citus/src/backend/distributed/executor/multi_executor.c

1033 lines
28 KiB
C

/*-------------------------------------------------------------------------
*
* multi_executor.c
*
* Entrypoint into distributed query execution.
*
* Copyright (c) Citus Data, Inc.
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "miscadmin.h"
#include "access/xact.h"
#include "catalog/dependency.h"
#include "catalog/namespace.h"
#include "catalog/pg_class.h"
#include "commands/copy.h"
#include "executor/execdebug.h"
#include "nodes/execnodes.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_oper.h"
#include "parser/parsetree.h"
#include "storage/lmgr.h"
#include "tcop/dest.h"
#include "tcop/pquery.h"
#include "tcop/utility.h"
#include "utils/fmgrprotos.h"
#include "utils/memutils.h"
#include "utils/snapmgr.h"
#include "pg_version_constants.h"
#include "distributed/backend_data.h"
#include "distributed/citus_custom_scan.h"
#include "distributed/combine_query_planner.h"
#include "distributed/commands/multi_copy.h"
#include "distributed/commands/utility_hook.h"
#include "distributed/coordinator_protocol.h"
#include "distributed/distributed_planner.h"
#include "distributed/function_call_delegation.h"
#include "distributed/insert_select_executor.h"
#include "distributed/insert_select_planner.h"
#include "distributed/listutils.h"
#include "distributed/local_executor.h"
#include "distributed/multi_executor.h"
#include "distributed/multi_router_planner.h"
#include "distributed/multi_server_executor.h"
#include "distributed/relation_access_tracking.h"
#include "distributed/resource_lock.h"
#include "distributed/transaction_management.h"
#include "distributed/version_compat.h"
#include "distributed/worker_protocol.h"
#include "distributed/worker_shard_visibility.h"
/*
* Controls the connection type for multi shard modifications, DDLs
* TRUNCATE and multi-shard SELECT queries.
*/
int MultiShardConnectionType = PARALLEL_CONNECTION;
bool WritableStandbyCoordinator = false;
bool AllowModificationsFromWorkersToReplicatedTables = true;
/*
* Controlled by the GUC citus.skip_constraint_validation
*/
bool SkipConstraintValidation = false;
/*
* Setting that controls whether distributed queries should be
* allowed within a task execution.
*/
bool AllowNestedDistributedExecution = false;
/*
* Pointer to bound parameters of the current ongoing call to ExecutorRun.
* If executor is not running, then this value is meaningless.
*/
ParamListInfo executorBoundParams = NULL;
/* sort the returning to get consistent outputs, used only for testing */
bool SortReturning = false;
/*
* How many nested executors have we started? This can happen for SQL
* UDF calls. The outer query starts an executor, then postgres opens
* another executor to run the SQL UDF.
*/
int ExecutorLevel = 0;
/* local function forward declarations */
static Relation StubRelation(TupleDesc tupleDescriptor);
static char * GetObjectTypeString(ObjectType objType);
static bool AlterTableConstraintCheck(QueryDesc *queryDesc);
static List * FindCitusCustomScanStates(PlanState *planState);
static bool CitusCustomScanStateWalker(PlanState *planState,
List **citusCustomScanStates);
static bool IsTaskExecutionAllowed(bool isRemote);
static bool InLocalTaskExecutionOnShard(void);
static bool MaybeInRemoteTaskExecution(void);
static bool InTrigger(void);
/*
* CitusExecutorStart is the ExecutorStart_hook that gets called when
* Postgres prepares for execution or EXPLAIN.
*/
void
CitusExecutorStart(QueryDesc *queryDesc, int eflags)
{
PlannedStmt *plannedStmt = queryDesc->plannedstmt;
/*
* We cannot modify XactReadOnly on Windows because it is not
* declared with PGDLLIMPORT.
*/
#ifndef WIN32
if (RecoveryInProgress() && WritableStandbyCoordinator &&
IsCitusPlan(plannedStmt->planTree))
{
PG_TRY();
{
/*
* To enable writes from a hot standby we cheat our way through
* the checks in standard_ExecutorStart by temporarily setting
* XactReadOnly to false.
*/
XactReadOnly = false;
standard_ExecutorStart(queryDesc, eflags);
XactReadOnly = true;
}
PG_CATCH();
{
XactReadOnly = true;
PG_RE_THROW();
}
PG_END_TRY();
}
else
#endif
{
standard_ExecutorStart(queryDesc, eflags);
}
}
/*
* CitusExecutorRun is the ExecutorRun_hook that gets called when postgres
* executes a query.
*/
void
CitusExecutorRun(QueryDesc *queryDesc,
ScanDirection direction, uint64 count, bool execute_once)
{
DestReceiver *dest = queryDesc->dest;
ParamListInfo savedBoundParams = executorBoundParams;
/*
* Save a pointer to query params so UDFs can access them by calling
* ExecutorBoundParams().
*/
executorBoundParams = queryDesc->params;
PG_TRY();
{
ExecutorLevel++;
/*
* We do some potentially time consuming operations our self now before we hand of
* control to postgres' executor. To make sure that time spent is accurately measured
* we start and stop totaltime instrumentation from the queryDesc to mesure this
* time consuming operations before postgres' executor.
*/
if (queryDesc->totaltime)
{
InstrStartNode(queryDesc->totaltime);
}
/*
* Disable execution of ALTER TABLE constraint validation queries. These
* constraints will be validated in worker nodes, so running these queries
* from the coordinator would be redundant.
*
* For example, ALTER TABLE ... ATTACH PARTITION checks that the new
* partition doesn't violate constraints of the parent table, which
* might involve running some SELECT queries.
*
* Ideally we'd completely skip these checks in the coordinator, but we don't
* have any means to tell postgres to skip the checks. So the best we can do is
* to not execute the queries and return an empty result set, as if this table has
* no rows, so no constraints will be violated.
*/
if (AlterTableConstraintCheck(queryDesc))
{
/* start and shutdown tuple receiver to simulate empty result */
dest->rStartup(queryDesc->dest, CMD_SELECT, queryDesc->tupDesc);
dest->rShutdown(dest);
queryDesc->estate->es_processed = 0;
if (queryDesc->totaltime)
{
InstrStopNode(queryDesc->totaltime, 0);
}
}
else
{
/* switch into per-query memory context before calling PreExecScan */
MemoryContext oldcontext = MemoryContextSwitchTo(
queryDesc->estate->es_query_cxt);
/*
* Call PreExecScan for all citus custom scan nodes prior to starting the
* postgres exec scan to give some citus scan nodes some time to initialize
* state that would be too late if it were to initialize when the first tuple
* would need to return.
*/
List *citusCustomScanStates = FindCitusCustomScanStates(queryDesc->planstate);
CitusScanState *citusScanState = NULL;
foreach_declared_ptr(citusScanState, citusCustomScanStates)
{
if (citusScanState->PreExecScan)
{
citusScanState->PreExecScan(citusScanState);
}
}
/* postgres will switch here again and will restore back on its own */
MemoryContextSwitchTo(oldcontext);
if (queryDesc->totaltime)
{
InstrStopNode(queryDesc->totaltime, 0);
}
standard_ExecutorRun(queryDesc, direction, count, execute_once);
}
executorBoundParams = savedBoundParams;
ExecutorLevel--;
if (ExecutorLevel == 0 && PlannerLevel == 0)
{
/*
* We are leaving Citus code so no one should have any references to
* cache entries. Release them now to not hold onto memory in long
* transactions.
*/
CitusTableCacheFlushInvalidatedEntries();
InTopLevelDelegatedFunctionCall = false;
}
/*
* Within a 2PC, when a function is delegated to a remote node, we pin
* the distribution argument as the shard key for all the SQL in the
* function's block. The restriction is imposed to not to access other
* nodes from the current node, and violate the transactional integrity
* of the 2PC. Now that the query is ending, reset the shard key to NULL.
*/
CheckAndResetAllowedShardKeyValueIfNeeded();
}
PG_CATCH();
{
executorBoundParams = savedBoundParams;
ExecutorLevel--;
if (ExecutorLevel == 0 && PlannerLevel == 0)
{
InTopLevelDelegatedFunctionCall = false;
}
/*
* In case of an exception, reset the pinned shard-key, for more
* details see the function header.
*/
CheckAndResetAllowedShardKeyValueIfNeeded();
PG_RE_THROW();
}
PG_END_TRY();
}
/*
* FindCitusCustomScanStates returns a list of all citus custom scan states in it.
*/
static List *
FindCitusCustomScanStates(PlanState *planState)
{
List *citusCustomScanStates = NIL;
CitusCustomScanStateWalker(planState, &citusCustomScanStates);
return citusCustomScanStates;
}
/*
* CitusCustomScanStateWalker walks a planState tree structure and adds all
* CitusCustomState nodes to the list passed by reference as the second argument.
*/
static bool
CitusCustomScanStateWalker(PlanState *planState, List **citusCustomScanStates)
{
if (IsCitusCustomState(planState))
{
CitusScanState *css = (CitusScanState *) planState;
*citusCustomScanStates = lappend(*citusCustomScanStates, css);
/* breaks the walking of this tree */
return true;
}
return planstate_tree_walker(planState, CitusCustomScanStateWalker,
citusCustomScanStates);
}
/*
* ReturnTupleFromTuplestore reads the next tuple from the tuple store of the
* given Citus scan node and returns it. It returns null if all tuples are read
* from the tuple store.
*/
TupleTableSlot *
ReturnTupleFromTuplestore(CitusScanState *scanState)
{
Tuplestorestate *tupleStore = scanState->tuplestorestate;
bool forwardScanDirection = true;
if (tupleStore == NULL)
{
return NULL;
}
EState *executorState = ScanStateGetExecutorState(scanState);
ScanDirection scanDirection = executorState->es_direction;
Assert(ScanDirectionIsValid(scanDirection));
if (ScanDirectionIsBackward(scanDirection))
{
forwardScanDirection = false;
}
ExprState *qual = scanState->customScanState.ss.ps.qual;
ProjectionInfo *projInfo = scanState->customScanState.ss.ps.ps_ProjInfo;
ExprContext *econtext = scanState->customScanState.ss.ps.ps_ExprContext;
if (!qual && !projInfo)
{
/* no quals, nor projections return directly from the tuple store. */
TupleTableSlot *slot = scanState->customScanState.ss.ss_ScanTupleSlot;
tuplestore_gettupleslot(tupleStore, forwardScanDirection, false, slot);
return slot;
}
for (;;)
{
/*
* If there is a very selective qual on the Citus Scan node we might block
* interrupts for a longer time if we would not check for interrupts in this loop
*/
CHECK_FOR_INTERRUPTS();
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
ResetExprContext(econtext);
TupleTableSlot *slot = scanState->customScanState.ss.ss_ScanTupleSlot;
tuplestore_gettupleslot(tupleStore, forwardScanDirection, false, slot);
if (TupIsNull(slot))
{
/*
* When the tuple is null we have reached the end of the tuplestore. We will
* return a null tuple, however, depending on the existence of a projection we
* need to either return the scan tuple or the projected tuple.
*/
if (projInfo)
{
return ExecClearTuple(projInfo->pi_state.resultslot);
}
else
{
return slot;
}
}
/* place the current tuple into the expr context */
econtext->ecxt_scantuple = slot;
if (!ExecQual(qual, econtext))
{
/* skip nodes that do not satisfy the qual (filter) */
InstrCountFiltered1(scanState, 1);
continue;
}
/* found a satisfactory scan tuple */
if (projInfo)
{
/*
* Form a projection tuple, store it in the result tuple slot and return it.
* ExecProj works on the ecxt_scantuple on the context stored earlier.
*/
return ExecProject(projInfo);
}
else
{
/* Here, we aren't projecting, so just return scan tuple */
return slot;
}
}
}
/*
* ReadFileIntoTupleStore parses the records in a COPY-formatted file according
* according to the given tuple descriptor and stores the records in a tuple
* store.
*/
void
ReadFileIntoTupleStore(char *fileName, char *copyFormat, TupleDesc tupleDescriptor,
Tuplestorestate *tupstore)
{
/*
* Trick BeginCopyFrom into using our tuple descriptor by pretending it belongs
* to a relation.
*/
Relation stubRelation = StubRelation(tupleDescriptor);
EState *executorState = CreateExecutorState();
MemoryContext executorTupleContext = GetPerTupleMemoryContext(executorState);
ExprContext *executorExpressionContext = GetPerTupleExprContext(executorState);
int columnCount = tupleDescriptor->natts;
Datum *columnValues = palloc0(columnCount * sizeof(Datum));
bool *columnNulls = palloc0(columnCount * sizeof(bool));
List *copyOptions = NIL;
int location = -1; /* "unknown" token location */
DefElem *copyOption = makeDefElem("format", (Node *) makeString(copyFormat),
location);
copyOptions = lappend(copyOptions, copyOption);
CopyFromState copyState = BeginCopyFrom(NULL, stubRelation, NULL,
fileName, false, NULL,
NULL, copyOptions);
while (true)
{
ResetPerTupleExprContext(executorState);
MemoryContext oldContext = MemoryContextSwitchTo(executorTupleContext);
bool nextRowFound = NextCopyFrom(copyState, executorExpressionContext,
columnValues, columnNulls);
if (!nextRowFound)
{
MemoryContextSwitchTo(oldContext);
break;
}
tuplestore_putvalues(tupstore, tupleDescriptor, columnValues, columnNulls);
MemoryContextSwitchTo(oldContext);
}
EndCopyFrom(copyState);
pfree(columnValues);
pfree(columnNulls);
}
/*
* SortTupleStore gets a CitusScanState and sorts the tuplestore by all the
* entries in the target entry list, starting from the first one and
* ending with the last entry.
*
* The sorting is done in ASC order.
*/
void
SortTupleStore(CitusScanState *scanState)
{
TupleDesc tupleDescriptor = ScanStateGetTupleDescriptor(scanState);
Tuplestorestate *tupleStore = scanState->tuplestorestate;
List *targetList = scanState->customScanState.ss.ps.plan->targetlist;
uint32 expectedColumnCount = list_length(targetList);
/* Convert list-ish representation to arrays wanted by executor */
int numberOfSortKeys = expectedColumnCount;
AttrNumber *sortColIdx = (AttrNumber *) palloc(numberOfSortKeys * sizeof(AttrNumber));
Oid *sortOperators = (Oid *) palloc(numberOfSortKeys * sizeof(Oid));
Oid *collations = (Oid *) palloc(numberOfSortKeys * sizeof(Oid));
bool *nullsFirst = (bool *) palloc(numberOfSortKeys * sizeof(bool));
int sortKeyIndex = 0;
/*
* Iterate on the returning target list and generate the necessary information
* for sorting the tuples.
*/
TargetEntry *returningEntry = NULL;
foreach_declared_ptr(returningEntry, targetList)
{
Oid sortop = InvalidOid;
/* determine the sortop, we don't need anything else */
get_sort_group_operators(exprType((Node *) returningEntry->expr),
true, false, false,
&sortop, NULL, NULL,
NULL);
sortColIdx[sortKeyIndex] = sortKeyIndex + 1;
sortOperators[sortKeyIndex] = sortop;
collations[sortKeyIndex] = exprCollation((Node *) returningEntry->expr);
nullsFirst[sortKeyIndex] = false;
sortKeyIndex++;
}
Tuplesortstate *tuplesortstate =
tuplesort_begin_heap(tupleDescriptor, numberOfSortKeys, sortColIdx, sortOperators,
collations, nullsFirst, work_mem, NULL, false);
while (true)
{
TupleTableSlot *slot = ReturnTupleFromTuplestore(scanState);
if (TupIsNull(slot))
{
break;
}
/* tuplesort_puttupleslot copies the slot into sort context */
tuplesort_puttupleslot(tuplesortstate, slot);
}
/* perform the actual sort operation */
tuplesort_performsort(tuplesortstate);
/*
* Truncate the existing tupleStore, because we'll fill it back
* from the sorted tuplestore.
*/
tuplestore_clear(tupleStore);
/* iterate over all the sorted tuples, add them to original tuplestore */
while (true)
{
TupleTableSlot *newSlot = MakeSingleTupleTableSlot(tupleDescriptor,
&TTSOpsMinimalTuple);
bool found = tuplesort_gettupleslot(tuplesortstate, true, false, newSlot, NULL);
if (!found)
{
break;
}
/* tuplesort_puttupleslot copies the slot into the tupleStore context */
tuplestore_puttupleslot(tupleStore, newSlot);
}
tuplestore_rescan(scanState->tuplestorestate);
/* terminate the sort, clear unnecessary resources */
tuplesort_end(tuplesortstate);
}
/*
* StubRelation creates a stub Relation from the given tuple descriptor.
* To be able to use copy.c, we need a Relation descriptor. As there is no
* relation corresponding to the data loaded from workers, we need to fake one.
* We just need the bare minimal set of fields accessed by BeginCopyFrom().
*/
static Relation
StubRelation(TupleDesc tupleDescriptor)
{
Relation stubRelation = palloc0(sizeof(RelationData));
stubRelation->rd_att = tupleDescriptor;
stubRelation->rd_rel = palloc0(sizeof(FormData_pg_class));
stubRelation->rd_rel->relkind = RELKIND_RELATION;
return stubRelation;
}
/*
* ExecuteQueryStringIntoDestReceiver plans and executes a query and sends results
* to the given DestReceiver.
*/
void
ExecuteQueryStringIntoDestReceiver(const char *queryString, ParamListInfo params,
DestReceiver *dest)
{
Query *query = ParseQueryString(queryString, NULL, 0);
ExecuteQueryIntoDestReceiver(query, params, dest);
}
/*
* ParseQuery parses query string and returns a Query struct.
*/
Query *
ParseQueryString(const char *queryString, Oid *paramOids, int numParams)
{
RawStmt *rawStmt = (RawStmt *) ParseTreeRawStmt(queryString);
/* rewrite the parsed RawStmt to produce a Query */
Query *query = RewriteRawQueryStmt(rawStmt, queryString, paramOids, numParams);
return query;
}
/*
* RewriteRawQueryStmt rewrites the given parsed RawStmt according to the other
* parameters and returns a Query struct.
*/
Query *
RewriteRawQueryStmt(RawStmt *rawStmt, const char *queryString, Oid *paramOids, int
numParams)
{
List *queryTreeList =
pg_analyze_and_rewrite_fixedparams(rawStmt, queryString, paramOids, numParams,
NULL);
if (list_length(queryTreeList) != 1)
{
ereport(ERROR, (errmsg("can only execute a single query")));
}
Query *query = (Query *) linitial(queryTreeList);
return query;
}
/*
* ExecuteQueryIntoDestReceiver plans and executes a query and sends results to the given
* DestReceiver.
*/
void
ExecuteQueryIntoDestReceiver(Query *query, ParamListInfo params, DestReceiver *dest)
{
int cursorOptions = CURSOR_OPT_PARALLEL_OK;
if (query->commandType == CMD_UTILITY)
{
/* can only execute DML/SELECT via this path */
ereport(ERROR, (errmsg("cannot execute utility commands")));
}
/* plan the subquery, this may be another distributed query */
PlannedStmt *queryPlan = pg_plan_query(query, NULL, cursorOptions, params);
ExecutePlanIntoDestReceiver(queryPlan, params, dest);
}
/*
* ExecutePlanIntoDestReceiver executes a query plan and sends results to the given
* DestReceiver.
*/
void
ExecutePlanIntoDestReceiver(PlannedStmt *queryPlan, ParamListInfo params,
DestReceiver *dest)
{
int eflags = 0;
long count = FETCH_ALL;
/* create a new portal for executing the query */
Portal portal = CreateNewPortal();
/* don't display the portal in pg_cursors, it is for internal use only */
portal->visible = false;
PortalDefineQuery(portal,
NULL,
"",
CMDTAG_SELECT,
list_make1(queryPlan),
NULL);
PortalStart(portal, params, eflags, GetActiveSnapshot());
PortalRun(portal, count, false, true, dest, dest, NULL);
PortalDrop(portal, false);
}
/*
* SetLocalMultiShardModifyModeToSequential is simply a C interface for setting
* the following:
* SET LOCAL citus.multi_shard_modify_mode = 'sequential';
*/
void
SetLocalMultiShardModifyModeToSequential()
{
set_config_option("citus.multi_shard_modify_mode", "sequential",
(superuser() ? PGC_SUSET : PGC_USERSET), PGC_S_SESSION,
GUC_ACTION_LOCAL, true, 0, false);
}
/*
* EnsureSequentialMode makes sure that the current transaction is already in
* sequential mode, or can still safely be put in sequential mode, it errors if that is
* not possible. The error contains information for the user to retry the transaction with
* sequential mode set from the beginning.
*
* Takes an ObjectType to use in the error/debug messages.
*/
void
EnsureSequentialMode(ObjectType objType)
{
char *objTypeString = GetObjectTypeString(objType);
if (ParallelQueryExecutedInTransaction())
{
ereport(ERROR, (errmsg("cannot run %s command because there was a "
"parallel operation on a distributed table in the "
"transaction", objTypeString),
errdetail("When running command on/for a distributed %s, Citus "
"needs to perform all operations over a single "
"connection per node to ensure consistency.",
objTypeString),
errhint("Try re-running the transaction with "
"\"SET LOCAL citus.multi_shard_modify_mode TO "
"\'sequential\';\"")));
}
ereport(DEBUG1, (errmsg("switching to sequential query execution mode"),
errdetail(
"A command for a distributed %s is run. To make sure subsequent "
"commands see the %s correctly we need to make sure to "
"use only one connection for all future commands",
objTypeString, objTypeString)));
SetLocalMultiShardModifyModeToSequential();
}
/*
* GetObjectTypeString takes an ObjectType and returns the string version of it.
* We (for now) call this function only in EnsureSequentialMode, and use the returned
* string to generate error/debug messages.
*
* If GetObjectTypeString gets called with an ObjectType that is not in the switch
* statement, the function will return the string "object", and emit a debug message.
* In that case, make sure you've added the newly supported type to the switch statement.
*/
static char *
GetObjectTypeString(ObjectType objType)
{
switch (objType)
{
case OBJECT_AGGREGATE:
{
return "aggregate";
}
case OBJECT_COLLATION:
{
return "collation";
}
case OBJECT_DATABASE:
{
return "database";
}
case OBJECT_DOMAIN:
{
return "domain";
}
case OBJECT_EXTENSION:
{
return "extension";
}
case OBJECT_FOREIGN_SERVER:
{
return "foreign server";
}
case OBJECT_FUNCTION:
{
return "function";
}
case OBJECT_PUBLICATION:
{
return "publication";
}
case OBJECT_SCHEMA:
{
return "schema";
}
case OBJECT_TSCONFIGURATION:
{
return "text search configuration";
}
case OBJECT_TSDICTIONARY:
{
return "text search dictionary";
}
case OBJECT_TYPE:
{
return "type";
}
case OBJECT_VIEW:
{
return "view";
}
default:
{
ereport(DEBUG1, (errmsg("unsupported object type"),
errdetail("Please add string conversion for the object.")));
return "object";
}
}
}
/*
* AlterTableConstraintCheck returns if the given query is an ALTER TABLE
* constraint check query.
*
* Postgres uses SPI to execute these queries. To see examples of how these
* constraint check queries look like, see RI_Initial_Check() and RI_Fkey_check().
*/
static bool
AlterTableConstraintCheck(QueryDesc *queryDesc)
{
if (!AlterTableInProgress())
{
return false;
}
/*
* These queries are one or more SELECT queries, where postgres checks
* their results either for NULL values or existence of a row at all.
*/
if (queryDesc->plannedstmt->commandType != CMD_SELECT)
{
return false;
}
/*
* While an ALTER TABLE is in progress, we might do SELECTs on some
* catalog tables too. For example, when dropping a column, citus_drop_trigger()
* runs some SELECTs on catalog tables. These are not constraint check queries.
*/
if (!IsCitusPlan(queryDesc->plannedstmt->planTree))
{
return false;
}
return true;
}
/*
* ExecutorBoundParams returns the bound parameters of the current ongoing call
* to ExecutorRun. This is meant to be used by UDFs which need to access bound
* parameters.
*/
ParamListInfo
ExecutorBoundParams(void)
{
Assert(ExecutorLevel > 0);
return executorBoundParams;
}
/*
* EnsureTaskExecutionAllowed ensures that we do not perform remote
* execution from within a task. That could happen when the user calls
* a function in a query that gets pushed down to the worker, and the
* function performs a query on a distributed table.
*/
void
EnsureTaskExecutionAllowed(bool isRemote)
{
if (IsTaskExecutionAllowed(isRemote))
{
return;
}
ereport(ERROR, (errmsg("cannot execute a distributed query from a query on a "
"shard"),
errdetail("Executing a distributed query in a function call that "
"may be pushed to a remote node can lead to incorrect "
"results."),
errhint("Avoid nesting of distributed queries or use alter user "
"current_user set citus.allow_nested_distributed_execution "
"to on to allow it with possible incorrectness.")));
}
/*
* IsTaskExecutionAllowed determines whether task execution is currently allowed.
* In general, nested distributed execution is not allowed, except in a few cases
* (forced function call delegation, triggers).
*
* We distinguish between local and remote tasks because triggers only disallow
* remote task execution.
*/
static bool
IsTaskExecutionAllowed(bool isRemote)
{
if (AllowNestedDistributedExecution)
{
/* user explicitly allows nested execution */
return true;
}
if (!isRemote)
{
if (AllowedDistributionColumnValue.isActive)
{
/*
* When we are in a forced delegated function call, we explicitly check
* whether local tasks use the same distribution column value in
* EnsureForceDelegationDistributionKey.
*/
return true;
}
if (InTrigger())
{
/*
* In triggers on shards we only disallow remote tasks. This has a few
* reasons:
*
* - We want to enable access to co-located shards, but do not have additional
* checks yet.
* - Users need to explicitly set enable_unsafe_triggers in order to create
* triggers on distributed tables.
* - Triggers on Citus local tables should be able to access other Citus local
* tables.
*/
return true;
}
}
return !InLocalTaskExecutionOnShard() && !MaybeInRemoteTaskExecution();
}
/*
* InLocalTaskExecutionOnShard returns whether we are currently in the local executor
* and it is working on a shard of a distributed table.
*
* In general, we can allow distributed queries inside of local executor, because
* we can correctly assign tasks to connections. However, we preemptively protect
* against distributed queries inside of queries on shards of a distributed table,
* because those might start failing after a shard move.
*/
static bool
InLocalTaskExecutionOnShard(void)
{
if (LocalExecutorShardId == INVALID_SHARD_ID)
{
/* local executor is not active or is processing a task without shards */
return false;
}
if (!DistributedTableShardId(LocalExecutorShardId))
{
/*
* Local executor is processing a query on a shard, but the shard belongs
* to a reference table or Citus local table. We do not expect those to
* move.
*/
return false;
}
return true;
}
/*
* MaybeInRemoteTaskExecution returns whether we could in a remote task execution.
*
* We consider anything that happens in a Citus-internal backend, except deleged
* function or procedure calls as a potential task execution.
*
* This function will also return true in other scenarios, such as during metadata
* syncing. However, since this function is mainly used for restricting (dangerous)
* nested executions, it is good to be pessimistic.
*/
static bool
MaybeInRemoteTaskExecution(void)
{
if (!IsCitusInternalBackend())
{
/* in a regular, client-initiated backend doing a regular task */
return false;
}
if (InTopLevelDelegatedFunctionCall || InDelegatedProcedureCall)
{
/* in a citus-initiated backend, but also in a delegated a procedure call */
return false;
}
return true;
}
/*
* InTrigger returns whether the execution is currently in a trigger.
*/
static bool
InTrigger(void)
{
return DatumGetInt32(pg_trigger_depth(NULL)) > 0;
}