citus/src/backend/distributed/transaction/backend_data.c

883 lines
25 KiB
C

/*-------------------------------------------------------------------------
*
* backend_data.c
*
* Infrastructure for managing per backend data that can efficiently
* accessed by all sessions.
*
* Copyright (c) 2017, Citus Data, Inc.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "miscadmin.h"
#include "funcapi.h"
#include "access/htup_details.h"
#include "catalog/pg_type.h"
#include "datatype/timestamp.h"
#include "distributed/backend_data.h"
#include "distributed/connection_management.h"
#include "distributed/listutils.h"
#include "distributed/lock_graph.h"
#include "distributed/metadata_cache.h"
#include "distributed/remote_commands.h"
#include "distributed/transaction_identifier.h"
#include "nodes/execnodes.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
#include "storage/lwlock.h"
#include "storage/proc.h"
#include "storage/spin.h"
#include "storage/s_lock.h"
#include "utils/timestamp.h"
#define GET_ACTIVE_TRANSACTION_QUERY "SELECT * FROM get_all_active_transactions();"
#define ACTIVE_TRANSACTION_COLUMN_COUNT 6
/*
* Each backend's data reside in the shared memory
* on the BackendManagementShmemData.
*/
typedef struct BackendManagementShmemData
{
int trancheId;
#if (PG_VERSION_NUM >= 100000)
NamedLWLockTranche namedLockTranche;
#else
LWLockTranche lockTranche;
#endif
LWLock lock;
/*
* We prefer to use an atomic integer over sequences for two
* reasons (i) orders of magnitude performance difference
* (ii) allowing read-only replicas to be able to generate ids
*/
pg_atomic_uint64 nextTransactionNumber;
BackendData backends[FLEXIBLE_ARRAY_MEMBER];
} BackendManagementShmemData;
static void StoreAllActiveTransactions(Tuplestorestate *tupleStore, TupleDesc
tupleDescriptor);
static void CheckReturnSetInfo(ReturnSetInfo *returnSetInfo);
static shmem_startup_hook_type prev_shmem_startup_hook = NULL;
static BackendManagementShmemData *backendManagementShmemData = NULL;
static BackendData *MyBackendData = NULL;
static void BackendManagementShmemInit(void);
static size_t BackendManagementShmemSize(void);
PG_FUNCTION_INFO_V1(assign_distributed_transaction_id);
PG_FUNCTION_INFO_V1(get_current_transaction_id);
PG_FUNCTION_INFO_V1(get_global_active_transactions);
PG_FUNCTION_INFO_V1(get_all_active_transactions);
/*
* assign_distributed_transaction_id updates the shared memory allocated for this backend
* and sets initiatorNodeIdentifier, transactionNumber, timestamp fields with the given
* inputs. Also, the function sets the database id and process id via the information that
* Postgres provides.
*
* This function is only intended for internal use for managing distributed transactions.
* Users should not use this function for any purpose.
*/
Datum
assign_distributed_transaction_id(PG_FUNCTION_ARGS)
{
CheckCitusVersion(ERROR);
/* MyBackendData should always be avaliable, just out of paranoia */
if (!MyBackendData)
{
ereport(ERROR, (errmsg("backend is not ready for distributed transactions")));
}
/*
* Note that we don't need to lock shared memory (i.e., LockBackendSharedMemory()) here
* since this function is executed after AssignDistributedTransactionId() issued on the
* initiator node, which already takes the required lock to enforce the consistency.
*/
SpinLockAcquire(&MyBackendData->mutex);
/* if an id is already assigned, release the lock and error */
if (MyBackendData->transactionId.transactionNumber != 0)
{
SpinLockRelease(&MyBackendData->mutex);
ereport(ERROR, (errmsg("the backend has already been assigned a "
"transaction id")));
}
MyBackendData->databaseId = MyDatabaseId;
MyBackendData->transactionId.initiatorNodeIdentifier = PG_GETARG_INT32(0);
MyBackendData->transactionId.transactionNumber = PG_GETARG_INT64(1);
MyBackendData->transactionId.timestamp = PG_GETARG_TIMESTAMPTZ(2);
MyBackendData->transactionId.transactionOriginator = false;
SpinLockRelease(&MyBackendData->mutex);
PG_RETURN_VOID();
}
/*
* get_current_transaction_id returns a tuple with (databaseId, processId,
* initiatorNodeIdentifier, transactionNumber, timestamp) that exists in the
* shared memory associated with this backend. Note that if the backend
* is not in a transaction, the function returns uninitialized data where
* transactionNumber equals to 0.
*/
Datum
get_current_transaction_id(PG_FUNCTION_ARGS)
{
TupleDesc tupleDescriptor = NULL;
HeapTuple heapTuple = NULL;
Datum values[5];
bool isNulls[5];
DistributedTransactionId *distributedTransctionId = NULL;
CheckCitusVersion(ERROR);
/* build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupleDescriptor) != TYPEFUNC_COMPOSITE)
{
elog(ERROR, "return type must be a row type");
}
/* MyBackendData should always be avaliable, just out of paranoia */
if (!MyBackendData)
{
ereport(ERROR, (errmsg("backend is not ready for distributed transactions")));
}
distributedTransctionId = GetCurrentDistributedTransactionId();
memset(values, 0, sizeof(values));
memset(isNulls, false, sizeof(isNulls));
/* first two fields do not change for this backend, so get directly */
values[0] = ObjectIdGetDatum(MyDatabaseId);
values[1] = Int32GetDatum(MyProcPid);
values[2] = Int32GetDatum(distributedTransctionId->initiatorNodeIdentifier);
values[3] = UInt64GetDatum(distributedTransctionId->transactionNumber);
/* provide a better output */
if (distributedTransctionId->initiatorNodeIdentifier != 0)
{
values[4] = TimestampTzGetDatum(distributedTransctionId->timestamp);
}
else
{
isNulls[4] = true;
}
heapTuple = heap_form_tuple(tupleDescriptor, values, isNulls);
PG_RETURN_DATUM(HeapTupleGetDatum(heapTuple));
}
/*
* get_global_active_transactions returns all the available information about all
* the active backends from each node of the cluster. If you call that function from
* the coordinator, it will returns back active transaction from the coordinator as
* well. Yet, if you call it from the worker, result won't include the transactions
* on the coordinator node, since worker nodes do not aware of the coordinator.
*/
Datum
get_global_active_transactions(PG_FUNCTION_ARGS)
{
ReturnSetInfo *returnSetInfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupleDescriptor = NULL;
Tuplestorestate *tupleStore = NULL;
MemoryContext perQueryContext = NULL;
MemoryContext oldContext = NULL;
List *workerNodeList = ActivePrimaryNodeList();
ListCell *workerNodeCell = NULL;
List *connectionList = NIL;
ListCell *connectionCell = NULL;
StringInfo queryToSend = makeStringInfo();
CheckCitusVersion(ERROR);
CheckReturnSetInfo(returnSetInfo);
/* build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupleDescriptor) != TYPEFUNC_COMPOSITE)
{
elog(ERROR, "return type must be a row type");
}
appendStringInfo(queryToSend, GET_ACTIVE_TRANSACTION_QUERY);
perQueryContext = returnSetInfo->econtext->ecxt_per_query_memory;
oldContext = MemoryContextSwitchTo(perQueryContext);
tupleStore = tuplestore_begin_heap(true, false, work_mem);
returnSetInfo->returnMode = SFRM_Materialize;
returnSetInfo->setResult = tupleStore;
returnSetInfo->setDesc = tupleDescriptor;
MemoryContextSwitchTo(oldContext);
/* add active transactions for local node */
StoreAllActiveTransactions(tupleStore, tupleDescriptor);
/* open connections in parallel */
foreach(workerNodeCell, workerNodeList)
{
WorkerNode *workerNode = (WorkerNode *) lfirst(workerNodeCell);
char *nodeName = workerNode->workerName;
int nodePort = workerNode->workerPort;
MultiConnection *connection = NULL;
int connectionFlags = 0;
if (workerNode->groupId == GetLocalGroupId())
{
/* we already get these transactions via GetAllActiveTransactions() */
continue;
}
connection = StartNodeConnection(connectionFlags, nodeName, nodePort);
connectionList = lappend(connectionList, connection);
}
FinishConnectionListEstablishment(connectionList);
/* send commands in parallel */
foreach(connectionCell, connectionList)
{
MultiConnection *connection = (MultiConnection *) lfirst(connectionCell);
int querySent = false;
querySent = SendRemoteCommand(connection, queryToSend->data);
if (querySent == 0)
{
ReportConnectionError(connection, WARNING);
}
}
/* receive query results */
foreach(connectionCell, connectionList)
{
MultiConnection *connection = (MultiConnection *) lfirst(connectionCell);
PGresult *result = NULL;
bool raiseInterrupts = true;
Datum values[ACTIVE_TRANSACTION_COLUMN_COUNT];
bool isNulls[ACTIVE_TRANSACTION_COLUMN_COUNT];
int64 rowIndex = 0;
int64 rowCount = 0;
int64 colCount = 0;
result = GetRemoteCommandResult(connection, raiseInterrupts);
if (!IsResponseOK(result))
{
ReportResultError(connection, result, WARNING);
continue;
}
rowCount = PQntuples(result);
colCount = PQnfields(result);
/* Although it is not expected */
if (colCount != ACTIVE_TRANSACTION_COLUMN_COUNT)
{
ereport(WARNING, (errmsg("unexpected number of columns from "
"get_all_active_transactions")));
continue;
}
for (rowIndex = 0; rowIndex < rowCount; rowIndex++)
{
memset(values, 0, sizeof(values));
memset(isNulls, false, sizeof(isNulls));
values[0] = ParseIntField(result, rowIndex, 0);
values[1] = ParseIntField(result, rowIndex, 1);
values[2] = ParseIntField(result, rowIndex, 2);
values[3] = ParseBoolField(result, rowIndex, 3);
values[4] = ParseIntField(result, rowIndex, 4);
values[5] = ParseTimestampTzField(result, rowIndex, 5);
tuplestore_putvalues(tupleStore, tupleDescriptor, values, isNulls);
}
PQclear(result);
ForgetResults(connection);
}
/* clean up and return the tuplestore */
tuplestore_donestoring(tupleStore);
PG_RETURN_VOID();
}
/*
* get_all_active_transactions returns all the avaliable information about all
* the active backends.
*/
Datum
get_all_active_transactions(PG_FUNCTION_ARGS)
{
ReturnSetInfo *returnSetInfo = (ReturnSetInfo *) fcinfo->resultinfo;
TupleDesc tupleDescriptor = NULL;
Tuplestorestate *tupleStore = NULL;
MemoryContext perQueryContext = NULL;
MemoryContext oldContext = NULL;
CheckCitusVersion(ERROR);
CheckReturnSetInfo(returnSetInfo);
/* build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupleDescriptor) != TYPEFUNC_COMPOSITE)
{
elog(ERROR, "return type must be a row type");
}
perQueryContext = returnSetInfo->econtext->ecxt_per_query_memory;
oldContext = MemoryContextSwitchTo(perQueryContext);
tupleStore = tuplestore_begin_heap(true, false, work_mem);
returnSetInfo->returnMode = SFRM_Materialize;
returnSetInfo->setResult = tupleStore;
returnSetInfo->setDesc = tupleDescriptor;
MemoryContextSwitchTo(oldContext);
StoreAllActiveTransactions(tupleStore, tupleDescriptor);
/* clean up and return the tuplestore */
tuplestore_donestoring(tupleStore);
PG_RETURN_VOID();
}
/*
* StoreAllActiveTransactions gets active transaction from the local node and inserts
* them into the given tuplestore.
*/
static void
StoreAllActiveTransactions(Tuplestorestate *tupleStore, TupleDesc tupleDescriptor)
{
int backendIndex = 0;
Datum values[ACTIVE_TRANSACTION_COLUMN_COUNT];
bool isNulls[ACTIVE_TRANSACTION_COLUMN_COUNT];
/*
* We don't want to initialize memory while spinlock is held so we
* prefer to do it here. This initialization is done only for the first
* row.
*/
memset(values, 0, sizeof(values));
memset(isNulls, false, sizeof(isNulls));
/* we're reading all distributed transactions, prevent new backends */
LockBackendSharedMemory(LW_SHARED);
for (backendIndex = 0; backendIndex < MaxBackends; ++backendIndex)
{
BackendData *currentBackend =
&backendManagementShmemData->backends[backendIndex];
bool coordinatorOriginatedQuery = false;
SpinLockAcquire(&currentBackend->mutex);
/* we're only interested in active backends */
if (currentBackend->transactionId.transactionNumber == 0)
{
SpinLockRelease(&currentBackend->mutex);
continue;
}
values[0] = ObjectIdGetDatum(currentBackend->databaseId);
values[1] = Int32GetDatum(ProcGlobal->allProcs[backendIndex].pid);
values[2] = Int32GetDatum(currentBackend->transactionId.initiatorNodeIdentifier);
/*
* We prefer to use worker_query instead of transactionOriginator in the user facing
* functions since its more intuitive. Thus, we negate the result before returning.
*/
coordinatorOriginatedQuery = currentBackend->transactionId.transactionOriginator;
values[3] = !coordinatorOriginatedQuery;
values[4] = UInt64GetDatum(currentBackend->transactionId.transactionNumber);
values[5] = TimestampTzGetDatum(currentBackend->transactionId.timestamp);
SpinLockRelease(&currentBackend->mutex);
tuplestore_putvalues(tupleStore, tupleDescriptor, values, isNulls);
/*
* We don't want to initialize memory while spinlock is held so we
* prefer to do it here. This initialization is done for the rows
* starting from the second one.
*/
memset(values, 0, sizeof(values));
memset(isNulls, false, sizeof(isNulls));
}
UnlockBackendSharedMemory();
}
/*
* CheckReturnSetInfo checks whether the defined given returnSetInfo is
* proper for returning tuplestore.
*/
static void
CheckReturnSetInfo(ReturnSetInfo *returnSetInfo)
{
/* check to see if caller supports us returning a tuplestore */
if (returnSetInfo == NULL || !IsA(returnSetInfo, ReturnSetInfo))
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context " \
"that cannot accept a set")));
}
if (!(returnSetInfo->allowedModes & SFRM_Materialize))
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("materialize mode required, but it is not " \
"allowed in this context")));
}
}
/*
* InitializeBackendManagement requests the necessary shared memory
* from Postgres and sets up the shared memory startup hook.
*/
void
InitializeBackendManagement(void)
{
/* allocate shared memory */
if (!IsUnderPostmaster)
{
RequestAddinShmemSpace(BackendManagementShmemSize());
}
prev_shmem_startup_hook = shmem_startup_hook;
shmem_startup_hook = BackendManagementShmemInit;
}
/*
* BackendManagementShmemInit is the callback that is to be called on shared
* memory startup hook. The function sets up the necessary shared memory
* segment for the backend manager.
*/
static void
BackendManagementShmemInit(void)
{
bool alreadyInitialized = false;
/* we may update the shmem, acquire lock exclusively */
LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
backendManagementShmemData =
(BackendManagementShmemData *) ShmemInitStruct(
"Backend Management Shmem",
BackendManagementShmemSize(),
&alreadyInitialized);
if (!alreadyInitialized)
{
int backendIndex = 0;
char *trancheName = "Backend Management Tranche";
#if (PG_VERSION_NUM >= 100000)
NamedLWLockTranche *namedLockTranche =
&backendManagementShmemData->namedLockTranche;
#else
LWLockTranche *lockTranche = &backendManagementShmemData->lockTranche;
#endif
/* start by zeroing out all the memory */
memset(backendManagementShmemData, 0,
BackendManagementShmemSize());
#if (PG_VERSION_NUM >= 100000)
namedLockTranche->trancheId = LWLockNewTrancheId();
LWLockRegisterTranche(namedLockTranche->trancheId, trancheName);
LWLockInitialize(&backendManagementShmemData->lock,
namedLockTranche->trancheId);
#else
backendManagementShmemData->trancheId = LWLockNewTrancheId();
/* we only need a single lock */
lockTranche->array_base = &backendManagementShmemData->lock;
lockTranche->array_stride = sizeof(LWLock);
lockTranche->name = trancheName;
LWLockRegisterTranche(backendManagementShmemData->trancheId, lockTranche);
LWLockInitialize(&backendManagementShmemData->lock,
backendManagementShmemData->trancheId);
#endif
/* start the distributed transaction ids from 1 */
pg_atomic_init_u64(&backendManagementShmemData->nextTransactionNumber, 1);
/*
* We need to init per backend's spinlock before any backend
* starts its execution.
*/
for (backendIndex = 0; backendIndex < MaxBackends; ++backendIndex)
{
SpinLockInit(&backendManagementShmemData->backends[backendIndex].mutex);
}
}
LWLockRelease(AddinShmemInitLock);
if (prev_shmem_startup_hook != NULL)
{
prev_shmem_startup_hook();
}
}
/*
* BackendManagementShmemSize returns the size that should be allocated
* on the shared memory for backend management.
*/
static size_t
BackendManagementShmemSize(void)
{
Size size = 0;
size = add_size(size, sizeof(BackendManagementShmemData));
size = add_size(size, mul_size(sizeof(BackendData), MaxBackends));
return size;
}
/*
* InitializeBackendData initialises MyBackendData to the shared memory segment
* belonging to the current backend.
*
* The function is called through CitusHasBeenLoaded when we first detect that
* the Citus extension is present, and after any subsequent invalidation of
* pg_dist_partition (see InvalidateMetadataSystemCache()).
*
* We only need to initialise MyBackendData once. The only goal here is to make
* sure that we don't use the backend data from a previous backend with the same
* pgprocno. Resetting the backend data after a distributed transaction happens
* on COMMIT/ABORT through transaction callbacks.
*/
void
InitializeBackendData(void)
{
if (MyBackendData != NULL)
{
/*
* We already initialized MyBackendData before. We definitely should
* not initialise it again, because we might be in the middle of a
* distributed transaction.
*/
return;
}
MyBackendData = &backendManagementShmemData->backends[MyProc->pgprocno];
Assert(MyBackendData);
LockBackendSharedMemory(LW_EXCLUSIVE);
/* zero out the backend data */
UnSetDistributedTransactionId();
UnlockBackendSharedMemory();
}
/*
* UnSetDistributedTransactionId simply acquires the mutex and resets the backend's
* distributed transaction data in shared memory to the initial values.
*/
void
UnSetDistributedTransactionId(void)
{
/* backend does not exist if the extension is not created */
if (MyBackendData)
{
SpinLockAcquire(&MyBackendData->mutex);
MyBackendData->databaseId = 0;
MyBackendData->transactionId.initiatorNodeIdentifier = 0;
MyBackendData->transactionId.transactionOriginator = false;
MyBackendData->transactionId.transactionNumber = 0;
MyBackendData->transactionId.timestamp = 0;
SpinLockRelease(&MyBackendData->mutex);
}
}
/*
* LockBackendSharedMemory is a simple wrapper around LWLockAcquire on the
* shared memory lock.
*
* We use the backend shared memory lock for preventing new backends to be part
* of a new distributed transaction or an existing backend to leave a distributed
* transaction while we're reading the all backends' data.
*
* The primary goal is to provide consistent view of the current distributed
* transactions while doing the deadlock detection.
*/
void
LockBackendSharedMemory(LWLockMode lockMode)
{
LWLockAcquire(&backendManagementShmemData->lock, lockMode);
}
/*
* UnlockBackendSharedMemory is a simple wrapper around LWLockRelease on the
* shared memory lock.
*/
void
UnlockBackendSharedMemory(void)
{
LWLockRelease(&backendManagementShmemData->lock);
}
/*
* GetCurrentDistributedTransactionId reads the backend's distributed transaction id and
* returns a copy of it.
*
* When called from a parallel worker, it uses the parent's transaction ID per the logic
* in GetBackendDataForProc.
*/
DistributedTransactionId *
GetCurrentDistributedTransactionId(void)
{
DistributedTransactionId *currentDistributedTransactionId =
(DistributedTransactionId *) palloc(sizeof(DistributedTransactionId));
BackendData backendData;
GetBackendDataForProc(MyProc, &backendData);
currentDistributedTransactionId->initiatorNodeIdentifier =
backendData.transactionId.initiatorNodeIdentifier;
currentDistributedTransactionId->transactionOriginator =
backendData.transactionId.transactionOriginator;
currentDistributedTransactionId->transactionNumber =
backendData.transactionId.transactionNumber;
currentDistributedTransactionId->timestamp =
backendData.transactionId.timestamp;
return currentDistributedTransactionId;
}
/*
* AssignDistributedTransactionId generates a new distributed transaction id and
* sets it for the current backend. It also sets the databaseId and
* processId fields.
*
* This function should only be called on BeginCoordinatedTransaction(). Any other
* callers is very likely to break the distributed transction management.
*/
void
AssignDistributedTransactionId(void)
{
pg_atomic_uint64 *transactionNumberSequence =
&backendManagementShmemData->nextTransactionNumber;
uint64 nextTransactionNumber = pg_atomic_fetch_add_u64(transactionNumberSequence, 1);
int localGroupId = GetLocalGroupId();
TimestampTz currentTimestamp = GetCurrentTimestamp();
SpinLockAcquire(&MyBackendData->mutex);
MyBackendData->databaseId = MyDatabaseId;
MyBackendData->transactionId.initiatorNodeIdentifier = localGroupId;
MyBackendData->transactionId.transactionOriginator = true;
MyBackendData->transactionId.transactionNumber =
nextTransactionNumber;
MyBackendData->transactionId.timestamp = currentTimestamp;
SpinLockRelease(&MyBackendData->mutex);
}
/*
* CurrentDistributedTransactionNumber returns the transaction number of the
* current distributed transaction. The caller must make sure a distributed
* transaction is in progress.
*/
uint64
CurrentDistributedTransactionNumber(void)
{
Assert(MyBackendData != NULL);
return MyBackendData->transactionId.transactionNumber;
}
/*
* GetBackendDataForProc writes the backend data for the given process to
* result. If the process is part of a lock group (parallel query) it
* returns the leader data instead.
*/
void
GetBackendDataForProc(PGPROC *proc, BackendData *result)
{
BackendData *backendData = NULL;
int pgprocno = proc->pgprocno;
if (proc->lockGroupLeader != NULL)
{
pgprocno = proc->lockGroupLeader->pgprocno;
}
backendData = &backendManagementShmemData->backends[pgprocno];
SpinLockAcquire(&backendData->mutex);
memcpy(result, backendData, sizeof(BackendData));
SpinLockRelease(&backendData->mutex);
}
/*
* CancelTransactionDueToDeadlock cancels the input proc and also marks the backend
* data with this information.
*/
void
CancelTransactionDueToDeadlock(PGPROC *proc)
{
BackendData *backendData = &backendManagementShmemData->backends[proc->pgprocno];
/* backend might not have used citus yet and thus not initialized backend data */
if (!backendData)
{
return;
}
SpinLockAcquire(&backendData->mutex);
/* send a SIGINT only if the process is still in a distributed transaction */
if (backendData->transactionId.transactionNumber != 0)
{
backendData->cancelledDueToDeadlock = true;
SpinLockRelease(&backendData->mutex);
if (kill(proc->pid, SIGINT) != 0)
{
ereport(WARNING,
(errmsg("attempted to cancel this backend (pid: %d) to resolve a "
"distributed deadlock but the backend could not "
"be cancelled", proc->pid)));
}
}
else
{
SpinLockRelease(&backendData->mutex);
}
}
/*
* MyBackendGotCancelledDueToDeadlock returns whether the current distributed
* transaction was cancelled due to a deadlock. If the backend is not in a
* distributed transaction, the function returns false.
*/
bool
MyBackendGotCancelledDueToDeadlock(void)
{
bool cancelledDueToDeadlock = false;
/* backend might not have used citus yet and thus not initialized backend data */
if (!MyBackendData)
{
return false;
}
SpinLockAcquire(&MyBackendData->mutex);
if (IsInDistributedTransaction(MyBackendData))
{
cancelledDueToDeadlock = MyBackendData->cancelledDueToDeadlock;
}
SpinLockRelease(&MyBackendData->mutex);
return cancelledDueToDeadlock;
}
/*
* ActiveDistributedTransactionNumbers returns a list of pointers to
* transaction numbers of distributed transactions that are in progress
* and were started by the node on which it is called.
*/
List *
ActiveDistributedTransactionNumbers(void)
{
List *activeTransactionNumberList = NIL;
int curBackend = 0;
/* build list of starting procs */
for (curBackend = 0; curBackend < MaxBackends; curBackend++)
{
PGPROC *currentProc = &ProcGlobal->allProcs[curBackend];
BackendData currentBackendData;
uint64 *transactionNumber = NULL;
if (currentProc->pid == 0)
{
/* unused PGPROC slot */
continue;
}
GetBackendDataForProc(currentProc, &currentBackendData);
if (!IsInDistributedTransaction(&currentBackendData))
{
/* not a distributed transaction */
continue;
}
if (!currentBackendData.transactionId.transactionOriginator)
{
/* not a coordinator process */
continue;
}
transactionNumber = (uint64 *) palloc0(sizeof(uint64));
*transactionNumber = currentBackendData.transactionId.transactionNumber;
activeTransactionNumberList = lappend(activeTransactionNumberList,
transactionNumber);
}
return activeTransactionNumberList;
}