1 WHERE cte1.user_id = dt.id AND dt.id = 1;
-- users_table & non_colocated_users_table are not colocated, cte is recursive planned.
WITH cte1 AS (
SELECT * FROM users_table WHERE user_id = 1
)
UPDATE non_colocated_users_table dt SET value = cte1.value_1
FROM cte1 WHERE cte1.user_id = dt.id AND dt.id = 1;
-- All relations are not colocated, CTEs become intermediate results.
WITH cte1 AS MATERIALIZED (
SELECT * FROM users_table WHERE user_id = 1
), cte2 AS MATERIALIZED (
SELECT * FROM non_colocated_events_table WHERE user_id = 6
)
UPDATE non_colocated_users_table dt SET value = cte1.value_1 + cte2.event_type
FROM cte1, cte2 WHERE cte1.user_id = dt.id AND dt.id = 1;
-- Volatile function calls should not be routed.
WITH cte1 AS MATERIALIZED (SELECT id, value FROM func())
UPDATE colocated_users_table dt SET value = cte1.value
FROM cte1 WHERE dt.id = 1;
-- CTEs are recursively planned, and subquery foo is also recursively planned.
WITH cte AS MATERIALIZED (
WITH local_cte AS MATERIALIZED (
SELECT * FROM users_table_local
),
dist_cte AS MATERIALIZED (
SELECT user_id FROM colocated_events_table
)
SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id
)
SELECT count(*)
FROM
cte,
(
SELECT DISTINCT users_table.user_id
FROM users_table, colocated_events_table
WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4)
ORDER BY 1 DESC LIMIT 5
) AS foo, colocated_events_table
WHERE foo.user_id = cte.user_id AND colocated_events_table.user_id = cte.user_id;
-- CTEs are replaced and subquery in WHERE is also replaced.
WITH cte AS MATERIALIZED (
WITH local_cte AS MATERIALIZED (
SELECT * FROM users_table_local
),
dist_cte AS MATERIALIZED (
SELECT user_id FROM colocated_events_table
)
SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id
)
SELECT DISTINCT cte.user_id
FROM users_table, cte
WHERE users_table.user_id = cte.user_id AND
users_table.user_id IN (
SELECT DISTINCT value_2 FROM users_table WHERE value_1 >= 1 AND value_1 <= 20 ORDER BY 1 LIMIT 5
)
ORDER BY 1 DESC;
-- Subquery in WHERE clause is planned recursively due to the recurring table
-- in FROM clause.
WITH cte AS MATERIALIZED (
WITH local_cte AS MATERIALIZED (
SELECT * FROM users_table_local
),
dist_cte AS MATERIALIZED (
SELECT user_id FROM colocated_events_table
)
SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id
)
SELECT DISTINCT cte.user_id
FROM cte
WHERE cte.user_id IN (SELECT DISTINCT user_id FROM users_table WHERE value_1 >= 1 AND value_1 <= 20)
ORDER BY 1 DESC;
-- CTEs inside a subquery and the final query becomes a router
-- query.
SELECT
user_id
FROM
(
WITH cte AS MATERIALIZED (
SELECT DISTINCT users_table.user_id
FROM users_table, colocated_events_table
WHERE users_table.user_id = colocated_events_table.user_id AND
event_type IN (1,2,3,4)
)
SELECT * FROM cte ORDER BY 1 DESC
) AS foo
ORDER BY 1 DESC;
-- CTEs inside a deeper subquery and also the subquery that contains the CTE are
-- recursively planned.
SELECT DISTINCT bar.user_id
FROM
(
WITH cte AS MATERIALIZED (
SELECT DISTINCT users_table.user_id
FROM users_table, colocated_events_table
WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4)
)
SELECT * FROM cte ORDER BY 1 DESC
) AS foo,
(
SELECT users_table.user_id, some_events.event_type
FROM
users_table,
(
WITH cte AS MATERIALIZED (
SELECT event_type, users_table.user_id
FROM users_table, colocated_events_table
WHERE users_table.user_id = colocated_events_table.user_id AND value_1 IN (1,2)
) SELECT * FROM cte ORDER BY 1 DESC
) AS some_events
WHERE users_table.user_id = some_events.user_id AND event_type IN (1,2,3,4)
ORDER BY 2,1 LIMIT 2
) AS bar
WHERE foo.user_id = bar.user_id
ORDER BY 1 DESC LIMIT 5;
-- Recursively plan subqueries inside the CTEs that contains LIMIT and OFFSET.
WITH cte AS MATERIALIZED (
WITH local_cte AS MATERIALIZED (
SELECT * FROM users_table_local
),
dist_cte AS MATERIALIZED (
SELECT
user_id
FROM
colocated_events_table,
(SELECT DISTINCT value_2 FROM users_table OFFSET 0) as foo
WHERE
colocated_events_table.user_id = foo.value_2 AND
colocated_events_table.user_id IN (SELECT DISTINCT value_1 FROM users_table ORDER BY 1 LIMIT 3)
)
SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id
)
SELECT count(*)
FROM
cte,
(
SELECT DISTINCT users_table.user_id
FROM users_table, colocated_events_table
WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4)
ORDER BY 1 DESC LIMIT 5
) AS foo
WHERE foo.user_id = cte.user_id;
-- more tests with sublinks and subqueries in targetlist
SELECT event_type, (SELECT e.value_2 FROM users_reference_table WHERE user_id = 1 AND value_1 = 1), (SELECT e.value_2)
FROM non_colocated_events_table e
ORDER BY 1,2 LIMIT 1;
SELECT event_type, (SELECT time FROM users_table WHERE user_id = e.user_id ORDER BY time LIMIT 1)
FROM non_colocated_events_table e
ORDER BY 1,2 LIMIT 1;
SELECT event_type, (SELECT max(time) FROM users_table WHERE user_id = e.value_2)
FROM non_colocated_events_table e
ORDER BY 1,2 LIMIT 1;
SELECT event_type, (SELECT max(time) FROM users_table)
FROM non_colocated_events_table e
ORDER BY 1,2 LIMIT 1;
WITH cte_1 AS (SELECT max(time) FROM users_table)
SELECT event_type, (SELECT * FROM cte_1)
FROM non_colocated_events_table e
ORDER BY 1,2 LIMIT 1;
WITH cte_1 AS (SELECT max(time) FROM users_table)
SELECT event_type, (SELECT * FROM cte_1 LIMIT 1)
FROM non_colocated_events_table e
ORDER BY 1,2 LIMIT 1;
WITH cte_1 AS (SELECT max(time) m FROM users_table)
SELECT count(*), (SELECT * FROM cte_1 c1 join cte_1 c2 using (m))
FROM non_colocated_events_table e
GROUP BY 2
ORDER BY 1,2 LIMIT 1;
WITH cte_1 AS (SELECT min(user_id) u, max(time) m FROM users_table)
SELECT count(*), (SELECT max(time) FROM users_table WHERE user_id = cte_1.u GROUP BY user_id)
FROM cte_1
GROUP BY 2
ORDER BY 1,2 LIMIT 1;
SELECT sum(e.user_id) + (SELECT max(value_3) FROM users_table WHERE user_id = e.user_id GROUP BY user_id)
FROM non_colocated_events_table e
GROUP BY e.user_id
ORDER BY 1 LIMIT 3;
SELECT e.user_id, sum((SELECT any_value(value_3) FROM users_reference_table WHERE user_id = e.user_id GROUP BY user_id)) OVER (PARTITION BY e.user_id)
FROM non_colocated_events_table e
ORDER BY 1, 2 LIMIT 3;
SELECT (SELECT (SELECT e.user_id + user_id) FROM users_table WHERE user_id = e.user_id GROUP BY user_id)
FROM non_colocated_events_table e
GROUP BY 1
ORDER BY 1 LIMIT 3;
SELECT (SELECT (SELECT e.user_id + user_id) FROM users_reference_table WHERE user_id = e.user_id GROUP BY user_id)
FROM non_colocated_events_table e
GROUP BY 1
ORDER BY 1 LIMIT 3;
WITH cte_1 AS (SELECT user_id FROM users_table ORDER BY 1 LIMIT 1)
SELECT (SELECT (SELECT e.user_id + user_id) FROM cte_1 WHERE user_id = e.user_id GROUP BY user_id)
FROM non_colocated_events_table e
GROUP BY 1
ORDER BY 1 LIMIT 3;
SELECT (SELECT (SELECT e.user_id + user_id) FROM (SELECT 1 AS user_id) s WHERE user_id = e.user_id GROUP BY user_id)
FROM non_colocated_events_table e
GROUP BY 1
ORDER BY 1 LIMIT 3;
CREATE TEMP VIEW view_1 AS (SELECT user_id, value_2 FROM users_table WHERE user_id = 1 AND value_1 = 1 ORDER BY 1,2);
SELECT (SELECT value_2 FROM view_1 WHERE user_id = e.user_id GROUP BY value_2)
FROM non_colocated_events_table e
GROUP BY 1
ORDER BY 1 LIMIT 3;
SELECT
user_id, count(*)
FROM
non_colocated_events_table e1
GROUP BY user_id
HAVING
count(*) > (SELECT count(*) FROM (SELECT
(SELECT sum(user_id) FROM users_table WHERE user_id = u1.user_id GROUP BY user_id)
FROM users_table u1
GROUP BY user_id) as foo) ORDER BY 1 DESC;
SELECT count(*) FROM (SELECT
(SELECT user_id FROM users_table WHERE user_id = u1.user_id FOR UPDATE)
FROM users_table u1
GROUP BY user_id) as foo;
-- test single hash repartition join
SET citus.log_multi_join_order TO ON;
SET client_min_messages TO DEBUG1;
SET citus.enable_repartition_joins TO ON;
SET citus.enable_single_hash_repartition_joins TO ON;
SELECT count(*) FROM nullkey_c1_t1 JOIN distributed_table USING(a);
select count(*) from nullkey_c1_t1 JOIN nullkey_c2_t2 USING(a);
RESET citus.log_multi_join_order;
SET client_min_messages TO DEBUG2;
RESET citus.enable_repartition_joins;
RESET citus.enable_single_hash_repartition_joins;
SET client_min_messages TO DEBUG1;
SET citus.enable_repartition_joins TO ON;
SET citus.log_multi_join_order TO ON;
SELECT count(*), avg(avgsub.a)
FROM (
SELECT table_0.a
FROM reference_table AS table_0
INNER JOIN nullkey_c1_t1 AS table_1 USING (a)
INNER JOIN reference_table AS table_2 USING (a)
INNER JOIN nullkey_c2_t1 AS table_3 USING (a)
ORDER BY a LIMIT 7
) AS avgsub;
SET citus.enable_single_hash_repartition_joins TO ON;
-- We prefer dual-hash repartition join over single-hash repartition join
-- even if citus.enable_single_hash_repartition_joins is set to ON. This
-- happens because single shard tables don't have a shard key.
SELECT count(*), avg(avgsub.a)
FROM (
SELECT table_0.a
FROM reference_table AS table_0
INNER JOIN nullkey_c1_t1 AS table_1 USING (a)
INNER JOIN reference_table AS table_2 USING (a)
INNER JOIN nullkey_c2_t1 AS table_3 USING (a)
ORDER BY a LIMIT 7
) AS avgsub;
RESET citus.enable_single_hash_repartition_joins;
SET client_min_messages TO DEBUG2;
RESET citus.enable_repartition_joins;
RESET citus.log_multi_join_order;
SELECT count(*), avg(avgsub.a)
FROM (
SELECT table_0.a
FROM nullkey_c1_t1 AS table_0
RIGHT JOIN (
SELECT table_2.a FROM (
SELECT table_3.a FROM nullkey_c2_t1 AS table_3
ORDER BY a LIMIT 0
) AS table_2
INNER JOIN nullkey_c2_t1 AS table_4 USING (a)
WHERE table_4.a < 8
) AS table_1 USING (a)
) AS avgsub;
-- test nested exec
CREATE FUNCTION dist_query_single_shard(p_key int)
RETURNS bigint
LANGUAGE plpgsql AS $$
DECLARE
result bigint;
BEGIN
SELECT count(*) INTO result FROM query_single_shard_table.nullkey_c1_t1 WHERE a = p_key;
RETURN result;
END;
$$;
CREATE FUNCTION ref_query()
RETURNS bigint
LANGUAGE plpgsql AS $$
DECLARE
result bigint;
BEGIN
SELECT count(*) INTO result FROM query_single_shard_table.reference_table;
RETURN result;
END;
$$;
SELECT dist_query_single_shard(count(*)::int) FROM nullkey_c1_t1;
SELECT ref_query()+count(*) FROM nullkey_c1_t1;
SET client_min_messages TO ERROR;
DROP SCHEMA query_single_shard_table CASCADE;