citus/src/backend/distributed/utils/shardinterval_utils.c

525 lines
14 KiB
C

/*-------------------------------------------------------------------------
*
* shardinterval_utils.c
*
* This file contains functions to perform useful operations on shard intervals.
*
* Copyright (c) Citus Data, Inc.
*
*-------------------------------------------------------------------------
*/
#include "stdint.h"
#include "postgres.h"
#include "access/nbtree.h"
#include "catalog/pg_am.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_type.h"
#include "distributed/metadata_cache.h"
#include "distributed/multi_join_order.h"
#include "distributed/distributed_planner.h"
#include "distributed/shard_pruning.h"
#include "distributed/shardinterval_utils.h"
#include "distributed/pg_dist_partition.h"
#include "distributed/worker_protocol.h"
#include "utils/catcache.h"
#include "utils/memutils.h"
/*
* LowestShardIntervalById returns the shard interval with the lowest shard
* ID from a list of shard intervals.
*/
ShardInterval *
LowestShardIntervalById(List *shardIntervalList)
{
ShardInterval *lowestShardInterval = NULL;
ListCell *shardIntervalCell = NULL;
foreach(shardIntervalCell, shardIntervalList)
{
ShardInterval *shardInterval = (ShardInterval *) lfirst(shardIntervalCell);
if (lowestShardInterval == NULL ||
lowestShardInterval->shardId > shardInterval->shardId)
{
lowestShardInterval = shardInterval;
}
}
return lowestShardInterval;
}
/*
* SortedShardIntervalArray sorts the input shardIntervalArray. Shard intervals with
* no min/max values are placed at the end of the array.
*/
ShardInterval **
SortShardIntervalArray(ShardInterval **shardIntervalArray, int shardCount,
Oid collation, FmgrInfo *shardIntervalSortCompareFunction)
{
SortShardIntervalContext sortContext = {
.comparisonFunction = shardIntervalSortCompareFunction,
.collation = collation
};
/* short cut if there are no shard intervals in the array */
if (shardCount == 0)
{
return shardIntervalArray;
}
/* if a shard doesn't have min/max values, it's placed in the end of the array */
qsort_arg(shardIntervalArray, shardCount, sizeof(ShardInterval *),
(qsort_arg_comparator) CompareShardIntervals, (void *) &sortContext);
return shardIntervalArray;
}
/*
* CompareShardIntervals acts as a helper function to compare two shard intervals
* by their minimum values, using the value's type comparison function.
*
* If a shard interval does not have min/max value, it's treated as being greater
* than the other.
*/
int
CompareShardIntervals(const void *leftElement, const void *rightElement,
SortShardIntervalContext *sortContext)
{
ShardInterval *leftShardInterval = *((ShardInterval **) leftElement);
ShardInterval *rightShardInterval = *((ShardInterval **) rightElement);
int comparisonResult = 0;
bool leftHasNull = (!leftShardInterval->minValueExists ||
!leftShardInterval->maxValueExists);
bool rightHasNull = (!rightShardInterval->minValueExists ||
!rightShardInterval->maxValueExists);
Assert(sortContext->comparisonFunction != NULL);
if (leftHasNull && rightHasNull)
{
comparisonResult = 0;
}
else if (leftHasNull)
{
comparisonResult = 1;
}
else if (rightHasNull)
{
comparisonResult = -1;
}
else
{
/* if both shard interval have min/max values, calculate comparison result */
Datum leftDatum = leftShardInterval->minValue;
Datum rightDatum = rightShardInterval->minValue;
Datum comparisonDatum = FunctionCall2Coll(sortContext->comparisonFunction,
sortContext->collation, leftDatum,
rightDatum);
comparisonResult = DatumGetInt32(comparisonDatum);
}
/* Two different shards should never be equal */
if (comparisonResult == 0)
{
return CompareShardIntervalsById(leftElement, rightElement);
}
return comparisonResult;
}
/*
* CompareShardIntervalsById is a comparison function for sort shard
* intervals by their shard ID.
*/
int
CompareShardIntervalsById(const void *leftElement, const void *rightElement)
{
ShardInterval *leftInterval = *((ShardInterval **) leftElement);
ShardInterval *rightInterval = *((ShardInterval **) rightElement);
int64 leftShardId = leftInterval->shardId;
int64 rightShardId = rightInterval->shardId;
/* we compare 64-bit integers, instead of casting their difference to int */
if (leftShardId > rightShardId)
{
return 1;
}
else if (leftShardId < rightShardId)
{
return -1;
}
else
{
return 0;
}
}
/*
* CompareShardPlacementsByShardId is a comparison function for sorting shard
* placement by their shard ID.
*/
int
CompareShardPlacementsByShardId(const void *leftElement, const void *rightElement)
{
GroupShardPlacement *left = *((GroupShardPlacement **) leftElement);
GroupShardPlacement *right = *((GroupShardPlacement **) rightElement);
int64 leftShardId = left->shardId;
int64 rightShardId = right->shardId;
/* we compare 64-bit integers, instead of casting their difference to int */
if (leftShardId > rightShardId)
{
return 1;
}
else if (leftShardId < rightShardId)
{
return -1;
}
else
{
return 0;
}
}
/*
* CompareRelationShards is a comparison function for sorting relation
* to shard mappings by their relation ID and then shard ID.
*/
int
CompareRelationShards(const void *leftElement, const void *rightElement)
{
RelationShard *leftRelationShard = *((RelationShard **) leftElement);
RelationShard *rightRelationShard = *((RelationShard **) rightElement);
Oid leftRelationId = leftRelationShard->relationId;
Oid rightRelationId = rightRelationShard->relationId;
int64 leftShardId = leftRelationShard->shardId;
int64 rightShardId = rightRelationShard->shardId;
if (leftRelationId > rightRelationId)
{
return 1;
}
else if (leftRelationId < rightRelationId)
{
return -1;
}
else if (leftShardId > rightShardId)
{
return 1;
}
else if (leftShardId < rightShardId)
{
return -1;
}
else
{
return 0;
}
}
/*
* ShardIndex finds the index of given shard in sorted shard interval array.
*
* For hash partitioned tables, it calculates hash value of a number in its
* range (e.g. min value) and finds which shard should contain the hashed
* value. For reference tables, it simply returns 0. For distribution methods
* other than hash and reference, the function errors out.
*/
int
ShardIndex(ShardInterval *shardInterval)
{
int shardIndex = INVALID_SHARD_INDEX;
Oid distributedTableId = shardInterval->relationId;
Datum shardMinValue = shardInterval->minValue;
DistTableCacheEntry *cacheEntry = DistributedTableCacheEntry(distributedTableId);
char partitionMethod = cacheEntry->partitionMethod;
/*
* Note that, we can also support append and range distributed tables, but
* currently it is not required.
*/
if (partitionMethod != DISTRIBUTE_BY_HASH && partitionMethod != DISTRIBUTE_BY_NONE)
{
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("finding index of a given shard is only supported for "
"hash distributed and reference tables")));
}
/* short-circuit for reference tables */
if (partitionMethod == DISTRIBUTE_BY_NONE)
{
/* reference tables has only a single shard, so the index is fixed to 0 */
shardIndex = 0;
return shardIndex;
}
shardIndex = FindShardIntervalIndex(shardMinValue, cacheEntry);
return shardIndex;
}
/*
* FindShardInterval finds a single shard interval in the cache for the
* given partition column value. Note that reference tables do not have
* partition columns, thus, pass partitionColumnValue and compareFunction
* as NULL for them.
*/
ShardInterval *
FindShardInterval(Datum partitionColumnValue, DistTableCacheEntry *cacheEntry)
{
Datum searchedValue = partitionColumnValue;
if (cacheEntry->partitionMethod == DISTRIBUTE_BY_HASH)
{
searchedValue = FunctionCall1Coll(cacheEntry->hashFunction,
cacheEntry->partitionColumn->varcollid,
partitionColumnValue);
}
int shardIndex = FindShardIntervalIndex(searchedValue, cacheEntry);
if (shardIndex == INVALID_SHARD_INDEX)
{
return NULL;
}
return cacheEntry->sortedShardIntervalArray[shardIndex];
}
/*
* FindShardIntervalIndex finds the index of the shard interval which covers
* the searched value. Note that the searched value must be the hashed value
* of the original value if the distribution method is hash.
*
* Note that, if the searched value can not be found for hash partitioned
* tables, we error out (unless there are no shards, in which case
* INVALID_SHARD_INDEX is returned). This should only happen if something is
* terribly wrong, either metadata tables are corrupted or we have a bug
* somewhere. Such as a hash function which returns a value not in the range
* of [PG_INT32_MIN, PG_INT32_MAX] can fire this.
*/
int
FindShardIntervalIndex(Datum searchedValue, DistTableCacheEntry *cacheEntry)
{
ShardInterval **shardIntervalCache = cacheEntry->sortedShardIntervalArray;
int shardCount = cacheEntry->shardIntervalArrayLength;
char partitionMethod = cacheEntry->partitionMethod;
FmgrInfo *compareFunction = cacheEntry->shardIntervalCompareFunction;
bool useBinarySearch = (partitionMethod != DISTRIBUTE_BY_HASH ||
!cacheEntry->hasUniformHashDistribution);
int shardIndex = INVALID_SHARD_INDEX;
if (shardCount == 0)
{
return INVALID_SHARD_INDEX;
}
if (partitionMethod == DISTRIBUTE_BY_HASH)
{
if (useBinarySearch)
{
Assert(compareFunction != NULL);
Oid shardIntervalCollation = cacheEntry->partitionColumn->varcollid;
shardIndex = SearchCachedShardInterval(searchedValue, shardIntervalCache,
shardCount, shardIntervalCollation,
compareFunction);
/* we should always return a valid shard index for hash partitioned tables */
if (shardIndex == INVALID_SHARD_INDEX)
{
ereport(ERROR, (errcode(ERRCODE_DATA_EXCEPTION),
errmsg("cannot find shard interval"),
errdetail("Hash of the partition column value "
"does not fall into any shards.")));
}
}
else
{
int hashedValue = DatumGetInt32(searchedValue);
shardIndex = CalculateUniformHashRangeIndex(hashedValue, shardCount);
}
}
else if (partitionMethod == DISTRIBUTE_BY_NONE)
{
/* reference tables has a single shard, all values mapped to that shard */
Assert(shardCount == 1);
shardIndex = 0;
}
else
{
Assert(compareFunction != NULL);
Oid shardIntervalCollation = cacheEntry->partitionColumn->varcollid;
shardIndex = SearchCachedShardInterval(searchedValue, shardIntervalCache,
shardCount, shardIntervalCollation,
compareFunction);
}
return shardIndex;
}
/*
* SearchCachedShardInterval performs a binary search for a shard interval
* matching a given partition column value and returns it's index in the cached
* array. If it can not find any shard interval with the given value, it returns
* INVALID_SHARD_INDEX.
*
* TODO: Data re-partitioning logic (e.g., worker_hash_partition_table())
* on the worker nodes relies on this function in order to be consistent
* with shard pruning. Since the worker nodes don't have the metadata, a
* synthetically generated ShardInterval ** is passed to the to this
* function. The synthetic shard intervals contain only shardmin and shardmax
* values. A proper implementation of this approach should be introducing an
* intermediate data structure (e.g., ShardRange) on which this function
* operates instead of operating shard intervals.
*/
int
SearchCachedShardInterval(Datum partitionColumnValue, ShardInterval **shardIntervalCache,
int shardCount, Oid shardIntervalCollation,
FmgrInfo *compareFunction)
{
int lowerBoundIndex = 0;
int upperBoundIndex = shardCount;
while (lowerBoundIndex < upperBoundIndex)
{
int middleIndex = (lowerBoundIndex + upperBoundIndex) / 2;
int minValueComparison = FunctionCall2Coll(compareFunction,
shardIntervalCollation,
partitionColumnValue,
shardIntervalCache[middleIndex]->
minValue);
if (DatumGetInt32(minValueComparison) < 0)
{
upperBoundIndex = middleIndex;
continue;
}
int maxValueComparison = FunctionCall2Coll(compareFunction,
shardIntervalCollation,
partitionColumnValue,
shardIntervalCache[middleIndex]->
maxValue);
if (DatumGetInt32(maxValueComparison) <= 0)
{
return middleIndex;
}
lowerBoundIndex = middleIndex + 1;
}
return INVALID_SHARD_INDEX;
}
/*
* CalculateUniformHashRangeIndex returns the index of the hash range in
* which hashedValue falls, assuming shardCount uniform hash ranges.
*
* We use 64-bit integers to avoid overflow issues during arithmetic.
*
* NOTE: This function is ONLY for hash-distributed tables with uniform
* hash ranges.
*/
int
CalculateUniformHashRangeIndex(int hashedValue, int shardCount)
{
int64 hashedValue64 = (int64) hashedValue;
/* normalize to the 0-UINT32_MAX range */
int64 normalizedHashValue = hashedValue64 - PG_INT32_MIN;
/* size of each hash range */
int64 hashRangeSize = HASH_TOKEN_COUNT / shardCount;
/* index of hash range into which the hash value falls */
int shardIndex = (int) (normalizedHashValue / hashRangeSize);
if (shardIndex < 0 || shardIndex > shardCount)
{
ereport(ERROR, (errmsg("bug: shard index %d out of bounds", shardIndex)));
}
/*
* If the shard count is not power of 2, the range of the last
* shard becomes larger than others. For that extra piece of range,
* we still need to use the last shard.
*/
if (shardIndex == shardCount)
{
shardIndex = shardCount - 1;
}
return shardIndex;
}
/*
* SingleReplicatedTable checks whether all shards of a distributed table, do not have
* more than one replica. If even one shard has more than one replica, this function
* returns false, otherwise it returns true.
*/
bool
SingleReplicatedTable(Oid relationId)
{
List *shardList = LoadShardList(relationId);
List *shardPlacementList = NIL;
/* we could have append/range distributed tables without shards */
if (list_length(shardList) <= 1)
{
return false;
}
/* checking only for the first shard id should suffice */
Oid shardId = (*(uint64 *) linitial(shardList));
/* for hash distributed tables, it is sufficient to only check one shard */
if (PartitionMethod(relationId) == DISTRIBUTE_BY_HASH)
{
shardPlacementList = ShardPlacementList(shardId);
if (list_length(shardPlacementList) != 1)
{
return false;
}
}
else
{
List *shardIntervalList = LoadShardList(relationId);
ListCell *shardIntervalCell = NULL;
foreach(shardIntervalCell, shardIntervalList)
{
uint64 *shardIdPointer = (uint64 *) lfirst(shardIntervalCell);
shardId = (*shardIdPointer);
shardPlacementList = ShardPlacementList(shardId);
if (list_length(shardPlacementList) != 1)
{
return false;
}
}
}
return true;
}