citus/src/backend/distributed/executor/multi_router_executor.c

1958 lines
58 KiB
C

/*
* multi_router_executor.c
*
* Routines for executing remote tasks as part of a distributed execution plan
* with synchronous connections. The routines utilize the connection cache.
* Therefore, only a single connection is opened for each worker. Also, router
* executor does not require a master table and a master query. In other words,
* the results that are fetched from a single worker is sent to the output console
* directly. Lastly, router executor can only execute a single task.
*
* Copyright (c) 2012-2016, Citus Data, Inc.
*/
#include "postgres.h" /* IWYU pragma: keep */
#include "c.h"
#include "fmgr.h" /* IWYU pragma: keep */
#include "funcapi.h"
#include "libpq-fe.h"
#include "miscadmin.h"
#include <string.h>
#include "access/htup.h"
#include "access/sdir.h"
#include "access/transam.h"
#include "access/tupdesc.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "distributed/backend_data.h"
#include "distributed/citus_clauses.h"
#include "distributed/citus_ruleutils.h"
#include "distributed/connection_management.h"
#include "distributed/deparse_shard_query.h"
#include "distributed/listutils.h"
#include "distributed/master_metadata_utility.h"
#include "distributed/master_protocol.h"
#include "distributed/metadata_cache.h"
#include "distributed/metadata_sync.h"
#include "distributed/multi_executor.h"
#include "distributed/multi_partitioning_utils.h"
#include "distributed/multi_physical_planner.h"
#include "distributed/distributed_planner.h"
#include "distributed/multi_router_executor.h"
#include "distributed/multi_router_planner.h"
#include "distributed/multi_shard_transaction.h"
#include "distributed/placement_connection.h"
#include "distributed/relation_access_tracking.h"
#include "distributed/subplan_execution.h"
#include "distributed/relay_utility.h"
#include "distributed/remote_commands.h"
#include "distributed/remote_transaction.h"
#include "distributed/resource_lock.h"
#include "distributed/version_compat.h"
#include "executor/execdesc.h"
#include "executor/executor.h"
#include "executor/instrument.h"
#include "executor/tuptable.h"
#include "lib/stringinfo.h"
#include "nodes/execnodes.h"
#include "nodes/nodes.h"
#include "nodes/params.h"
#include "nodes/parsenodes.h"
#include "nodes/pg_list.h"
#include "nodes/plannodes.h"
#include "storage/ipc.h"
#include "storage/lock.h"
#include "tcop/dest.h"
#include "utils/elog.h"
#include "utils/errcodes.h"
#include "utils/hsearch.h"
#include "utils/int8.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/palloc.h"
#include "utils/tuplestore.h"
/* controls use of locks to enforce safe commutativity */
bool AllModificationsCommutative = false;
/* we've deprecated this flag, keeping here for some time not to break existing users */
bool EnableDeadlockPrevention = true;
/* number of nested stored procedure call levels we are currently in */
int StoredProcedureLevel = 0;
/* functions needed during run phase */
static void AcquireMetadataLocks(List *taskList);
static ShardPlacementAccess * CreatePlacementAccess(ShardPlacement *placement,
ShardPlacementAccessType accessType);
static int64 ExecuteSingleModifyTask(CitusScanState *scanState, Task *task, CmdType
operation, bool alwaysThrowErrorOnFailure, bool
expectResults);
static void ExecuteSingleSelectTask(CitusScanState *scanState, Task *task);
static List * BuildPlacementAccessList(int32 groupId, List *relationShardList,
ShardPlacementAccessType accessType);
static List * GetModifyConnections(Task *task, bool markCritical);
static int64 ExecuteModifyTasks(List *taskList, bool expectResults,
ParamListInfo paramListInfo, CitusScanState *scanState);
static void AcquireExecutorShardLock(Task *task, CmdType commandType);
static void AcquireExecutorMultiShardLocks(List *taskList);
static bool RequiresConsistentSnapshot(Task *task);
static void RouterMultiModifyExecScan(CustomScanState *node);
static void RouterSequentialModifyExecScan(CustomScanState *node);
static void ExtractParametersFromParamListInfo(ParamListInfo paramListInfo,
Oid **parameterTypes,
const char ***parameterValues);
static bool SendQueryInSingleRowMode(MultiConnection *connection, char *query,
ParamListInfo paramListInfo);
static bool StoreQueryResult(CitusScanState *scanState, MultiConnection *connection, bool
alwaysThrowErrorOnFailure, int64 *rows,
DistributedExecutionStats *executionStats);
static bool ConsumeQueryResult(MultiConnection *connection, bool
alwaysThrowErrorOnFailure, int64 *rows);
/*
* AcquireMetadataLocks acquires metadata locks on each of the anchor
* shards in the task list to prevent a shard being modified while it
* is being copied.
*/
static void
AcquireMetadataLocks(List *taskList)
{
ListCell *taskCell = NULL;
/*
* Note: to avoid the overhead of additional sorting, we assume tasks
* to be already sorted by shard ID such that deadlocks are avoided.
* This is true for INSERT/SELECT, which is the only multi-shard
* command right now.
*/
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
LockShardDistributionMetadata(task->anchorShardId, ShareLock);
}
}
/*
* AcquireExecutorShardLock acquires a lock on the shard for the given task and
* command type if necessary to avoid divergence between multiple replicas of
* the same shard. No lock is obtained when there is only one replica.
*
* The function determines the appropriate lock mode based on the commutativity
* rule of the command. In each case, it uses a lock mode that enforces the
* commutativity rule.
*
* The mapping is overridden when all_modifications_commutative is set to true.
* In that case, all modifications are treated as commutative, which can be used
* to communicate that the application is only generating commutative
* UPDATE/DELETE/UPSERT commands and exclusive locks are unnecessary.
*/
static void
AcquireExecutorShardLock(Task *task, CmdType commandType)
{
LOCKMODE lockMode = NoLock;
int64 shardId = task->anchorShardId;
if (commandType == CMD_SELECT)
{
/*
* The executor shard lock is used to maintain consistency between
* replicas and therefore no lock is required for read-only queries
* or in general when there is only one replica.
*/
lockMode = NoLock;
}
else if (list_length(task->taskPlacementList) == 1)
{
if (task->replicationModel == REPLICATION_MODEL_2PC)
{
/*
* While we don't need a lock to ensure writes are applied in
* a consistent order when there is a single replica. We also use
* shard resource locks as a crude implementation of SELECT..
* FOR UPDATE on reference tables, so we should always take
* a lock that conflicts with the FOR UPDATE/SHARE locks.
*/
lockMode = RowExclusiveLock;
}
else
{
/*
* When there is no replication, the worker itself can decide on
* on the order in which writes are applied.
*/
lockMode = NoLock;
}
}
else if (AllModificationsCommutative)
{
/*
* Bypass commutativity checks when citus.all_modifications_commutative
* is enabled.
*
* A RowExclusiveLock does not conflict with itself and therefore allows
* multiple commutative commands to proceed concurrently. It does
* conflict with ExclusiveLock, which may still be obtained by another
* session that executes an UPDATE/DELETE/UPSERT command with
* citus.all_modifications_commutative disabled.
*/
lockMode = RowExclusiveLock;
}
else if (task->upsertQuery || commandType == CMD_UPDATE || commandType == CMD_DELETE)
{
/*
* UPDATE/DELETE/UPSERT commands do not commute with other modifications
* since the rows modified by one command may be affected by the outcome
* of another command.
*
* We need to handle upsert before INSERT, because PostgreSQL models
* upsert commands as INSERT with an ON CONFLICT section.
*
* ExclusiveLock conflicts with all lock types used by modifications
* and therefore prevents other modifications from running
* concurrently.
*/
lockMode = ExclusiveLock;
}
else if (commandType == CMD_INSERT)
{
/*
* An INSERT commutes with other INSERT commands, since performing them
* out-of-order only affects the table order on disk, but not the
* contents.
*
* When a unique constraint exists, INSERTs are not strictly commutative,
* but whichever INSERT comes last will error out and thus has no effect.
* INSERT is not commutative with UPDATE/DELETE/UPSERT, since the
* UPDATE/DELETE/UPSERT may consider the INSERT, depending on execution
* order.
*
* A RowExclusiveLock does not conflict with itself and therefore allows
* multiple INSERT commands to proceed concurrently. It conflicts with
* ExclusiveLock obtained by UPDATE/DELETE/UPSERT, ensuring those do
* not run concurrently with INSERT.
*/
lockMode = RowExclusiveLock;
}
else
{
ereport(ERROR, (errmsg("unrecognized operation code: %d", (int) commandType)));
}
if (shardId != INVALID_SHARD_ID && lockMode != NoLock)
{
ShardInterval *shardInterval = LoadShardInterval(shardId);
SerializeNonCommutativeWrites(list_make1(shardInterval), lockMode);
}
/*
* If lock clause exists and it effects any reference table, we need to get
* lock on shard resource. Type of lock is determined by the type of row lock
* given in the query. If the type of row lock is either FOR NO KEY UPDATE or
* FOR UPDATE we get ExclusiveLock on shard resource. We get ShareLock if it
* is FOR KEY SHARE or FOR KEY SHARE.
*
* We have selected these lock types according to conflict table given in the
* Postgres documentation. It is given that FOR UPDATE and FOR NO KEY UPDATE
* must be conflict with each other modify command. By getting ExlcusiveLock
* we guarantee that. Note that, getting ExlusiveLock does not mimic the
* behaviour of Postgres exactly. Getting row lock with FOR NO KEY UPDATE and
* FOR KEY SHARE do not conflicts in Postgres, yet they block each other in
* our implementation. Since FOR SHARE and FOR KEY SHARE does not conflict
* with each other but conflicts with modify commands, we get ShareLock for
* them.
*/
if (task->relationRowLockList != NIL)
{
ListCell *rtiLockCell = NULL;
LOCKMODE rowLockMode = NoLock;
foreach(rtiLockCell, task->relationRowLockList)
{
RelationRowLock *relationRowLock = (RelationRowLock *) lfirst(rtiLockCell);
LockClauseStrength rowLockStrength = relationRowLock->rowLockStrength;
Oid relationId = relationRowLock->relationId;
if (PartitionMethod(relationId) == DISTRIBUTE_BY_NONE)
{
List *shardIntervalList = LoadShardIntervalList(relationId);
if (rowLockStrength == LCS_FORKEYSHARE || rowLockStrength == LCS_FORSHARE)
{
rowLockMode = ShareLock;
}
else if (rowLockStrength == LCS_FORNOKEYUPDATE || rowLockStrength ==
LCS_FORUPDATE)
{
rowLockMode = ExclusiveLock;
}
SerializeNonCommutativeWrites(shardIntervalList, rowLockMode);
}
}
}
/*
* If the task has a subselect, then we may need to lock the shards from which
* the query selects as well to prevent the subselects from seeing different
* results on different replicas. In particular this prevents INSERT.. SELECT
* commands from having a different effect on different placements.
*/
if (RequiresConsistentSnapshot(task))
{
/*
* ExclusiveLock conflicts with all lock types used by modifications
* and therefore prevents other modifications from running
* concurrently.
*/
LockRelationShardResources(task->relationShardList, ExclusiveLock);
}
}
/*
* AcquireExecutorMultiShardLocks acquires shard locks needed for execution
* of writes on multiple shards. In addition to honouring commutativity
* rules, we currently only allow a single multi-shard command on a shard at
* a time. Otherwise, concurrent multi-shard commands may take row-level
* locks on the shard placements in a different order and create a distributed
* deadlock. This applies even when writes are commutative and/or there is
* no replication.
*
* 1. If citus.all_modifications_commutative is set to true, then all locks
* are acquired as ShareUpdateExclusiveLock.
*
* 2. If citus.all_modifications_commutative is false, then only the shards
* with 2 or more replicas are locked with ExclusiveLock. Otherwise, the
* lock is acquired with ShareUpdateExclusiveLock.
*
* ShareUpdateExclusiveLock conflicts with itself such that only one
* multi-shard modification at a time is allowed on a shard. It also conflicts
* with ExclusiveLock, which ensures that updates/deletes/upserts are applied
* in the same order on all placements. It does not conflict with
* RowExclusiveLock, which is normally obtained by single-shard, commutative
* writes.
*/
static void
AcquireExecutorMultiShardLocks(List *taskList)
{
ListCell *taskCell = NULL;
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
LOCKMODE lockMode = NoLock;
if (AllModificationsCommutative || list_length(task->taskPlacementList) == 1)
{
/*
* When all writes are commutative then we only need to prevent multi-shard
* commands from running concurrently with each other and with commands
* that are explicitly non-commutative. When there is no replication then
* we only need to prevent concurrent multi-shard commands.
*
* In either case, ShareUpdateExclusive has the desired effect, since
* it conflicts with itself and ExclusiveLock (taken by non-commutative
* writes).
*
* However, some users find this too restrictive, so we allow them to
* reduce to a RowExclusiveLock when citus.enable_deadlock_prevention
* is enabled, which lets multi-shard modifications run in parallel as
* long as they all disable the GUC.
*/
if (EnableDeadlockPrevention)
{
lockMode = ShareUpdateExclusiveLock;
}
else
{
lockMode = RowExclusiveLock;
}
}
else
{
/*
* When there is replication, prevent all concurrent writes to the same
* shards to ensure the writes are ordered.
*/
lockMode = ExclusiveLock;
}
/*
* If we are dealing with a partition we are also taking locks on parent table
* to prevent deadlocks on concurrent operations on a partition and its parent.
*/
LockParentShardResourceIfPartition(task->anchorShardId, lockMode);
LockShardResource(task->anchorShardId, lockMode);
/*
* If the task has a subselect, then we may need to lock the shards from which
* the query selects as well to prevent the subselects from seeing different
* results on different replicas.
*/
if (RequiresConsistentSnapshot(task))
{
/*
* ExclusiveLock conflicts with all lock types used by modifications
* and therefore prevents other modifications from running
* concurrently.
*/
LockRelationShardResources(task->relationShardList, ExclusiveLock);
}
}
}
/*
* RequiresConsistentSnapshot returns true if the given task need to take
* the necessary locks to ensure that a subquery in the modify query
* returns the same output for all task placements.
*/
static bool
RequiresConsistentSnapshot(Task *task)
{
bool requiresIsolation = false;
if (!task->modifyWithSubquery)
{
/*
* Other commands do not read from other shards.
*/
requiresIsolation = false;
}
else if (list_length(task->taskPlacementList) == 1)
{
/*
* If there is only one replica then we fully rely on PostgreSQL to
* provide SELECT isolation. In this case, we do not provide isolation
* across the shards, but that was never our intention.
*/
requiresIsolation = false;
}
else if (AllModificationsCommutative)
{
/*
* An INSERT/SELECT is commutative with other writes if it excludes
* any ongoing writes based on the filter conditions. Without knowing
* whether this is true, we assume the user took this into account
* when enabling citus.all_modifications_commutative. This option
* gives users an escape from aggressive locking during INSERT/SELECT.
*/
requiresIsolation = false;
}
else
{
/*
* If this is a non-commutative write, then we need to block ongoing
* writes to make sure that the subselect returns the same result
* on all placements.
*/
requiresIsolation = true;
}
return requiresIsolation;
}
/*
* CitusModifyBeginScan first evaluates expressions in the query and then
* performs shard pruning in case the partition column in an insert was
* defined as a function call.
*
* The function also checks the validity of the given custom scan node and
* gets locks on the shards involved in the task list of the distributed plan.
*
* It also sets the backend as initiated by Citus.
*/
void
CitusModifyBeginScan(CustomScanState *node, EState *estate, int eflags)
{
CitusScanState *scanState = (CitusScanState *) node;
DistributedPlan *distributedPlan = NULL;
Job *workerJob = NULL;
Query *jobQuery = NULL;
List *taskList = NIL;
MarkCitusInitiatedCoordinatorBackend();
/*
* We must not change the distributed plan since it may be reused across multiple
* executions of a prepared statement. Instead we create a deep copy that we only
* use for the current execution.
*/
distributedPlan = scanState->distributedPlan = copyObject(scanState->distributedPlan);
workerJob = distributedPlan->workerJob;
jobQuery = workerJob->jobQuery;
taskList = workerJob->taskList;
if (workerJob->requiresMasterEvaluation)
{
PlanState *planState = &(scanState->customScanState.ss.ps);
EState *executorState = planState->state;
ExecuteMasterEvaluableFunctions(jobQuery, planState);
/*
* We've processed parameters in ExecuteMasterEvaluableFunctions and
* don't need to send their values to workers, since they will be
* represented as constants in the deparsed query. To avoid sending
* parameter values, we set the parameter list to NULL.
*/
executorState->es_param_list_info = NULL;
if (workerJob->deferredPruning)
{
DeferredErrorMessage *planningError = NULL;
/* need to perform shard pruning, rebuild the task list from scratch */
taskList = RouterInsertTaskList(jobQuery, &planningError);
if (planningError != NULL)
{
RaiseDeferredError(planningError, ERROR);
}
workerJob->taskList = taskList;
workerJob->partitionKeyValue = ExtractInsertPartitionKeyValue(jobQuery);
}
RebuildQueryStrings(jobQuery, taskList);
}
/* prevent concurrent placement changes */
AcquireMetadataLocks(taskList);
/*
* We are taking locks on partitions of partitioned tables. These locks are
* necessary for locking tables that appear in the SELECT part of the query.
*/
LockPartitionsInRelationList(distributedPlan->relationIdList, AccessShareLock);
/* modify tasks are always assigned using first-replica policy */
workerJob->taskList = FirstReplicaAssignTaskList(taskList);
}
/*
* RouterModifyExecScan executes a list of tasks on remote nodes, retrieves
* the results and, if RETURNING is used or SELECT FOR UPDATE executed,
* returns the results with a TupleTableSlot.
*
* The function can handle both single task query executions,
* sequential or parallel multi-task query executions.
*/
TupleTableSlot *
RouterModifyExecScan(CustomScanState *node)
{
CitusScanState *scanState = (CitusScanState *) node;
TupleTableSlot *resultSlot = NULL;
if (!scanState->finishedRemoteScan)
{
DistributedPlan *distributedPlan = scanState->distributedPlan;
Job *workerJob = distributedPlan->workerJob;
List *taskList = workerJob->taskList;
bool parallelExecution = true;
ExecuteSubPlans(distributedPlan);
if (list_length(taskList) <= 1 ||
IsMultiRowInsert(workerJob->jobQuery) ||
MultiShardConnectionType == SEQUENTIAL_CONNECTION)
{
parallelExecution = false;
}
if (parallelExecution)
{
RouterMultiModifyExecScan(node);
}
else
{
RouterSequentialModifyExecScan(node);
}
scanState->finishedRemoteScan = true;
}
resultSlot = ReturnTupleFromTuplestore(scanState);
return resultSlot;
}
/*
* RouterSequentialModifyExecScan executes 0 or more modifications on a
* distributed table sequentially and stores them in custom scan's tuple
* store. Note that we also use this path for SELECT ... FOR UPDATE queries.
*/
static void
RouterSequentialModifyExecScan(CustomScanState *node)
{
CitusScanState *scanState = (CitusScanState *) node;
DistributedPlan *distributedPlan = scanState->distributedPlan;
bool hasReturning = distributedPlan->hasReturning;
Job *workerJob = distributedPlan->workerJob;
List *taskList = workerJob->taskList;
ListCell *taskCell = NULL;
bool multipleTasks = list_length(taskList) > 1;
EState *executorState = scanState->customScanState.ss.ps.state;
bool taskListRequires2PC = TaskListRequires2PC(taskList);
bool alwaysThrowErrorOnFailure = false;
CmdType operation = scanState->distributedPlan->operation;
Assert(!scanState->finishedRemoteScan);
/*
* We could naturally handle function-based transactions (i.e. those using
* PL/pgSQL or similar) by checking the type of queryDesc->dest, but some
* customers already use functions that touch multiple shards from within
* a function, so we'll ignore functions for now.
*/
if (IsTransactionBlock() || multipleTasks || taskListRequires2PC ||
StoredProcedureLevel > 0)
{
BeginOrContinueCoordinatedTransaction();
/*
* Although using two phase commit protocol is an independent decision than
* failing on any error, we prefer to couple them. Our motivation is that
* the failures are rare, and we prefer to avoid marking placements invalid
* in case of failures.
*
* For reference tables, we always set alwaysThrowErrorOnFailure since we
* absolutely want to avoid marking any placements invalid.
*
* We also cannot handle failures when there is RETURNING and there are more
* than one task to execute.
*/
if (taskListRequires2PC)
{
CoordinatedTransactionUse2PC();
alwaysThrowErrorOnFailure = true;
}
else if (multipleTasks && hasReturning)
{
alwaysThrowErrorOnFailure = true;
}
}
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
bool expectResults = (hasReturning || task->relationRowLockList != NIL);
executorState->es_processed +=
ExecuteSingleModifyTask(scanState, task, operation,
alwaysThrowErrorOnFailure, expectResults);
}
}
/*
* TaskListRequires2PC determines whether the given task list requires 2PC
* because the tasks provided operates on a reference table or there are multiple
* tasks and the commit protocol is 2PC.
*
* Note that we currently do not generate tasks lists that involves multiple different
* tables, thus we only check the first task in the list for reference tables.
*/
bool
TaskListRequires2PC(List *taskList)
{
Task *task = NULL;
bool multipleTasks = false;
uint64 anchorShardId = INVALID_SHARD_ID;
if (taskList == NIL)
{
return false;
}
task = (Task *) linitial(taskList);
if (task->replicationModel == REPLICATION_MODEL_2PC)
{
return true;
}
/*
* Some tasks don't set replicationModel thus we rely on
* the anchorShardId as well replicationModel.
*
* TODO: Do we ever need replicationModel in the Task structure?
* Can't we always rely on anchorShardId?
*/
anchorShardId = task->anchorShardId;
if (ReferenceTableShardId(anchorShardId))
{
return true;
}
multipleTasks = list_length(taskList) > 1;
if (multipleTasks && MultiShardCommitProtocol == COMMIT_PROTOCOL_2PC)
{
return true;
}
return false;
}
/*
* RouterMultiModifyExecScan executes a list of tasks on remote nodes, retrieves
* the results and, if RETURNING is used, stores them in custom scan's tuple store.
*/
static void
RouterMultiModifyExecScan(CustomScanState *node)
{
CitusScanState *scanState = (CitusScanState *) node;
DistributedPlan *distributedPlan = scanState->distributedPlan;
Job *workerJob = distributedPlan->workerJob;
List *taskList = workerJob->taskList;
bool hasReturning = distributedPlan->hasReturning;
bool isModificationQuery = true;
Assert(!scanState->finishedRemoteScan);
ExecuteMultipleTasks(scanState, taskList, isModificationQuery, hasReturning);
}
/*
* RouterSelectExecScan executes a single select task on the remote node,
* retrieves the results and stores them in custom scan's tuple store. Then, it
* returns tuples one by one from this tuple store.
*/
TupleTableSlot *
RouterSelectExecScan(CustomScanState *node)
{
CitusScanState *scanState = (CitusScanState *) node;
TupleTableSlot *resultSlot = NULL;
if (!scanState->finishedRemoteScan)
{
DistributedPlan *distributedPlan = scanState->distributedPlan;
Job *workerJob = distributedPlan->workerJob;
List *taskList = workerJob->taskList;
/* we are taking locks on partitions of partitioned tables */
LockPartitionsInRelationList(distributedPlan->relationIdList, AccessShareLock);
ExecuteSubPlans(distributedPlan);
if (list_length(taskList) > 0)
{
Task *task = (Task *) linitial(taskList);
ExecuteSingleSelectTask(scanState, task);
}
scanState->finishedRemoteScan = true;
}
resultSlot = ReturnTupleFromTuplestore(scanState);
return resultSlot;
}
/*
* ExecuteSingleSelectTask executes the task on the remote node, retrieves the
* results and stores them in a tuple store.
*
* If the task fails on one of the placements, the function retries it on
* other placements or errors out if the query fails on all placements.
*/
static void
ExecuteSingleSelectTask(CitusScanState *scanState, Task *task)
{
ParamListInfo paramListInfo =
scanState->customScanState.ss.ps.state->es_param_list_info;
List *taskPlacementList = task->taskPlacementList;
ListCell *taskPlacementCell = NULL;
char *queryString = task->queryString;
List *relationShardList = task->relationShardList;
DistributedExecutionStats executionStats = { 0 };
/*
* Try to run the query to completion on one placement. If the query fails
* attempt the query on the next placement.
*/
foreach(taskPlacementCell, taskPlacementList)
{
ShardPlacement *taskPlacement = (ShardPlacement *) lfirst(taskPlacementCell);
bool queryOK = false;
bool dontFailOnError = false;
int64 currentAffectedTupleCount = 0;
int connectionFlags = SESSION_LIFESPAN;
List *placementAccessList = NIL;
MultiConnection *connection = NULL;
if (list_length(relationShardList) > 0)
{
placementAccessList = BuildPlacementSelectList(taskPlacement->groupId,
relationShardList);
Assert(list_length(placementAccessList) == list_length(relationShardList));
}
else
{
/*
* When the SELECT prunes down to 0 shards, just use the dummy placement.
*
* FIXME: it would be preferable to evaluate the SELECT locally since no
* data from the workers is required.
*/
ShardPlacementAccess *placementAccess =
CreatePlacementAccess(taskPlacement, PLACEMENT_ACCESS_SELECT);
placementAccessList = list_make1(placementAccess);
}
if (placementAccessList == NIL)
{
ereport(ERROR, (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("a placement was moved after the SELECT was "
"planned")));
}
connection = GetPlacementListConnection(connectionFlags, placementAccessList,
NULL);
/*
* Make sure we open a transaction block and assign a distributed transaction
* ID if we are in a coordinated transaction.
*
* This can happen when the SELECT goes to a node that was not involved in
* the transaction so far, or when existing connections to the node are
* claimed exclusively, e.g. the connection might be claimed to copy the
* intermediate result of a CTE to the node. Especially in the latter case,
* we want to make sure that we open a transaction block and assign a
* distributed transaction ID, such that the query can read intermediate
* results.
*/
RemoteTransactionBeginIfNecessary(connection);
queryOK = SendQueryInSingleRowMode(connection, queryString, paramListInfo);
if (!queryOK)
{
continue;
}
queryOK = StoreQueryResult(scanState, connection, dontFailOnError,
&currentAffectedTupleCount,
&executionStats);
if (CheckIfSizeLimitIsExceeded(&executionStats))
{
ErrorSizeLimitIsExceeded();
}
if (queryOK)
{
return;
}
}
ereport(ERROR, (errmsg("could not receive query results")));
}
/*
* BuildPlacementSelectList builds a list of SELECT placement accesses
* which can be used to call StartPlacementListConnection or
* GetPlacementListConnection. If the node group does not have a placement
* (e.g. in case of a broadcast join) then the shard is skipped.
*/
List *
BuildPlacementSelectList(int32 groupId, List *relationShardList)
{
return BuildPlacementAccessList(groupId, relationShardList, PLACEMENT_ACCESS_SELECT);
}
/*
* BuildPlacementDDLList is a warpper around BuildPlacementAccessList() for DDL access.
*/
List *
BuildPlacementDDLList(int32 groupId, List *relationShardList)
{
return BuildPlacementAccessList(groupId, relationShardList, PLACEMENT_ACCESS_DDL);
}
/*
* BuildPlacementAccessList returns a list of placement accesses for the given
* relationShardList and the access type.
*/
static List *
BuildPlacementAccessList(int32 groupId, List *relationShardList,
ShardPlacementAccessType accessType)
{
ListCell *relationShardCell = NULL;
List *placementAccessList = NIL;
foreach(relationShardCell, relationShardList)
{
RelationShard *relationShard = (RelationShard *) lfirst(relationShardCell);
ShardPlacement *placement = NULL;
ShardPlacementAccess *placementAccess = NULL;
placement = FindShardPlacementOnGroup(groupId, relationShard->shardId);
if (placement == NULL)
{
continue;
}
placementAccess = CreatePlacementAccess(placement, accessType);
placementAccessList = lappend(placementAccessList, placementAccess);
}
return placementAccessList;
}
/*
* CreatePlacementAccess returns a new ShardPlacementAccess for the given placement
* and access type.
*/
static ShardPlacementAccess *
CreatePlacementAccess(ShardPlacement *placement, ShardPlacementAccessType accessType)
{
ShardPlacementAccess *placementAccess = NULL;
placementAccess = (ShardPlacementAccess *) palloc0(sizeof(ShardPlacementAccess));
placementAccess->placement = placement;
placementAccess->accessType = accessType;
return placementAccess;
}
/*
* ExecuteSingleModifyTask executes the task on the remote node, retrieves the
* results and stores them, if RETURNING is used, in a tuple store. The function
* can execute both DDL and DML tasks. When a DDL task is passed, the function
* does not expect scanState to be present.
*
* If the task fails on one of the placements, the function reraises the
* remote error (constraint violation in DML), marks the affected placement as
* invalid (other error on some placements, via the placement connection
* framework), or errors out (failed on all placements).
*
* The function returns affectedTupleCount if applicable.
*/
static int64
ExecuteSingleModifyTask(CitusScanState *scanState, Task *task, CmdType operation,
bool alwaysThrowErrorOnFailure, bool expectResults)
{
EState *executorState = NULL;
ParamListInfo paramListInfo = NULL;
List *taskPlacementList = task->taskPlacementList;
List *connectionList = NIL;
ListCell *taskPlacementCell = NULL;
ListCell *connectionCell = NULL;
int64 affectedTupleCount = -1;
int failureCount = 0;
bool resultsOK = false;
bool gotResults = false;
char *queryString = task->queryString;
ShardInterval *shardInterval = LoadShardInterval(task->anchorShardId);
Oid relationId = shardInterval->relationId;
if (scanState)
{
executorState = scanState->customScanState.ss.ps.state;
paramListInfo = executorState->es_param_list_info;
}
/*
* Get connections required to execute task. This will, if necessary,
* establish the connection, mark as critical (when modifying reference
* table or multi-shard command) and start a transaction (when in a
* transaction).
*/
connectionList = GetModifyConnections(task, alwaysThrowErrorOnFailure);
/*
* If we are dealing with a partitioned table, we also need to lock its
* partitions.
*
* For DDL commands, we already obtained the appropriate locks in
* ProcessUtility, so we only need to do this for DML commands.
*/
if (PartitionedTable(relationId) && task->taskType == MODIFY_TASK)
{
LockPartitionRelations(relationId, RowExclusiveLock);
}
/*
* Prevent replicas of the same shard from diverging. We don't
* need to acquire lock for TRUNCATE and DDLs since they already
* acquire the necessary locks on the relations, and blocks any
* unsafe concurrent operations.
*/
if (operation == CMD_INSERT || operation == CMD_UPDATE ||
operation == CMD_DELETE || operation == CMD_SELECT)
{
AcquireExecutorShardLock(task, operation);
}
/* try to execute modification on all placements */
forboth(taskPlacementCell, taskPlacementList, connectionCell, connectionList)
{
ShardPlacement *taskPlacement = (ShardPlacement *) lfirst(taskPlacementCell);
MultiConnection *connection = (MultiConnection *) lfirst(connectionCell);
bool queryOK = false;
int64 currentAffectedTupleCount = 0;
if (connection->remoteTransaction.transactionFailed)
{
/*
* If GetModifyConnections failed to send BEGIN this connection will have
* been marked as failed, and should not have any more commands sent to
* it! Skip it for now, at the bottom of this method we call
* MarkFailedShardPlacements() to ensure future statements will not use this
* placement.
*/
failureCount++;
continue;
}
queryOK = SendQueryInSingleRowMode(connection, queryString, paramListInfo);
if (!queryOK)
{
failureCount++;
continue;
}
if (failureCount + 1 == list_length(taskPlacementList))
{
/*
* If we already failed on all other placements (possibly 0),
* relay errors directly.
*/
alwaysThrowErrorOnFailure = true;
}
/*
* If caller is interested, store query results the first time
* through. The output of the query's execution on other shards is
* discarded if we run there (because it's a modification query).
*/
if (!gotResults && expectResults)
{
queryOK = StoreQueryResult(scanState, connection, alwaysThrowErrorOnFailure,
&currentAffectedTupleCount, NULL);
}
else
{
queryOK = ConsumeQueryResult(connection, alwaysThrowErrorOnFailure,
&currentAffectedTupleCount);
}
if (queryOK)
{
if ((affectedTupleCount == -1) ||
(affectedTupleCount == currentAffectedTupleCount))
{
affectedTupleCount = currentAffectedTupleCount;
}
else
{
ereport(WARNING,
(errmsg("modified "INT64_FORMAT " tuples, but expected "
"to modify "INT64_FORMAT,
currentAffectedTupleCount, affectedTupleCount),
errdetail("modified placement on %s:%d",
taskPlacement->nodeName, taskPlacement->nodePort)));
}
resultsOK = true;
gotResults = true;
}
else
{
failureCount++;
}
}
/*
* If a command results in an error on all workers, we relay the last error
* in the loop above by setting alwaysThrowErrorOnFailure. However, if all
* connections fail we still complete the loop without throwing an error.
* In that case, throw an error below.
*/
if (!resultsOK)
{
ereport(ERROR, (errmsg("could not modify any active placements")));
}
/* if some placements failed, ensure future statements don't access them */
MarkFailedShardPlacements();
if (IsTransactionBlock())
{
XactModificationLevel = XACT_MODIFICATION_DATA;
}
return affectedTupleCount;
}
/*
* GetModifyConnections returns the list of connections required to execute
* modify commands on the placements in tasPlacementList. If necessary remote
* transactions are started.
*
* If markCritical is true remote transactions are marked as critical.
*/
static List *
GetModifyConnections(Task *task, bool markCritical)
{
List *taskPlacementList = task->taskPlacementList;
ListCell *taskPlacementCell = NULL;
List *multiConnectionList = NIL;
List *relationShardList = task->relationShardList;
/* first initiate connection establishment for all necessary connections */
foreach(taskPlacementCell, taskPlacementList)
{
ShardPlacement *taskPlacement = (ShardPlacement *) lfirst(taskPlacementCell);
int connectionFlags = SESSION_LIFESPAN;
MultiConnection *multiConnection = NULL;
List *placementAccessList = NIL;
ShardPlacementAccess *placementModification = NULL;
ShardPlacementAccessType accessType = PLACEMENT_ACCESS_DML;
if (task->taskType == DDL_TASK)
{
connectionFlags = connectionFlags | FOR_DDL;
accessType = PLACEMENT_ACCESS_DDL;
}
else
{
connectionFlags = connectionFlags | FOR_DML;
accessType = PLACEMENT_ACCESS_DML;
}
if (accessType == PLACEMENT_ACCESS_DDL)
{
/*
* All relations appearing inter-shard DDL commands should be marked
* with DDL access.
*/
placementAccessList =
BuildPlacementDDLList(taskPlacement->groupId, relationShardList);
}
else
{
/* create placement accesses for placements that appear in a subselect */
placementAccessList =
BuildPlacementSelectList(taskPlacement->groupId, relationShardList);
}
Assert(list_length(placementAccessList) == list_length(relationShardList));
/* create placement access for the placement that we're modifying */
placementModification = CreatePlacementAccess(taskPlacement, accessType);
placementAccessList = lappend(placementAccessList, placementModification);
/* get an appropriate connection for the DML statement */
multiConnection = GetPlacementListConnection(connectionFlags, placementAccessList,
NULL);
/*
* If we're expanding the set nodes that participate in the distributed
* transaction, conform to MultiShardCommitProtocol.
*/
if (MultiShardCommitProtocol == COMMIT_PROTOCOL_2PC &&
InCoordinatedTransaction() &&
XactModificationLevel == XACT_MODIFICATION_DATA)
{
RemoteTransaction *transaction = &multiConnection->remoteTransaction;
if (transaction->transactionState == REMOTE_TRANS_INVALID)
{
CoordinatedTransactionUse2PC();
}
}
if (markCritical)
{
MarkRemoteTransactionCritical(multiConnection);
}
multiConnectionList = lappend(multiConnectionList, multiConnection);
}
/* then finish in parallel */
FinishConnectionListEstablishment(multiConnectionList);
/* and start transactions if applicable */
RemoteTransactionsBeginIfNecessary(multiConnectionList);
return multiConnectionList;
}
/*
* ExecuteMultipleTasks executes a list of tasks on remote nodes, retrieves
* the results and, if RETURNING is used, stores them in a tuple store.
*
* If a task fails on one of the placements, the transaction rolls back.
* Otherwise, the changes are committed using 2PC when the local transaction
* commits.
*/
void
ExecuteMultipleTasks(CitusScanState *scanState, List *taskList,
bool isModificationQuery, bool expectResults)
{
EState *executorState = scanState->customScanState.ss.ps.state;
ParamListInfo paramListInfo = executorState->es_param_list_info;
int64 affectedTupleCount = -1;
/* can only support modifications right now */
Assert(isModificationQuery);
affectedTupleCount = ExecuteModifyTasks(taskList, expectResults, paramListInfo,
scanState);
executorState->es_processed = affectedTupleCount;
}
/*
* ExecuteModifyTasksWithoutResults provides a wrapper around ExecuteModifyTasks
* for calls that do not require results. In this case, the expectResults flag
* is set to false and arguments related to result sets and query parameters are
* NULL. This function is primarily intended to allow DDL and
* master_modify_multiple_shards to use the router executor infrastructure.
*/
int64
ExecuteModifyTasksWithoutResults(List *taskList)
{
return ExecuteModifyTasks(taskList, false, NULL, NULL);
}
/*
* ExecuteModifyTasksSequentiallyWithoutResults basically calls ExecuteSingleModifyTask in
* a loop in order to simulate sequential execution of a list of tasks. Useful
* in cases where issuing commands in parallel before waiting for results could
* result in deadlocks (such as foreign key creation to reference tables).
*
* The function returns the affectedTupleCount if applicable. Otherwise, the function
* returns 0.
*/
int64
ExecuteModifyTasksSequentiallyWithoutResults(List *taskList, CmdType operation)
{
ListCell *taskCell = NULL;
bool multipleTasks = list_length(taskList) > 1;
bool expectResults = false;
int64 affectedTupleCount = 0;
bool alwaysThrowErrorOnFailure = true;
bool taskListRequires2PC = TaskListRequires2PC(taskList);
/* decide on whether to use coordinated transaction and 2PC */
if (MultiShardCommitProtocol == COMMIT_PROTOCOL_BARE)
{
/* we don't run CREATE INDEX CONCURRENTLY in a distributed transaction */
}
else if (IsTransactionBlock() || multipleTasks)
{
BeginOrContinueCoordinatedTransaction();
if (taskListRequires2PC)
{
CoordinatedTransactionUse2PC();
}
}
else if (!multipleTasks && taskListRequires2PC)
{
/* DDL on a reference table should also use 2PC */
BeginOrContinueCoordinatedTransaction();
CoordinatedTransactionUse2PC();
}
/* now that we've decided on the transaction status, execute the tasks */
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
affectedTupleCount +=
ExecuteSingleModifyTask(NULL, task, operation, alwaysThrowErrorOnFailure,
expectResults);
}
return affectedTupleCount;
}
/*
* ExecuteModifyTasks executes a list of tasks on remote nodes, and
* optionally retrieves the results and stores them in a tuple store.
*
* If a task fails on one of the placements, the transaction rolls back.
* Otherwise, the changes are committed using 2PC when the local transaction
* commits.
*/
static int64
ExecuteModifyTasks(List *taskList, bool expectResults, ParamListInfo paramListInfo,
CitusScanState *scanState)
{
int64 totalAffectedTupleCount = 0;
ListCell *taskCell = NULL;
Task *firstTask = NULL;
ShardInterval *firstShardInterval = NULL;
int connectionFlags = 0;
List *affectedTupleCountList = NIL;
HTAB *shardConnectionHash = NULL;
bool tasksPending = true;
int placementIndex = 0;
if (taskList == NIL)
{
return 0;
}
/*
* In multi shard modification, we expect that all tasks operates on the
* same relation, so it is enough to acquire a lock on the first task's
* anchor relation's partitions.
*
* For DDL commands, we already obtained the appropriate locks in
* ProcessUtility, so we only need to do this for DML commands.
*/
firstTask = (Task *) linitial(taskList);
firstShardInterval = LoadShardInterval(firstTask->anchorShardId);
if (PartitionedTable(firstShardInterval->relationId) &&
firstTask->taskType == MODIFY_TASK)
{
LockPartitionRelations(firstShardInterval->relationId, RowExclusiveLock);
}
/*
* Assign the distributed transaction id before trying to acquire the
* executor advisory locks. This is useful to show this backend in citus
* lock graphs (e.g., dump_global_wait_edges() and citus_lock_waits).
*/
BeginOrContinueCoordinatedTransaction();
/*
* Ensure that there are no concurrent modifications on the same
* shards. In general, for DDL commands, we already obtained the
* appropriate locks in ProcessUtility. However, we still prefer to
* acquire the executor locks for DDLs specifically for TRUNCATE
* command on a partition table since AcquireExecutorMultiShardLocks()
* ensures that no concurrent modifications happens on the parent
* tables.
*/
AcquireExecutorMultiShardLocks(taskList);
if (MultiShardCommitProtocol == COMMIT_PROTOCOL_2PC ||
firstTask->replicationModel == REPLICATION_MODEL_2PC)
{
CoordinatedTransactionUse2PC();
}
/*
* With a similar rationale as above, where we expect all tasks to operate on
* the same relations, we prefer to record relation accesses for the first
* task only.
*/
if (firstTask->taskType == MODIFY_TASK)
{
RecordRelationParallelModifyAccessForTask(firstTask);
/*
* We prefer to mark with SELECT access as well because for multi shard
* modification queries, the placement access list is always marked with both
* DML and SELECT accesses.
*/
RecordRelationParallelSelectAccessForTask(firstTask);
}
else if (firstTask->taskType == DDL_TASK &&
PartitionMethod(firstShardInterval->relationId) != DISTRIBUTE_BY_NONE)
{
/*
* Even single task DDLs hit here, so we'd prefer
* not to record for reference tables.
*/
RecordRelationParallelDDLAccessForTask(firstTask);
}
if (firstTask->taskType == DDL_TASK || firstTask->taskType == VACUUM_ANALYZE_TASK)
{
connectionFlags = FOR_DDL;
}
else
{
connectionFlags = FOR_DML;
}
/* open connection to all relevant placements, if not already open */
shardConnectionHash = OpenTransactionsForAllTasks(taskList, connectionFlags);
XactModificationLevel = XACT_MODIFICATION_DATA;
/* iterate over placements in rounds, to ensure in-order execution */
while (tasksPending)
{
int taskIndex = 0;
tasksPending = false;
/* send command to all shard placements with the current index in parallel */
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
int64 shardId = task->anchorShardId;
char *queryString = task->queryString;
bool shardConnectionsFound = false;
ShardConnections *shardConnections = NULL;
List *connectionList = NIL;
MultiConnection *connection = NULL;
bool queryOK = false;
shardConnections = GetShardHashConnections(shardConnectionHash, shardId,
&shardConnectionsFound);
connectionList = shardConnections->connectionList;
if (placementIndex >= list_length(connectionList))
{
/* no more active placements for this task */
continue;
}
connection = (MultiConnection *) list_nth(connectionList, placementIndex);
queryOK = SendQueryInSingleRowMode(connection, queryString, paramListInfo);
if (!queryOK)
{
ReportConnectionError(connection, ERROR);
}
}
/* collects results from all relevant shard placements */
foreach(taskCell, taskList)
{
Task *task = (Task *) lfirst(taskCell);
int64 shardId = task->anchorShardId;
bool shardConnectionsFound = false;
ShardConnections *shardConnections = NULL;
List *connectionList = NIL;
MultiConnection *connection = NULL;
int64 currentAffectedTupleCount = 0;
bool alwaysThrowErrorOnFailure = true;
bool queryOK PG_USED_FOR_ASSERTS_ONLY = false;
/* abort in case of cancellation */
CHECK_FOR_INTERRUPTS();
shardConnections = GetShardHashConnections(shardConnectionHash, shardId,
&shardConnectionsFound);
connectionList = shardConnections->connectionList;
if (placementIndex >= list_length(connectionList))
{
/* no more active placements for this task */
taskIndex++;
continue;
}
connection = (MultiConnection *) list_nth(connectionList, placementIndex);
/*
* if the task is a VACUUM or ANALYZE, we set CitusNoticeLogLevel to INFO
* to see the logs in console.
*/
if (task->taskType == VACUUM_ANALYZE_TASK)
{
SetCitusNoticeLevel(INFO);
}
/*
* If caller is interested, store query results the first time
* through. The output of the query's execution on other shards is
* discarded if we run there (because it's a modification query).
*/
if (placementIndex == 0 && expectResults)
{
Assert(scanState != NULL);
queryOK = StoreQueryResult(scanState, connection,
alwaysThrowErrorOnFailure,
&currentAffectedTupleCount, NULL);
}
else
{
queryOK = ConsumeQueryResult(connection, alwaysThrowErrorOnFailure,
&currentAffectedTupleCount);
}
/* We error out if the worker fails to return a result for the query. */
if (!queryOK)
{
ReportConnectionError(connection, ERROR);
}
if (placementIndex == 0)
{
totalAffectedTupleCount += currentAffectedTupleCount;
/* keep track of the initial affected tuple count */
affectedTupleCountList = lappend_int(affectedTupleCountList,
currentAffectedTupleCount);
}
else
{
/* warn the user if shard placements have diverged */
int64 previousAffectedTupleCount = list_nth_int(affectedTupleCountList,
taskIndex);
if (currentAffectedTupleCount != previousAffectedTupleCount)
{
ereport(WARNING,
(errmsg("modified "INT64_FORMAT " tuples of shard "
UINT64_FORMAT ", but expected to modify "INT64_FORMAT,
currentAffectedTupleCount, shardId,
previousAffectedTupleCount),
errdetail("modified placement on %s:%d",
connection->hostname, connection->port)));
}
}
if (!tasksPending && placementIndex + 1 < list_length(connectionList))
{
/* more tasks to be done after thise one */
tasksPending = true;
}
taskIndex++;
}
placementIndex++;
}
/* we should set the log level back to its default value since the task is done */
UnsetCitusNoticeLevel();
UnclaimAllShardConnections(shardConnectionHash);
CHECK_FOR_INTERRUPTS();
return totalAffectedTupleCount;
}
/*
* SendQueryInSingleRowMode sends the given query on the connection in an
* asynchronous way. The function also sets the single-row mode on the
* connection so that we receive results a row at a time.
*/
static bool
SendQueryInSingleRowMode(MultiConnection *connection, char *query,
ParamListInfo paramListInfo)
{
int querySent = 0;
int singleRowMode = 0;
if (paramListInfo != NULL)
{
int parameterCount = paramListInfo->numParams;
Oid *parameterTypes = NULL;
const char **parameterValues = NULL;
/* force evaluation of bound params */
paramListInfo = copyParamList(paramListInfo);
ExtractParametersFromParamListInfo(paramListInfo, &parameterTypes,
&parameterValues);
querySent = SendRemoteCommandParams(connection, query, parameterCount,
parameterTypes, parameterValues);
}
else
{
querySent = SendRemoteCommand(connection, query);
}
if (querySent == 0)
{
const bool raiseIfTransactionIsCritical = true;
HandleRemoteTransactionConnectionError(connection, raiseIfTransactionIsCritical);
return false;
}
singleRowMode = PQsetSingleRowMode(connection->pgConn);
if (singleRowMode == 0)
{
const bool raiseIfTransactionIsCritical = true;
HandleRemoteTransactionConnectionError(connection, raiseIfTransactionIsCritical);
return false;
}
return true;
}
/*
* ExtractParametersFromParamListInfo extracts parameter types and values from
* the given ParamListInfo structure, and fills parameter type and value arrays.
*/
static void
ExtractParametersFromParamListInfo(ParamListInfo paramListInfo, Oid **parameterTypes,
const char ***parameterValues)
{
int parameterIndex = 0;
int parameterCount = paramListInfo->numParams;
*parameterTypes = (Oid *) palloc0(parameterCount * sizeof(Oid));
*parameterValues = (const char **) palloc0(parameterCount * sizeof(char *));
/* get parameter types and values */
for (parameterIndex = 0; parameterIndex < parameterCount; parameterIndex++)
{
ParamExternData *parameterData = &paramListInfo->params[parameterIndex];
Oid typeOutputFunctionId = InvalidOid;
bool variableLengthType = false;
/*
* Use 0 for data types where the oid values can be different on
* the master and worker nodes. Therefore, the worker nodes can
* infer the correct oid.
*/
if (parameterData->ptype >= FirstNormalObjectId)
{
(*parameterTypes)[parameterIndex] = 0;
}
else
{
(*parameterTypes)[parameterIndex] = parameterData->ptype;
}
/*
* If the parameter is not referenced / used (ptype == 0) and
* would otherwise have errored out inside standard_planner()),
* don't pass a value to the remote side, and pass text oid to prevent
* undetermined data type errors on workers.
*/
if (parameterData->ptype == 0)
{
(*parameterValues)[parameterIndex] = NULL;
(*parameterTypes)[parameterIndex] = TEXTOID;
continue;
}
/*
* If the parameter is NULL then we preserve its type, but
* don't need to evaluate its value.
*/
if (parameterData->isnull)
{
(*parameterValues)[parameterIndex] = NULL;
continue;
}
getTypeOutputInfo(parameterData->ptype, &typeOutputFunctionId,
&variableLengthType);
(*parameterValues)[parameterIndex] = OidOutputFunctionCall(typeOutputFunctionId,
parameterData->value);
}
}
/*
* StoreQueryResult gets the query results from the given connection, builds
* tuples from the results, and stores them in the a newly created
* tuple-store. If the function can't receive query results, it returns
* false. Note that this function assumes the query has already been sent on
* the connection.
*/
static bool
StoreQueryResult(CitusScanState *scanState, MultiConnection *connection,
bool alwaysThrowErrorOnFailure, int64 *rows,
DistributedExecutionStats *executionStats)
{
TupleDesc tupleDescriptor =
scanState->customScanState.ss.ps.ps_ResultTupleSlot->tts_tupleDescriptor;
AttInMetadata *attributeInputMetadata = TupleDescGetAttInMetadata(tupleDescriptor);
List *targetList = scanState->customScanState.ss.ps.plan->targetlist;
uint32 expectedColumnCount = ExecCleanTargetListLength(targetList);
char **columnArray = (char **) palloc0(expectedColumnCount * sizeof(char *));
Tuplestorestate *tupleStore = NULL;
bool randomAccess = true;
bool interTransactions = false;
bool commandFailed = false;
MemoryContext ioContext = AllocSetContextCreateExtended(CurrentMemoryContext,
"StoreQueryResult",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
*rows = 0;
if (scanState->tuplestorestate == NULL)
{
scanState->tuplestorestate =
tuplestore_begin_heap(randomAccess, interTransactions, work_mem);
}
else if (!alwaysThrowErrorOnFailure)
{
/* might have failed query execution on another placement before */
tuplestore_clear(scanState->tuplestorestate);
}
tupleStore = scanState->tuplestorestate;
for (;;)
{
uint32 rowIndex = 0;
uint32 columnIndex = 0;
uint32 rowCount = 0;
uint32 columnCount = 0;
ExecStatusType resultStatus = 0;
bool doRaiseInterrupts = true;
PGresult *result = GetRemoteCommandResult(connection, doRaiseInterrupts);
if (result == NULL)
{
break;
}
resultStatus = PQresultStatus(result);
if ((resultStatus != PGRES_SINGLE_TUPLE) && (resultStatus != PGRES_TUPLES_OK))
{
char *sqlStateString = PQresultErrorField(result, PG_DIAG_SQLSTATE);
int category = 0;
bool isConstraintViolation = false;
/*
* Mark transaction as failed, but don't throw an error. This allows us
* to give a more meaningful error message below.
*/
MarkRemoteTransactionFailed(connection, false);
/*
* If the error code is in constraint violation class, we want to
* fail fast because we must get the same error from all shard
* placements.
*/
category = ERRCODE_TO_CATEGORY(ERRCODE_INTEGRITY_CONSTRAINT_VIOLATION);
isConstraintViolation = SqlStateMatchesCategory(sqlStateString, category);
if (isConstraintViolation || alwaysThrowErrorOnFailure ||
IsRemoteTransactionCritical(connection))
{
ReportResultError(connection, result, ERROR);
}
else
{
ReportResultError(connection, result, WARNING);
}
PQclear(result);
commandFailed = true;
/* an error happened, there is nothing we can do more */
if (resultStatus == PGRES_FATAL_ERROR)
{
break;
}
/* continue, there could be other lingering results due to row mode */
continue;
}
rowCount = PQntuples(result);
columnCount = PQnfields(result);
Assert(columnCount == expectedColumnCount);
for (rowIndex = 0; rowIndex < rowCount; rowIndex++)
{
HeapTuple heapTuple = NULL;
MemoryContext oldContext = NULL;
memset(columnArray, 0, columnCount * sizeof(char *));
for (columnIndex = 0; columnIndex < columnCount; columnIndex++)
{
if (PQgetisnull(result, rowIndex, columnIndex))
{
columnArray[columnIndex] = NULL;
}
else
{
columnArray[columnIndex] = PQgetvalue(result, rowIndex, columnIndex);
if (SubPlanLevel > 0 && executionStats)
{
int rowLength = PQgetlength(result, rowIndex, columnIndex);
executionStats->totalIntermediateResultSize += rowLength;
}
}
}
/*
* Switch to a temporary memory context that we reset after each tuple. This
* protects us from any memory leaks that might be present in I/O functions
* called by BuildTupleFromCStrings.
*/
oldContext = MemoryContextSwitchTo(ioContext);
heapTuple = BuildTupleFromCStrings(attributeInputMetadata, columnArray);
MemoryContextSwitchTo(oldContext);
tuplestore_puttuple(tupleStore, heapTuple);
MemoryContextReset(ioContext);
(*rows)++;
}
PQclear(result);
}
pfree(columnArray);
return !commandFailed;
}
/*
* ConsumeQueryResult gets a query result from a connection, counting the rows
* and checking for errors, but otherwise discarding potentially returned
* rows. Returns true if a non-error result has been returned, false if there
* has been an error.
*/
static bool
ConsumeQueryResult(MultiConnection *connection, bool alwaysThrowErrorOnFailure,
int64 *rows)
{
bool commandFailed = false;
bool gotResponse = false;
*rows = 0;
/*
* Due to single row mode we have to do multiple GetRemoteCommandResult()
* to finish processing of this query, even without RETURNING. For
* single-row mode we have to loop until all rows are consumed.
*/
while (true)
{
const bool doRaiseInterrupts = true;
PGresult *result = GetRemoteCommandResult(connection, doRaiseInterrupts);
ExecStatusType status = PGRES_COMMAND_OK;
if (result == NULL)
{
break;
}
status = PQresultStatus(result);
if (status != PGRES_COMMAND_OK &&
status != PGRES_SINGLE_TUPLE &&
status != PGRES_TUPLES_OK)
{
char *sqlStateString = PQresultErrorField(result, PG_DIAG_SQLSTATE);
int category = 0;
bool isConstraintViolation = false;
/*
* Mark transaction as failed, but don't throw an error even if the
* transaction is critical. This allows us to give a more meaningful
* error message below.
*/
MarkRemoteTransactionFailed(connection, false);
/*
* If the error code is in constraint violation class, we want to
* fail fast because we must get the same error from all shard
* placements.
*/
category = ERRCODE_TO_CATEGORY(ERRCODE_INTEGRITY_CONSTRAINT_VIOLATION);
isConstraintViolation = SqlStateMatchesCategory(sqlStateString, category);
if (isConstraintViolation || alwaysThrowErrorOnFailure ||
IsRemoteTransactionCritical(connection))
{
ReportResultError(connection, result, ERROR);
}
else
{
ReportResultError(connection, result, WARNING);
}
PQclear(result);
commandFailed = true;
/* an error happened, there is nothing we can do more */
if (status == PGRES_FATAL_ERROR)
{
break;
}
/* continue, there could be other lingering results due to row mode */
continue;
}
if (status == PGRES_COMMAND_OK)
{
char *currentAffectedTupleString = PQcmdTuples(result);
int64 currentAffectedTupleCount = 0;
if (*currentAffectedTupleString != '\0')
{
scanint8(currentAffectedTupleString, false, &currentAffectedTupleCount);
Assert(currentAffectedTupleCount >= 0);
}
*rows += currentAffectedTupleCount;
}
else
{
*rows += PQntuples(result);
}
PQclear(result);
gotResponse = true;
}
return gotResponse && !commandFailed;
}