mirror of https://github.com/citusdata/citus.git
1340 lines
41 KiB
C
1340 lines
41 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* master_metadata_utility.c
|
|
* Routines for reading and modifying master node's metadata.
|
|
*
|
|
* Copyright (c) 2014-2016, Citus Data, Inc.
|
|
*
|
|
* $Id$
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
#include "funcapi.h"
|
|
#include "libpq-fe.h"
|
|
#include "miscadmin.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/dependency.h"
|
|
#include "catalog/indexing.h"
|
|
#include "catalog/pg_constraint.h"
|
|
#include "catalog/pg_extension.h"
|
|
#include "catalog/pg_namespace.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/extension.h"
|
|
#include "distributed/connection_management.h"
|
|
#include "distributed/citus_nodes.h"
|
|
#include "distributed/master_metadata_utility.h"
|
|
#include "distributed/master_protocol.h"
|
|
#include "distributed/metadata_cache.h"
|
|
#include "distributed/multi_join_order.h"
|
|
#include "distributed/multi_logical_optimizer.h"
|
|
#include "distributed/pg_dist_colocation.h"
|
|
#include "distributed/pg_dist_partition.h"
|
|
#include "distributed/pg_dist_shard.h"
|
|
#include "distributed/pg_dist_shard_placement.h"
|
|
#include "distributed/relay_utility.h"
|
|
#include "distributed/resource_lock.h"
|
|
#include "distributed/remote_commands.h"
|
|
#include "distributed/worker_manager.h"
|
|
#include "distributed/worker_protocol.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "parser/scansup.h"
|
|
#include "storage/lmgr.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/inval.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/tqual.h"
|
|
|
|
|
|
/* Local functions forward declarations */
|
|
static uint64 * AllocateUint64(uint64 value);
|
|
static void RecordDistributedRelationDependencies(Oid distributedRelationId,
|
|
Node *distributionKey);
|
|
static ShardPlacement * TupleToShardPlacement(TupleDesc tupleDesc,
|
|
HeapTuple heapTuple);
|
|
static uint64 DistributedTableSize(Oid relationId, char *sizeQuery);
|
|
static uint64 DistributedTableSizeOnWorker(WorkerNode *workerNode, Oid relationId,
|
|
char *sizeQuery);
|
|
static List * ShardIntervalsOnWorkerNode(WorkerNode *workerNode, Oid relationId);
|
|
static StringInfo GenerateSizeQueryOnMultiplePlacements(Oid distributedRelationId,
|
|
List *shardIntervalList,
|
|
char *sizeQuery);
|
|
static void ErrorIfNotSuitableToGetSize(Oid relationId);
|
|
|
|
|
|
/* exports for SQL callable functions */
|
|
PG_FUNCTION_INFO_V1(citus_table_size);
|
|
PG_FUNCTION_INFO_V1(citus_total_relation_size);
|
|
PG_FUNCTION_INFO_V1(citus_relation_size);
|
|
|
|
|
|
/*
|
|
* citus_total_relation_size accepts a table name and returns a distributed table
|
|
* and its indexes' total relation size.
|
|
*/
|
|
Datum
|
|
citus_total_relation_size(PG_FUNCTION_ARGS)
|
|
{
|
|
Oid relationId = PG_GETARG_OID(0);
|
|
uint64 totalRelationSize = 0;
|
|
|
|
totalRelationSize = DistributedTableSize(relationId,
|
|
PG_TOTAL_RELATION_SIZE_FUNCTION);
|
|
|
|
PG_RETURN_INT64(totalRelationSize);
|
|
}
|
|
|
|
|
|
/*
|
|
* citus_table_size accepts a table name and returns a distributed table's total
|
|
* relation size.
|
|
*/
|
|
Datum
|
|
citus_table_size(PG_FUNCTION_ARGS)
|
|
{
|
|
Oid relationId = PG_GETARG_OID(0);
|
|
uint64 tableSize = 0;
|
|
|
|
tableSize = DistributedTableSize(relationId, PG_TABLE_SIZE_FUNCTION);
|
|
|
|
PG_RETURN_INT64(tableSize);
|
|
}
|
|
|
|
|
|
/*
|
|
* citus_relation_size accept a table name and returns a relation's 'main'
|
|
* fork's size.
|
|
*/
|
|
Datum
|
|
citus_relation_size(PG_FUNCTION_ARGS)
|
|
{
|
|
Oid relationId = PG_GETARG_OID(0);
|
|
uint64 relationSize = 0;
|
|
|
|
relationSize = DistributedTableSize(relationId, PG_RELATION_SIZE_FUNCTION);
|
|
|
|
PG_RETURN_INT64(relationSize);
|
|
}
|
|
|
|
|
|
/*
|
|
* DistributedTableSize is helper function for each kind of citus size functions.
|
|
* It first checks whether the table is distributed and size query can be run on
|
|
* it. Connection to each node has to be established to get the size of the table.
|
|
*/
|
|
static uint64
|
|
DistributedTableSize(Oid relationId, char *sizeQuery)
|
|
{
|
|
Relation pgDistNode = NULL;
|
|
List *workerNodeList = NULL;
|
|
ListCell *workerNodeCell = NULL;
|
|
uint64 totalRelationSize = 0;
|
|
|
|
if (XactModificationLevel == XACT_MODIFICATION_MULTI_SHARD)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_ACTIVE_SQL_TRANSACTION),
|
|
errmsg("citus size functions cannot be called in transaction"
|
|
" blocks which contain multi-shard data modifications")));
|
|
}
|
|
|
|
ErrorIfNotSuitableToGetSize(relationId);
|
|
|
|
pgDistNode = heap_open(DistNodeRelationId(), AccessShareLock);
|
|
|
|
workerNodeList = ActiveWorkerNodeList();
|
|
|
|
foreach(workerNodeCell, workerNodeList)
|
|
{
|
|
WorkerNode *workerNode = (WorkerNode *) lfirst(workerNodeCell);
|
|
uint64 relationSizeOnNode = DistributedTableSizeOnWorker(workerNode, relationId,
|
|
sizeQuery);
|
|
totalRelationSize += relationSizeOnNode;
|
|
}
|
|
|
|
heap_close(pgDistNode, NoLock);
|
|
|
|
return totalRelationSize;
|
|
}
|
|
|
|
|
|
/*
|
|
* DistributedTableSizeOnWorker gets the workerNode and relationId to calculate
|
|
* size of that relation on the given workerNode by summing up the size of each
|
|
* shard placement.
|
|
*/
|
|
static uint64
|
|
DistributedTableSizeOnWorker(WorkerNode *workerNode, Oid relationId, char *sizeQuery)
|
|
{
|
|
StringInfo tableSizeQuery = NULL;
|
|
StringInfo tableSizeStringInfo = NULL;
|
|
char *workerNodeName = workerNode->workerName;
|
|
uint32 workerNodePort = workerNode->workerPort;
|
|
char *tableSizeString;
|
|
List *sizeList = NIL;
|
|
uint64 tableSize = 0;
|
|
|
|
List *shardIntervalsOnNode = ShardIntervalsOnWorkerNode(workerNode, relationId);
|
|
|
|
tableSizeQuery = GenerateSizeQueryOnMultiplePlacements(relationId,
|
|
shardIntervalsOnNode,
|
|
sizeQuery);
|
|
|
|
sizeList = ExecuteRemoteQuery(workerNodeName, workerNodePort, NULL, tableSizeQuery);
|
|
|
|
if (sizeList == NIL)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_CONNECTION_FAILURE),
|
|
errmsg("cannot get the size because of a connection error")));
|
|
}
|
|
|
|
tableSizeStringInfo = (StringInfo) linitial(sizeList);
|
|
tableSizeString = tableSizeStringInfo->data;
|
|
tableSize = atol(tableSizeString);
|
|
|
|
return tableSize;
|
|
}
|
|
|
|
|
|
/*
|
|
* ShardIntervalsOnNode takes a WorkerNode then compares it with each placement
|
|
* of table. It returns shard intervals of table on that node as a list of shard
|
|
* intervals. Note that, shard intervals returned as elements of the list are
|
|
* not the copies but the pointers.
|
|
*
|
|
* DO NOT modify the shard intervals returned by this function.
|
|
*/
|
|
static List *
|
|
ShardIntervalsOnWorkerNode(WorkerNode *workerNode, Oid relationId)
|
|
{
|
|
DistTableCacheEntry *distTableCacheEntry = DistributedTableCacheEntry(relationId);
|
|
char *workerNodeName = workerNode->workerName;
|
|
uint32 workerNodePort = workerNode->workerPort;
|
|
List *shardIntervalList = NIL;
|
|
int shardIndex = 0;
|
|
int shardIntervalArrayLength = distTableCacheEntry->shardIntervalArrayLength;
|
|
|
|
for (shardIndex = 0; shardIndex < shardIntervalArrayLength; shardIndex++)
|
|
{
|
|
ShardPlacement *placementArray =
|
|
distTableCacheEntry->arrayOfPlacementArrays[shardIndex];
|
|
int numberOfPlacements =
|
|
distTableCacheEntry->arrayOfPlacementArrayLengths[shardIndex];
|
|
int placementIndex = 0;
|
|
|
|
for (placementIndex = 0; placementIndex < numberOfPlacements; placementIndex++)
|
|
{
|
|
ShardPlacement *placement = &placementArray[placementIndex];
|
|
char *shardNodeName = placement->nodeName;
|
|
uint32 shardNodePort = placement->nodePort;
|
|
uint64 shardId = placement->shardId;
|
|
bool metadataLock = false;
|
|
|
|
metadataLock = TryLockShardDistributionMetadata(shardId, ShareLock);
|
|
|
|
/* if the lock is not acquired warn the user */
|
|
if (metadataLock == false)
|
|
{
|
|
ereport(WARNING, (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
|
|
errmsg("lock is not acquired, size of shard %ld "
|
|
"will be ignored", shardId)));
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(shardNodeName, workerNodeName) == 0 &&
|
|
shardNodePort == workerNodePort)
|
|
{
|
|
ShardInterval *shardInterval =
|
|
distTableCacheEntry->sortedShardIntervalArray[shardIndex];
|
|
shardIntervalList = lappend(shardIntervalList, shardInterval);
|
|
}
|
|
}
|
|
}
|
|
|
|
return shardIntervalList;
|
|
}
|
|
|
|
|
|
/*
|
|
* GenerateSizeQueryOnMultiplePlacements generates a select size query to get
|
|
* size of multiple tables from the relation with distributedRelationId. Note
|
|
* that, different size functions supported by PG are also supported by this
|
|
* function changing the size query given as the last parameter to function.
|
|
* Format of sizeQuery is pg_*_size(%s). Examples of it can be found in the
|
|
* master_protocol.h
|
|
*/
|
|
static StringInfo
|
|
GenerateSizeQueryOnMultiplePlacements(Oid distributedRelationId, List *shardIntervalList,
|
|
char *sizeQuery)
|
|
{
|
|
Oid schemaId = get_rel_namespace(distributedRelationId);
|
|
char *schemaName = get_namespace_name(schemaId);
|
|
|
|
StringInfo selectQuery = makeStringInfo();
|
|
ListCell *shardIntervalCell = NULL;
|
|
|
|
appendStringInfo(selectQuery, "SELECT ");
|
|
|
|
foreach(shardIntervalCell, shardIntervalList)
|
|
{
|
|
ShardInterval *shardInterval = (ShardInterval *) lfirst(shardIntervalCell);
|
|
uint64 shardId = shardInterval->shardId;
|
|
char *shardName = get_rel_name(distributedRelationId);
|
|
char *shardQualifiedName = NULL;
|
|
char *quotedShardName = NULL;
|
|
AppendShardIdToName(&shardName, shardId);
|
|
|
|
shardQualifiedName = quote_qualified_identifier(schemaName, shardName);
|
|
quotedShardName = quote_literal_cstr(shardQualifiedName);
|
|
|
|
appendStringInfo(selectQuery, sizeQuery, quotedShardName);
|
|
appendStringInfo(selectQuery, " + ");
|
|
}
|
|
|
|
/*
|
|
* Add 0 as a last size, it handles empty list case and makes size control checks
|
|
* unnecessary which would have implemented without this line.
|
|
*/
|
|
appendStringInfo(selectQuery, "0;");
|
|
|
|
return selectQuery;
|
|
}
|
|
|
|
|
|
/*
|
|
* ErrorIfNotSuitableToGetSize determines whether the table is suitable to find
|
|
* its' size with internal functions.
|
|
*/
|
|
static void
|
|
ErrorIfNotSuitableToGetSize(Oid relationId)
|
|
{
|
|
if (!IsDistributedTable(relationId))
|
|
{
|
|
char *relationName = get_rel_name(relationId);
|
|
char *escapedQueryString = quote_literal_cstr(relationName);
|
|
ereport(ERROR, (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
|
|
errmsg("cannot calculate the size because relation %s is not "
|
|
"distributed", escapedQueryString)));
|
|
}
|
|
|
|
if (PartitionMethod(relationId) == DISTRIBUTE_BY_HASH &&
|
|
!SingleReplicatedTable(relationId))
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot calculate the size because replication factor "
|
|
"is greater than 1")));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* TableShardReplicationFactor returns the current replication factor of the
|
|
* given relation by looking into shard placements. It errors out if there
|
|
* are different number of shard placements for different shards. It also
|
|
* errors out if the table does not have any shards.
|
|
*/
|
|
uint32
|
|
TableShardReplicationFactor(Oid relationId)
|
|
{
|
|
uint32 replicationCount = 0;
|
|
ListCell *shardCell = NULL;
|
|
|
|
List *shardIntervalList = LoadShardIntervalList(relationId);
|
|
foreach(shardCell, shardIntervalList)
|
|
{
|
|
ShardInterval *shardInterval = (ShardInterval *) lfirst(shardCell);
|
|
uint64 shardId = shardInterval->shardId;
|
|
|
|
List *shardPlacementList = ShardPlacementList(shardId);
|
|
uint32 shardPlacementCount = list_length(shardPlacementList);
|
|
|
|
/*
|
|
* Get the replication count of the first shard in the list, and error
|
|
* out if there is a shard with different replication count.
|
|
*/
|
|
if (replicationCount == 0)
|
|
{
|
|
replicationCount = shardPlacementCount;
|
|
}
|
|
else if (replicationCount != shardPlacementCount)
|
|
{
|
|
char *relationName = get_rel_name(relationId);
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot find the replication factor of the "
|
|
"table %s", relationName),
|
|
errdetail("The shard %ld has different shards replication "
|
|
"counts from other shards.", shardId)));
|
|
}
|
|
}
|
|
|
|
/* error out if the table does not have any shards */
|
|
if (replicationCount == 0)
|
|
{
|
|
char *relationName = get_rel_name(relationId);
|
|
ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot find the replication factor of the "
|
|
"table %s", relationName),
|
|
errdetail("The table %s does not have any shards.",
|
|
relationName)));
|
|
}
|
|
|
|
return replicationCount;
|
|
}
|
|
|
|
|
|
/*
|
|
* LoadShardIntervalList returns a list of shard intervals related for a given
|
|
* distributed table. The function returns an empty list if no shards can be
|
|
* found for the given relation.
|
|
* Since LoadShardIntervalList relies on sortedShardIntervalArray, it returns
|
|
* a shard interval list whose elements are sorted on shardminvalue. Shard intervals
|
|
* with uninitialized shard min/max values are placed in the end of the list.
|
|
*/
|
|
List *
|
|
LoadShardIntervalList(Oid relationId)
|
|
{
|
|
DistTableCacheEntry *cacheEntry = DistributedTableCacheEntry(relationId);
|
|
List *shardList = NIL;
|
|
int i = 0;
|
|
|
|
for (i = 0; i < cacheEntry->shardIntervalArrayLength; i++)
|
|
{
|
|
ShardInterval *newShardInterval = NULL;
|
|
newShardInterval = (ShardInterval *) palloc0(sizeof(ShardInterval));
|
|
|
|
CopyShardInterval(cacheEntry->sortedShardIntervalArray[i], newShardInterval);
|
|
|
|
shardList = lappend(shardList, newShardInterval);
|
|
}
|
|
|
|
return shardList;
|
|
}
|
|
|
|
|
|
/*
|
|
* ShardIntervalCount returns number of shard intervals for a given distributed table.
|
|
* The function returns 0 if table is not distributed, or no shards can be found for
|
|
* the given relation id.
|
|
*/
|
|
int
|
|
ShardIntervalCount(Oid relationId)
|
|
{
|
|
DistTableCacheEntry *cacheEntry = DistributedTableCacheEntry(relationId);
|
|
int shardIntervalCount = 0;
|
|
|
|
if (cacheEntry->isDistributedTable)
|
|
{
|
|
shardIntervalCount = cacheEntry->shardIntervalArrayLength;
|
|
}
|
|
|
|
return shardIntervalCount;
|
|
}
|
|
|
|
|
|
/*
|
|
* LoadShardList reads list of shards for given relationId from pg_dist_shard,
|
|
* and returns the list of found shardIds.
|
|
* Since LoadShardList relies on sortedShardIntervalArray, it returns a shard
|
|
* list whose elements are sorted on shardminvalue. Shards with uninitialized
|
|
* shard min/max values are placed in the end of the list.
|
|
*/
|
|
List *
|
|
LoadShardList(Oid relationId)
|
|
{
|
|
DistTableCacheEntry *cacheEntry = DistributedTableCacheEntry(relationId);
|
|
List *shardList = NIL;
|
|
int i = 0;
|
|
|
|
for (i = 0; i < cacheEntry->shardIntervalArrayLength; i++)
|
|
{
|
|
ShardInterval *currentShardInterval = cacheEntry->sortedShardIntervalArray[i];
|
|
uint64 *shardIdPointer = AllocateUint64(currentShardInterval->shardId);
|
|
|
|
shardList = lappend(shardList, shardIdPointer);
|
|
}
|
|
|
|
return shardList;
|
|
}
|
|
|
|
|
|
/* Allocates eight bytes, and copies given value's contents those bytes. */
|
|
static uint64 *
|
|
AllocateUint64(uint64 value)
|
|
{
|
|
uint64 *allocatedValue = (uint64 *) palloc0(sizeof(uint64));
|
|
Assert(sizeof(uint64) >= 8);
|
|
|
|
(*allocatedValue) = value;
|
|
|
|
return allocatedValue;
|
|
}
|
|
|
|
|
|
/*
|
|
* CopyShardInterval copies fields from the specified source ShardInterval
|
|
* into the fields of the provided destination ShardInterval.
|
|
*/
|
|
void
|
|
CopyShardInterval(ShardInterval *srcInterval, ShardInterval *destInterval)
|
|
{
|
|
destInterval->type = srcInterval->type;
|
|
destInterval->relationId = srcInterval->relationId;
|
|
destInterval->storageType = srcInterval->storageType;
|
|
destInterval->valueTypeId = srcInterval->valueTypeId;
|
|
destInterval->valueTypeLen = srcInterval->valueTypeLen;
|
|
destInterval->valueByVal = srcInterval->valueByVal;
|
|
destInterval->minValueExists = srcInterval->minValueExists;
|
|
destInterval->maxValueExists = srcInterval->maxValueExists;
|
|
destInterval->shardId = srcInterval->shardId;
|
|
|
|
destInterval->minValue = 0;
|
|
if (destInterval->minValueExists)
|
|
{
|
|
destInterval->minValue = datumCopy(srcInterval->minValue,
|
|
srcInterval->valueByVal,
|
|
srcInterval->valueTypeLen);
|
|
}
|
|
|
|
destInterval->maxValue = 0;
|
|
if (destInterval->maxValueExists)
|
|
{
|
|
destInterval->maxValue = datumCopy(srcInterval->maxValue,
|
|
srcInterval->valueByVal,
|
|
srcInterval->valueTypeLen);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* CopyShardPlacement copies the values of the source placement into the
|
|
* target placement.
|
|
*/
|
|
void
|
|
CopyShardPlacement(ShardPlacement *srcPlacement, ShardPlacement *destPlacement)
|
|
{
|
|
/* first copy all by-value fields */
|
|
memcpy(destPlacement, srcPlacement, sizeof(ShardPlacement));
|
|
|
|
/* and then the fields pointing to external values */
|
|
if (srcPlacement->nodeName)
|
|
{
|
|
destPlacement->nodeName = pstrdup(srcPlacement->nodeName);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ShardLength finds shard placements for the given shardId, extracts the length
|
|
* of a finalized shard, and returns the shard's length. This function errors
|
|
* out if we cannot find any finalized shard placements for the given shardId.
|
|
*/
|
|
uint64
|
|
ShardLength(uint64 shardId)
|
|
{
|
|
uint64 shardLength = 0;
|
|
|
|
List *shardPlacementList = FinalizedShardPlacementList(shardId);
|
|
if (shardPlacementList == NIL)
|
|
{
|
|
ereport(ERROR, (errmsg("could not find length of shard " UINT64_FORMAT, shardId),
|
|
errdetail("Could not find any shard placements for the shard.")));
|
|
}
|
|
else
|
|
{
|
|
ShardPlacement *shardPlacement = (ShardPlacement *) linitial(shardPlacementList);
|
|
shardLength = shardPlacement->shardLength;
|
|
}
|
|
|
|
return shardLength;
|
|
}
|
|
|
|
|
|
/*
|
|
* NodeHasActiveShardPlacements returns whether any active shards are placed on this node
|
|
*/
|
|
bool
|
|
NodeHasActiveShardPlacements(char *nodeName, int32 nodePort)
|
|
{
|
|
const int scanKeyCount = 3;
|
|
const bool indexOK = false;
|
|
|
|
bool hasFinalizedPlacements = false;
|
|
|
|
HeapTuple heapTuple = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[scanKeyCount];
|
|
|
|
Relation pgShardPlacement = heap_open(DistShardPlacementRelationId(),
|
|
AccessShareLock);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_shard_placement_nodename,
|
|
BTEqualStrategyNumber, F_TEXTEQ, CStringGetTextDatum(nodeName));
|
|
ScanKeyInit(&scanKey[1], Anum_pg_dist_shard_placement_nodeport,
|
|
BTEqualStrategyNumber, F_INT8EQ, Int64GetDatum(nodePort));
|
|
ScanKeyInit(&scanKey[2], Anum_pg_dist_shard_placement_shardstate,
|
|
BTEqualStrategyNumber, F_INT4EQ, Int32GetDatum(FILE_FINALIZED));
|
|
|
|
scanDescriptor = systable_beginscan(pgShardPlacement,
|
|
DistShardPlacementNodeidIndexId(), indexOK,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
hasFinalizedPlacements = HeapTupleIsValid(heapTuple);
|
|
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(pgShardPlacement, AccessShareLock);
|
|
|
|
return hasFinalizedPlacements;
|
|
}
|
|
|
|
|
|
/*
|
|
* FinalizedShardPlacementList finds shard placements for the given shardId from
|
|
* system catalogs, chooses placements that are in finalized state, and returns
|
|
* these shard placements in a new list.
|
|
*/
|
|
List *
|
|
FinalizedShardPlacementList(uint64 shardId)
|
|
{
|
|
List *finalizedPlacementList = NIL;
|
|
List *shardPlacementList = ShardPlacementList(shardId);
|
|
|
|
ListCell *shardPlacementCell = NULL;
|
|
foreach(shardPlacementCell, shardPlacementList)
|
|
{
|
|
ShardPlacement *shardPlacement = (ShardPlacement *) lfirst(shardPlacementCell);
|
|
if (shardPlacement->shardState == FILE_FINALIZED)
|
|
{
|
|
finalizedPlacementList = lappend(finalizedPlacementList, shardPlacement);
|
|
}
|
|
}
|
|
|
|
return finalizedPlacementList;
|
|
}
|
|
|
|
|
|
/*
|
|
* FinalizedShardPlacement finds a shard placement for the given shardId from
|
|
* system catalog, chooses a placement that is in finalized state and returns
|
|
* that shard placement. If this function cannot find a healthy shard placement
|
|
* and missingOk is set to false it errors out.
|
|
*/
|
|
ShardPlacement *
|
|
FinalizedShardPlacement(uint64 shardId, bool missingOk)
|
|
{
|
|
List *finalizedPlacementList = FinalizedShardPlacementList(shardId);
|
|
ShardPlacement *shardPlacement = NULL;
|
|
|
|
if (list_length(finalizedPlacementList) == 0)
|
|
{
|
|
if (!missingOk)
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
|
|
errmsg("could not find any healthy placement for shard "
|
|
UINT64_FORMAT, shardId)));
|
|
}
|
|
|
|
return shardPlacement;
|
|
}
|
|
|
|
shardPlacement = (ShardPlacement *) linitial(finalizedPlacementList);
|
|
|
|
return shardPlacement;
|
|
}
|
|
|
|
|
|
/*
|
|
* BuildShardPlacementList finds shard placements for the given shardId from
|
|
* system catalogs, converts these placements to their in-memory
|
|
* representation, and returns the converted shard placements in a new list.
|
|
*
|
|
* This probably only should be called from metadata_cache.c. Resides here
|
|
* because it shares code with other routines in this file.
|
|
*/
|
|
List *
|
|
BuildShardPlacementList(ShardInterval *shardInterval)
|
|
{
|
|
int64 shardId = shardInterval->shardId;
|
|
List *shardPlacementList = NIL;
|
|
Relation pgShardPlacement = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
bool indexOK = true;
|
|
HeapTuple heapTuple = NULL;
|
|
|
|
pgShardPlacement = heap_open(DistShardPlacementRelationId(), AccessShareLock);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_shard_placement_shardid,
|
|
BTEqualStrategyNumber, F_INT8EQ, Int64GetDatum(shardId));
|
|
|
|
scanDescriptor = systable_beginscan(pgShardPlacement,
|
|
DistShardPlacementShardidIndexId(), indexOK,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
while (HeapTupleIsValid(heapTuple))
|
|
{
|
|
TupleDesc tupleDescriptor = RelationGetDescr(pgShardPlacement);
|
|
|
|
ShardPlacement *placement = TupleToShardPlacement(tupleDescriptor, heapTuple);
|
|
shardPlacementList = lappend(shardPlacementList, placement);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
}
|
|
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(pgShardPlacement, AccessShareLock);
|
|
|
|
return shardPlacementList;
|
|
}
|
|
|
|
|
|
/*
|
|
* TupleToShardPlacement takes in a heap tuple from pg_dist_shard_placement,
|
|
* and converts this tuple to in-memory struct. The function assumes the
|
|
* caller already has locks on the tuple, and doesn't perform any locking.
|
|
*/
|
|
static ShardPlacement *
|
|
TupleToShardPlacement(TupleDesc tupleDescriptor, HeapTuple heapTuple)
|
|
{
|
|
ShardPlacement *shardPlacement = NULL;
|
|
bool isNull = false;
|
|
|
|
Datum placementId = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_placementid,
|
|
tupleDescriptor, &isNull);
|
|
Datum shardId = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_shardid,
|
|
tupleDescriptor, &isNull);
|
|
Datum shardLength = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_shardlength,
|
|
tupleDescriptor, &isNull);
|
|
Datum shardState = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_shardstate,
|
|
tupleDescriptor, &isNull);
|
|
Datum nodeName = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_nodename,
|
|
tupleDescriptor, &isNull);
|
|
Datum nodePort = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_nodeport,
|
|
tupleDescriptor, &isNull);
|
|
if (HeapTupleHeaderGetNatts(heapTuple->t_data) != Natts_pg_dist_shard_placement ||
|
|
HeapTupleHasNulls(heapTuple))
|
|
{
|
|
ereport(ERROR, (errmsg("unexpected null in pg_dist_shard_placement_tuple")));
|
|
}
|
|
|
|
shardPlacement = CitusMakeNode(ShardPlacement);
|
|
shardPlacement->placementId = DatumGetInt64(placementId);
|
|
shardPlacement->shardId = DatumGetInt64(shardId);
|
|
shardPlacement->shardLength = DatumGetInt64(shardLength);
|
|
shardPlacement->shardState = DatumGetUInt32(shardState);
|
|
shardPlacement->nodeName = TextDatumGetCString(nodeName);
|
|
shardPlacement->nodePort = DatumGetInt64(nodePort);
|
|
|
|
return shardPlacement;
|
|
}
|
|
|
|
|
|
/*
|
|
* InsertShardRow opens the shard system catalog, and inserts a new row with the
|
|
* given values into that system catalog. Note that we allow the user to pass in
|
|
* null min/max values in case they are creating an empty shard.
|
|
*/
|
|
void
|
|
InsertShardRow(Oid relationId, uint64 shardId, char storageType,
|
|
text *shardMinValue, text *shardMaxValue)
|
|
{
|
|
Relation pgDistShard = NULL;
|
|
TupleDesc tupleDescriptor = NULL;
|
|
HeapTuple heapTuple = NULL;
|
|
Datum values[Natts_pg_dist_shard];
|
|
bool isNulls[Natts_pg_dist_shard];
|
|
|
|
/* form new shard tuple */
|
|
memset(values, 0, sizeof(values));
|
|
memset(isNulls, false, sizeof(isNulls));
|
|
|
|
values[Anum_pg_dist_shard_logicalrelid - 1] = ObjectIdGetDatum(relationId);
|
|
values[Anum_pg_dist_shard_shardid - 1] = Int64GetDatum(shardId);
|
|
values[Anum_pg_dist_shard_shardstorage - 1] = CharGetDatum(storageType);
|
|
|
|
/* dropped shardalias column must also be set; it is still part of the tuple */
|
|
isNulls[Anum_pg_dist_shard_shardalias_DROPPED - 1] = true;
|
|
|
|
/* check if shard min/max values are null */
|
|
if (shardMinValue != NULL && shardMaxValue != NULL)
|
|
{
|
|
values[Anum_pg_dist_shard_shardminvalue - 1] = PointerGetDatum(shardMinValue);
|
|
values[Anum_pg_dist_shard_shardmaxvalue - 1] = PointerGetDatum(shardMaxValue);
|
|
}
|
|
else
|
|
{
|
|
isNulls[Anum_pg_dist_shard_shardminvalue - 1] = true;
|
|
isNulls[Anum_pg_dist_shard_shardmaxvalue - 1] = true;
|
|
}
|
|
|
|
/* open shard relation and insert new tuple */
|
|
pgDistShard = heap_open(DistShardRelationId(), RowExclusiveLock);
|
|
|
|
tupleDescriptor = RelationGetDescr(pgDistShard);
|
|
heapTuple = heap_form_tuple(tupleDescriptor, values, isNulls);
|
|
|
|
simple_heap_insert(pgDistShard, heapTuple);
|
|
CatalogUpdateIndexes(pgDistShard, heapTuple);
|
|
|
|
/* invalidate previous cache entry and close relation */
|
|
CitusInvalidateRelcacheByRelid(relationId);
|
|
|
|
CommandCounterIncrement();
|
|
heap_close(pgDistShard, RowExclusiveLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* InsertShardPlacementRow opens the shard placement system catalog, and inserts
|
|
* a new row with the given values into that system catalog. If placementId is
|
|
* INVALID_PLACEMENT_ID, a new placement id will be assigned.
|
|
*/
|
|
void
|
|
InsertShardPlacementRow(uint64 shardId, uint64 placementId,
|
|
char shardState, uint64 shardLength,
|
|
char *nodeName, uint32 nodePort)
|
|
{
|
|
Relation pgDistShardPlacement = NULL;
|
|
TupleDesc tupleDescriptor = NULL;
|
|
HeapTuple heapTuple = NULL;
|
|
Datum values[Natts_pg_dist_shard_placement];
|
|
bool isNulls[Natts_pg_dist_shard_placement];
|
|
|
|
/* form new shard placement tuple */
|
|
memset(values, 0, sizeof(values));
|
|
memset(isNulls, false, sizeof(isNulls));
|
|
|
|
if (placementId == INVALID_PLACEMENT_ID)
|
|
{
|
|
placementId = master_get_new_placementid(NULL);
|
|
}
|
|
values[Anum_pg_dist_shard_placement_shardid - 1] = Int64GetDatum(shardId);
|
|
values[Anum_pg_dist_shard_placement_shardstate - 1] = CharGetDatum(shardState);
|
|
values[Anum_pg_dist_shard_placement_shardlength - 1] = Int64GetDatum(shardLength);
|
|
values[Anum_pg_dist_shard_placement_nodename - 1] = CStringGetTextDatum(nodeName);
|
|
values[Anum_pg_dist_shard_placement_nodeport - 1] = Int64GetDatum(nodePort);
|
|
values[Anum_pg_dist_shard_placement_placementid - 1] = Int64GetDatum(placementId);
|
|
|
|
/* open shard placement relation and insert new tuple */
|
|
pgDistShardPlacement = heap_open(DistShardPlacementRelationId(), RowExclusiveLock);
|
|
|
|
tupleDescriptor = RelationGetDescr(pgDistShardPlacement);
|
|
heapTuple = heap_form_tuple(tupleDescriptor, values, isNulls);
|
|
|
|
simple_heap_insert(pgDistShardPlacement, heapTuple);
|
|
CatalogUpdateIndexes(pgDistShardPlacement, heapTuple);
|
|
|
|
CitusInvalidateRelcacheByShardId(shardId);
|
|
|
|
CommandCounterIncrement();
|
|
heap_close(pgDistShardPlacement, RowExclusiveLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* InsertIntoPgDistPartition inserts a new tuple into pg_dist_partition.
|
|
*/
|
|
void
|
|
InsertIntoPgDistPartition(Oid relationId, char distributionMethod,
|
|
Var *distributionColumn, uint32 colocationId,
|
|
char replicationModel)
|
|
{
|
|
Relation pgDistPartition = NULL;
|
|
char *distributionColumnString = NULL;
|
|
|
|
HeapTuple newTuple = NULL;
|
|
Datum newValues[Natts_pg_dist_partition];
|
|
bool newNulls[Natts_pg_dist_partition];
|
|
|
|
/* open system catalog and insert new tuple */
|
|
pgDistPartition = heap_open(DistPartitionRelationId(), RowExclusiveLock);
|
|
|
|
/* form new tuple for pg_dist_partition */
|
|
memset(newValues, 0, sizeof(newValues));
|
|
memset(newNulls, false, sizeof(newNulls));
|
|
|
|
newValues[Anum_pg_dist_partition_logicalrelid - 1] =
|
|
ObjectIdGetDatum(relationId);
|
|
newValues[Anum_pg_dist_partition_partmethod - 1] =
|
|
CharGetDatum(distributionMethod);
|
|
newValues[Anum_pg_dist_partition_colocationid - 1] = UInt32GetDatum(colocationId);
|
|
newValues[Anum_pg_dist_partition_repmodel - 1] = CharGetDatum(replicationModel);
|
|
|
|
/* set partkey column to NULL for reference tables */
|
|
if (distributionMethod != DISTRIBUTE_BY_NONE)
|
|
{
|
|
distributionColumnString = nodeToString((Node *) distributionColumn);
|
|
|
|
newValues[Anum_pg_dist_partition_partkey - 1] =
|
|
CStringGetTextDatum(distributionColumnString);
|
|
}
|
|
else
|
|
{
|
|
newValues[Anum_pg_dist_partition_partkey - 1] = PointerGetDatum(NULL);
|
|
newNulls[Anum_pg_dist_partition_partkey - 1] = true;
|
|
}
|
|
|
|
newTuple = heap_form_tuple(RelationGetDescr(pgDistPartition), newValues, newNulls);
|
|
|
|
/* finally insert tuple, build index entries & register cache invalidation */
|
|
simple_heap_insert(pgDistPartition, newTuple);
|
|
CatalogUpdateIndexes(pgDistPartition, newTuple);
|
|
CitusInvalidateRelcacheByRelid(relationId);
|
|
|
|
RecordDistributedRelationDependencies(relationId, (Node *) distributionColumn);
|
|
|
|
CommandCounterIncrement();
|
|
heap_close(pgDistPartition, NoLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* RecordDistributedRelationDependencies creates the dependency entries
|
|
* necessary for a distributed relation in addition to the preexisting ones
|
|
* for a normal relation.
|
|
*
|
|
* We create one dependency from the (now distributed) relation to the citus
|
|
* extension to prevent the extension from being dropped while distributed
|
|
* tables exist. Furthermore a dependency from pg_dist_partition's
|
|
* distribution clause to the underlying columns is created, but it's marked
|
|
* as being owned by the relation itself. That means the entire table can be
|
|
* dropped, but the column itself can't. Neither can the type of the
|
|
* distribution column be changed (c.f. ATExecAlterColumnType).
|
|
*/
|
|
static void
|
|
RecordDistributedRelationDependencies(Oid distributedRelationId, Node *distributionKey)
|
|
{
|
|
ObjectAddress relationAddr = { 0, 0, 0 };
|
|
ObjectAddress citusExtensionAddr = { 0, 0, 0 };
|
|
|
|
relationAddr.classId = RelationRelationId;
|
|
relationAddr.objectId = distributedRelationId;
|
|
relationAddr.objectSubId = 0;
|
|
|
|
citusExtensionAddr.classId = ExtensionRelationId;
|
|
citusExtensionAddr.objectId = get_extension_oid("citus", false);
|
|
citusExtensionAddr.objectSubId = 0;
|
|
|
|
/* dependency from table entry to extension */
|
|
recordDependencyOn(&relationAddr, &citusExtensionAddr, DEPENDENCY_NORMAL);
|
|
|
|
/* make sure the distribution key column/expression does not just go away */
|
|
recordDependencyOnSingleRelExpr(&relationAddr, distributionKey, distributedRelationId,
|
|
DEPENDENCY_NORMAL, DEPENDENCY_NORMAL);
|
|
}
|
|
|
|
|
|
/*
|
|
* DeletePartitionRow removes the row from pg_dist_partition where the logicalrelid
|
|
* field equals to distributedRelationId. Then, the function invalidates the
|
|
* metadata cache.
|
|
*/
|
|
void
|
|
DeletePartitionRow(Oid distributedRelationId)
|
|
{
|
|
Relation pgDistPartition = NULL;
|
|
HeapTuple heapTuple = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
|
|
pgDistPartition = heap_open(DistPartitionRelationId(), RowExclusiveLock);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_partition_logicalrelid,
|
|
BTEqualStrategyNumber, F_OIDEQ, ObjectIdGetDatum(distributedRelationId));
|
|
|
|
scanDescriptor = systable_beginscan(pgDistPartition, InvalidOid, false, NULL,
|
|
scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
if (!HeapTupleIsValid(heapTuple))
|
|
{
|
|
ereport(ERROR, (errmsg("could not find valid entry for partition %d",
|
|
distributedRelationId)));
|
|
}
|
|
|
|
simple_heap_delete(pgDistPartition, &heapTuple->t_self);
|
|
|
|
systable_endscan(scanDescriptor);
|
|
|
|
/* invalidate the cache */
|
|
CitusInvalidateRelcacheByRelid(distributedRelationId);
|
|
|
|
/* increment the counter so that next command can see the row */
|
|
CommandCounterIncrement();
|
|
|
|
heap_close(pgDistPartition, RowExclusiveLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* DeleteShardRow opens the shard system catalog, finds the unique row that has
|
|
* the given shardId, and deletes this row.
|
|
*/
|
|
void
|
|
DeleteShardRow(uint64 shardId)
|
|
{
|
|
Relation pgDistShard = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
bool indexOK = true;
|
|
HeapTuple heapTuple = NULL;
|
|
Form_pg_dist_shard pgDistShardForm = NULL;
|
|
Oid distributedRelationId = InvalidOid;
|
|
|
|
pgDistShard = heap_open(DistShardRelationId(), RowExclusiveLock);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_shard_shardid,
|
|
BTEqualStrategyNumber, F_INT8EQ, Int64GetDatum(shardId));
|
|
|
|
scanDescriptor = systable_beginscan(pgDistShard,
|
|
DistShardShardidIndexId(), indexOK,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
if (!HeapTupleIsValid(heapTuple))
|
|
{
|
|
ereport(ERROR, (errmsg("could not find valid entry for shard "
|
|
UINT64_FORMAT, shardId)));
|
|
}
|
|
|
|
pgDistShardForm = (Form_pg_dist_shard) GETSTRUCT(heapTuple);
|
|
distributedRelationId = pgDistShardForm->logicalrelid;
|
|
|
|
simple_heap_delete(pgDistShard, &heapTuple->t_self);
|
|
|
|
systable_endscan(scanDescriptor);
|
|
|
|
/* invalidate previous cache entry */
|
|
CitusInvalidateRelcacheByRelid(distributedRelationId);
|
|
|
|
CommandCounterIncrement();
|
|
heap_close(pgDistShard, RowExclusiveLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* DeleteShardPlacementRow opens the shard placement system catalog, finds the
|
|
* first (unique) row that corresponds to the given shardId and worker node, and
|
|
* deletes this row.
|
|
*/
|
|
uint64
|
|
DeleteShardPlacementRow(uint64 shardId, char *workerName, uint32 workerPort)
|
|
{
|
|
Relation pgDistShardPlacement = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
bool indexOK = true;
|
|
HeapTuple heapTuple = NULL;
|
|
bool heapTupleFound = false;
|
|
TupleDesc tupleDescriptor = NULL;
|
|
int64 placementId = INVALID_PLACEMENT_ID;
|
|
bool isNull = false;
|
|
|
|
pgDistShardPlacement = heap_open(DistShardPlacementRelationId(), RowExclusiveLock);
|
|
tupleDescriptor = RelationGetDescr(pgDistShardPlacement);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_shard_placement_shardid,
|
|
BTEqualStrategyNumber, F_INT8EQ, Int64GetDatum(shardId));
|
|
|
|
scanDescriptor = systable_beginscan(pgDistShardPlacement,
|
|
DistShardPlacementShardidIndexId(), indexOK,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
while (HeapTupleIsValid(heapTuple))
|
|
{
|
|
ShardPlacement *placement = TupleToShardPlacement(tupleDescriptor, heapTuple);
|
|
if (strncmp(placement->nodeName, workerName, WORKER_LENGTH) == 0 &&
|
|
placement->nodePort == workerPort)
|
|
{
|
|
heapTupleFound = true;
|
|
break;
|
|
}
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
}
|
|
|
|
/* if we couldn't find the shard placement to delete, error out */
|
|
if (!heapTupleFound)
|
|
{
|
|
ereport(ERROR, (errmsg("could not find valid entry for shard placement "
|
|
UINT64_FORMAT " on node \"%s:%u\"",
|
|
shardId, workerName, workerPort)));
|
|
}
|
|
|
|
placementId = heap_getattr(heapTuple, Anum_pg_dist_shard_placement_placementid,
|
|
tupleDescriptor, &isNull);
|
|
if (HeapTupleHeaderGetNatts(heapTuple->t_data) != Natts_pg_dist_shard_placement ||
|
|
HeapTupleHasNulls(heapTuple))
|
|
{
|
|
ereport(ERROR, (errmsg("unexpected null in pg_dist_shard_placement_tuple")));
|
|
}
|
|
|
|
simple_heap_delete(pgDistShardPlacement, &heapTuple->t_self);
|
|
systable_endscan(scanDescriptor);
|
|
|
|
CitusInvalidateRelcacheByShardId(shardId);
|
|
|
|
CommandCounterIncrement();
|
|
heap_close(pgDistShardPlacement, RowExclusiveLock);
|
|
|
|
return placementId;
|
|
}
|
|
|
|
|
|
/*
|
|
* UpdateShardPlacementState sets the shardState for the placement identified
|
|
* by placementId.
|
|
*/
|
|
void
|
|
UpdateShardPlacementState(uint64 placementId, char shardState)
|
|
{
|
|
Relation pgDistShardPlacement = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
bool indexOK = true;
|
|
HeapTuple heapTuple = NULL;
|
|
TupleDesc tupleDescriptor = NULL;
|
|
Datum values[Natts_pg_dist_shard_placement];
|
|
bool isnull[Natts_pg_dist_shard_placement];
|
|
bool replace[Natts_pg_dist_shard_placement];
|
|
uint64 shardId = INVALID_SHARD_ID;
|
|
bool colIsNull = false;
|
|
|
|
pgDistShardPlacement = heap_open(DistShardPlacementRelationId(), RowExclusiveLock);
|
|
tupleDescriptor = RelationGetDescr(pgDistShardPlacement);
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_shard_placement_placementid,
|
|
BTEqualStrategyNumber, F_INT8EQ, Int64GetDatum(placementId));
|
|
|
|
scanDescriptor = systable_beginscan(pgDistShardPlacement,
|
|
DistShardPlacementPlacementidIndexId(), indexOK,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
if (!HeapTupleIsValid(heapTuple))
|
|
{
|
|
ereport(ERROR, (errmsg("could not find valid entry for shard placement "
|
|
UINT64_FORMAT,
|
|
placementId)));
|
|
}
|
|
|
|
memset(replace, 0, sizeof(replace));
|
|
|
|
values[Anum_pg_dist_shard_placement_shardstate - 1] = CharGetDatum(shardState);
|
|
isnull[Anum_pg_dist_shard_placement_shardstate - 1] = false;
|
|
replace[Anum_pg_dist_shard_placement_shardstate - 1] = true;
|
|
|
|
heapTuple = heap_modify_tuple(heapTuple, tupleDescriptor, values, isnull, replace);
|
|
simple_heap_update(pgDistShardPlacement, &heapTuple->t_self, heapTuple);
|
|
|
|
CatalogUpdateIndexes(pgDistShardPlacement, heapTuple);
|
|
|
|
shardId = DatumGetInt64(heap_getattr(heapTuple,
|
|
Anum_pg_dist_shard_placement_shardid,
|
|
tupleDescriptor, &colIsNull));
|
|
Assert(!colIsNull);
|
|
CitusInvalidateRelcacheByShardId(shardId);
|
|
|
|
CommandCounterIncrement();
|
|
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(pgDistShardPlacement, NoLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* UpdateColocationGroupReplicationFactor finds colocation group record for given
|
|
* colocationId and updates its replication factor to given replicationFactor value.
|
|
* Since we do not cache pg_dist_colocation table, we do not need to invalidate the
|
|
* cache after updating replication factor.
|
|
*/
|
|
void
|
|
UpdateColocationGroupReplicationFactor(uint32 colocationId, int replicationFactor)
|
|
{
|
|
Relation pgDistColocation = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
bool indexOK = true;
|
|
HeapTuple heapTuple = NULL;
|
|
HeapTuple newHeapTuple = NULL;
|
|
TupleDesc tupleDescriptor = NULL;
|
|
|
|
Datum values[Natts_pg_dist_colocation];
|
|
bool isnull[Natts_pg_dist_colocation];
|
|
bool replace[Natts_pg_dist_colocation];
|
|
|
|
/* we first search for colocation group by its colocation id */
|
|
pgDistColocation = heap_open(DistColocationRelationId(), RowExclusiveLock);
|
|
tupleDescriptor = RelationGetDescr(pgDistColocation);
|
|
ScanKeyInit(&scanKey[0], Anum_pg_dist_colocation_colocationid, BTEqualStrategyNumber,
|
|
F_OIDEQ, ObjectIdGetDatum(colocationId));
|
|
|
|
scanDescriptor = systable_beginscan(pgDistColocation,
|
|
DistColocationColocationidIndexId(), indexOK,
|
|
NULL, scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
if (!HeapTupleIsValid(heapTuple))
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("could not find valid entry for colocation group "
|
|
"%d", colocationId)));
|
|
}
|
|
|
|
/* after we find colocation group, we update it with new values */
|
|
memset(replace, false, sizeof(replace));
|
|
memset(isnull, false, sizeof(isnull));
|
|
memset(values, 0, sizeof(values));
|
|
|
|
values[Anum_pg_dist_colocation_replicationfactor - 1] = Int32GetDatum(
|
|
replicationFactor);
|
|
replace[Anum_pg_dist_colocation_replicationfactor - 1] = true;
|
|
|
|
newHeapTuple = heap_modify_tuple(heapTuple, tupleDescriptor, values, isnull, replace);
|
|
simple_heap_update(pgDistColocation, &newHeapTuple->t_self, newHeapTuple);
|
|
|
|
CatalogUpdateIndexes(pgDistColocation, newHeapTuple);
|
|
|
|
CommandCounterIncrement();
|
|
|
|
heap_freetuple(newHeapTuple);
|
|
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(pgDistColocation, NoLock);
|
|
}
|
|
|
|
|
|
/*
|
|
* Check that the current user has `mode` permissions on relationId, error out
|
|
* if not. Superusers always have such permissions.
|
|
*/
|
|
void
|
|
EnsureTablePermissions(Oid relationId, AclMode mode)
|
|
{
|
|
AclResult aclresult;
|
|
|
|
aclresult = pg_class_aclcheck(relationId, GetUserId(), mode);
|
|
|
|
if (aclresult != ACLCHECK_OK)
|
|
{
|
|
aclcheck_error(aclresult, ACL_KIND_CLASS,
|
|
get_rel_name(relationId));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Check that the current user has owner rights to relationId, error out if
|
|
* not. Superusers are regarded as owners.
|
|
*/
|
|
void
|
|
EnsureTableOwner(Oid relationId)
|
|
{
|
|
if (!pg_class_ownercheck(relationId, GetUserId()))
|
|
{
|
|
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS,
|
|
get_rel_name(relationId));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* EnsureSuperUser check that the current user is a superuser and errors out if not.
|
|
*/
|
|
void
|
|
EnsureSuperUser(void)
|
|
{
|
|
if (!superuser())
|
|
{
|
|
ereport(ERROR, (errmsg("operation is not allowed"),
|
|
errhint("Run the command with a superuser.")));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Return a table's owner as a string.
|
|
*/
|
|
char *
|
|
TableOwner(Oid relationId)
|
|
{
|
|
Oid userId = InvalidOid;
|
|
HeapTuple tuple;
|
|
|
|
tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relationId));
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
ereport(ERROR, (errcode(ERRCODE_UNDEFINED_TABLE),
|
|
errmsg("relation with OID %u does not exist", relationId)));
|
|
}
|
|
|
|
userId = ((Form_pg_class) GETSTRUCT(tuple))->relowner;
|
|
|
|
ReleaseSysCache(tuple);
|
|
|
|
return GetUserNameFromId(userId, false);
|
|
}
|
|
|
|
|
|
/*
|
|
* TableReferenced function checks whether given table is referenced by another table
|
|
* via foreign constraints. If it is referenced, this function returns true. To check
|
|
* that, this function searches given relation at pg_constraints system catalog. However
|
|
* since there is no index for the column we searched, this function performs sequential
|
|
* search, therefore call this function with caution.
|
|
*/
|
|
bool
|
|
TableReferenced(Oid relationId)
|
|
{
|
|
Relation pgConstraint = NULL;
|
|
HeapTuple heapTuple = NULL;
|
|
SysScanDesc scanDescriptor = NULL;
|
|
ScanKeyData scanKey[1];
|
|
int scanKeyCount = 1;
|
|
Oid scanIndexId = InvalidOid;
|
|
bool useIndex = false;
|
|
|
|
pgConstraint = heap_open(ConstraintRelationId, AccessShareLock);
|
|
|
|
ScanKeyInit(&scanKey[0], Anum_pg_constraint_confrelid, BTEqualStrategyNumber, F_OIDEQ,
|
|
relationId);
|
|
scanDescriptor = systable_beginscan(pgConstraint, scanIndexId, useIndex, NULL,
|
|
scanKeyCount, scanKey);
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
while (HeapTupleIsValid(heapTuple))
|
|
{
|
|
Form_pg_constraint constraintForm = (Form_pg_constraint) GETSTRUCT(heapTuple);
|
|
|
|
if (constraintForm->contype == CONSTRAINT_FOREIGN)
|
|
{
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(pgConstraint, NoLock);
|
|
|
|
return true;
|
|
}
|
|
|
|
heapTuple = systable_getnext(scanDescriptor);
|
|
}
|
|
|
|
systable_endscan(scanDescriptor);
|
|
heap_close(pgConstraint, NoLock);
|
|
|
|
return false;
|
|
}
|