Here is a flaky test output that is quite hard to fix:
```diff
diff -dU10 -w /home/circleci/project/src/test/regress/expected/isolation_master_update_node_1.out /home/circleci/project/src/test/regress/results/isolation_master_update_node.out
--- /home/circleci/project/src/test/regress/expected/isolation_master_update_node_1.out.modified 2022-03-21 19:03:54.237042562 +0000
+++ /home/circleci/project/src/test/regress/results/isolation_master_update_node.out.modified 2022-03-21 19:03:54.257043084 +0000
@@ -49,18 +49,20 @@
<waiting ...>
step s2-update-node-1-force: <... completed>
master_update_node
------------------
(1 row)
step s2-abort: ABORT;
step s1-abort: ABORT;
FATAL: terminating connection due to administrator command
-SSL connection has been closed unexpectedly
+server closed the connection unexpectedly
+ This probably means the server terminated abnormally
+ before or while processing the request.
```
I could not come up with a solution that would decrease the flakiness in the test outputs. We already have 3 output files for the same test and now I introduced a 4th one.
I can also add complex regular expressions that span multiple lines, and normalize these error messages. Feel free to suggest a normalized error message in a comment here.
## Current alternative file contents
`isolation_master_update_node.out`
```
step s1-abort: ABORT;
FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command
SSL connection has been closed unexpectedly
```
`isolation_master_update_node_0.out`
```
step s1-abort: ABORT;
WARNING: this step had a leftover error message
FATAL: terminating connection due to administrator command
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
```
`isolation_master_update_node_1.out`
```
step s1-abort: ABORT;
FATAL: terminating connection due to administrator command
SSL connection has been closed unexpectedly
```
new file: `isolation_master_update_node_2.out`
```
step s1-abort: ABORT;
FATAL: terminating connection due to administrator command
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
```
In the past, for all modifications on the local execution,
we enabled 2PC (with 6a7ed7b309).
This also required us to enable coordinated transactions
via https://github.com/citusdata/citus/pull/4831 .
However, it does have a very substantial impact on the
distributed deadlock detection. The distributed deadlock
detection is designed to avoid single-statement transactions
because they cannot lead to any actual deadlocks.
The implementation is to skip backends without distributed
transactions are assigned. Now that we assign single
statement local executions in the lock graphs, we are
conflicting with the design of distributed deadlock
detection.
In general, we should fix it. However, one might
think that it is not a big deal, even if the processes
show up in the lock graphs, the deadlock detection
should not be causing any false positives. That is
false, unless https://github.com/citusdata/citus/issues/1803
is fixed. Now that local processes are considered as a single
distributed backend, the lock graphs might find:
local execution 1 [tx id: 1] -> any local process [tx id: 0]
any local process [tx id: 0] -> local execution 2 [tx id: 2]
And, decides that there is a distributed deadlock.
This commit is:
(a) right thing to do, as local execuion should not need any
distributed tx id
(b) Eliminates performance issues that might come up with
deadlock detection does a lot of unncessary checks
(c) After moving local execution after the remote execution
via https://github.com/citusdata/citus/pull/4301, the
vauge requirement for assigning distributed tx ids are
already gone.
For some reason search_path is not always set correctly on the worker
when calling a distributed function, this shows up when calling
`insert_document` in our distributed_triggers test. The underlying
reason is currently unknown and warrants deeper investigation.
Currently this test is one of the main causes for random CI failures. So
this change sets the search_path of each function explicitly, to reduce
these failures. So other devs can be more efficient, while I continue
investigating the root cause of this issue.
Also changes explicit `SET citus.enable_unsafe_triggers = false` to
`RESET citus.enable_unsafe_triggers` in passing.
* Separate build of citus.so and citus_columnar.so.
Because columnar code is statically-linked to both modules, it doesn't
make sense to load them both at once.
A subsequent commit will make the modules entirely separate and allow
loading them both simultaneously.
Author: Yanwen Jin
* Separate citus and citus_columnar modules.
Now the modules are independent. Columnar can be loaded by itself, or
along with citus.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
The aim of hiding shards is to hide shards from client applications.
Certain bg workers (such as pg_cron or Citus maintanince daemon)
should be treated like client applications because users can run
queries from such bg workers. And, these bg workers should follow
the similar application_name checks as client backeends.
Certain other bg workers, such as logical replication or postgres'
parallel workers, should never hide shards. They are internal
operations.
Similarly the other backend types like the walsender or
checkpointer or autovacuum should never hide shards.
We've had custom versions of Postgres its `foreach` macro which with a
hidden ListCell for quite some time now. People like these custom
macros, because they are easier to use and require less boilerplate.
This adds similar custom versions of Postgres its `forboth` macro. Now
you don't need ListCells anymore when looping over two lists at the same
time.
Since now we don't throw an error for enums that user attempts creating
in temp schema, the preprocess / DDL job that contains the prepared
statement (to idempotently create the enum type) gets executed. As a
result, we were emitting the following warning because of the error the
underlying worker connection throws:
```sql
WARNING: cannot PREPARE a transaction that has operated on temporary objects
CONTEXT: while executing command on localhost:xxxxx
WARNING: connection to the remote node localhost:xxxxx failed with the following error: another command is already in progress
ERROR: cannot PREPARE a transaction that has operated on temporary objects
CONTEXT: while executing command on localhost:xxxxx
```
We were already doing so for functions & types believing that
this cannot be the case for other object types.
However, as in #5830, we cannot distribute an object that user
attempts creating in temp schema. Even more, this doesn't only
apply to functions and types but also to many other object types.
So with this commit, we teach preprocess/postprocess functions
(that need to create dependencies on worker nodes) how to skip
trying to distribute such objects.
We also start identifying temp schemas as the objects that we
don't know how to propagate to worker nodes so that we can
simply create objects locally if user attempts creating them
in a temp schema.
There are 36 callers of `EnsureDependenciesExistOnAllNodes` in
the codebase atm and for the most we still need to throw a hard
error (i.e.: not use `DeferErrorIfHasUnsupportedDependency`
beforehand), such as:
i) user explicitly wants to create a distributed object
* CreateCitusLocalTable
* CreateDistributedTable
* master_create_worker_shards
* master_create_empty_shard
* create_distributed_function
* EnsureExtensionFunctionCanBeDistributed
ii) we don't want to skip altering distributed table on worker nodes
* PostprocessIndexStmt
* PostprocessCreateTriggerStmt
* PostprocessCreateStatisticsStmt
iii) object is already distributed / handled by Citus before, so we
aren't okay with not propagating the ALTER command
* PostprocessAlterTableSchemaStmt
* PostprocessAlterCollationOwnerStmt
* PostprocessAlterCollationSchemaStmt
* PostprocessAlterDatabaseOwnerStmt
* PostprocessAlterExtensionSchemaStmt
* PostprocessAlterFunctionOwnerStmt
* PostprocessAlterFunctionSchemaStmt
* PostprocessAlterSequenceOwnerStmt
* PostprocessAlterSequenceSchemaStmt
* PostprocessAlterStatisticsSchemaStmt
* PostprocessAlterStatisticsOwnerStmt
* PostprocessAlterTextSearchConfigurationSchemaStmt
* PostprocessAlterTextSearchDictionarySchemaStmt
* PostprocessAlterTextSearchConfigurationOwnerStmt
* PostprocessAlterTextSearchDictionaryOwnerStmt
* PostprocessAlterTypeSchemaStmt
* PostprocessAlterForeignServerOwnerStmt
iv) we already cannot create those objects in temp schemas, so skipping
for now
* PostprocessCreateExtensionStmt
* PostprocessCreateForeignServerStmt
Also note that there are 3 more callers of
`EnsureDependenciesExistOnAllNodes` in enterprise in addition to those
36 but we don't need to do anything specific about them due to the same
reasoning given in iii).
In `pg_regress_multi.pl` we're running `initdb` with some options that
the `common.py` `initdb` is currently not using. All these flags seem
reasonable, so this brings `common.py` in line with
`pg_regress_multi.pl`.
In passing change the `--nosync` flag to `--no-sync`, since that's what
the PG documentation lists as the official option name (but both work).
Cluster setup time is significant in arbitrary configs. We can
parallelize this a bit more.
Runtime of the following command decreases from ~25 seconds to ~22
seconds on my machine with this change:
```
make -C src/test/regress/ check-arbitrary-base CONFIGS=CitusDefaultClusterConfig EXTRA_TESTS=prepared_statements_1
```
Currently we can only run different configs in parallel. However, when working on a feature or trying to fix a bug this is not important. In those cases you simply want to run a single test file on a single config. And you want to run that every time you made a change to the code that you think fixes the issue.
This PR allows parallelising running of bash commands. So `initdb` and `pg_ctl start` is run in parallel for all nodes in the cluster. Instead of one waiting for the other.
When you run the above command nothing is being run in parallel.
After this PR, cluster setup is being run in parallel.
We have fsync enabled for regular tests already in `pg_regress_multi.pl`.
This does the same for the arbitrary config tests.
On my machine this changes the runtime from the following command from
~37 to ~25 seconds:
```bash
make -C src/test/regress/ check-arbitrary-configs CONFIGS=CitusDefaultClusterConfig
```
Here is a list of some functions, and the `TargetWorkerSet` parameters
they supply to `NodeDDLTaskList`:
PostprocessCreateTextSearchConfigurationStmt -
NON_COORDINATOR_NODES
PreprocessDropTextSearchConfigurationStmt -
NON_COORDINATOR_METADATA_NODES
PreprocessAlterTextSearchConfigurationSchemaStmt -
NON_COORDINATOR_METADATA_NODES
I guess this means that, if metadata
syncing is disabled on the node, we may have some issues. Consider the
following:
Let's assume the user has metadata syncing disabled. 2 workers.
`CREATE TEXT SEARCH CONFIGURATION ...` will get propagated to all
workers. `ALTER ... CONFIGURATION ...` will not get propagated to
workers.
After adding a new non-metadata node, the new node will get the altered
configuration as it reads from catalog. At this point CONFIGURATION
definitions got diverged in the cluster.
I suggest that we always use `NON_COORDINATOR_METADATA_NODES` in all the
TEXT SEARCH operations here.
Before this commit, we erroneously converted the sequence
type to the column's type it is used. However, it is possible
that the sequence is used in an expression which then converted
to a type that cannot be a sequence, such as text.
With this commit, we only try this conversion if the column
type is a supported sequence type (e.g., smallint, int and bigint).
Note that we do this conversion because if the column type is a
bigint and the sequence is NOT a bigint, users would be in trouble
because sequences would generate values that are out of the range
of the column. (The other ways are already not supported such as
the column is int and the sequence is bigint would fail on the worker.)
In other words, with this commit, we scope this optimization only
when the target column type is a supported sequence type. Otherwise,
we let users to more freely use the sequences.
With the introduction of #4385 we inadvertently started allowing and
pushing down certain lateral subqueries that were unsafe to push down.
To be precise the type of LATERAL subqueries that is unsafe to push down
has all of the following properties:
1. The lateral subquery contains some non recurring tuples
2. The lateral subquery references a recurring tuple from
outside of the subquery (recurringRelids)
3. The lateral subquery requires a merge step (e.g. a LIMIT)
4. The reference to the recurring tuple should be something else than an
equality check on the distribution column, e.g. equality on a non
distribution column.
Property number four is considered both hard to detect and probably not
used very often. Thus this PR ignores property number four and causes
query planning to error out if the first three properties hold.
Fixes#5327
TEXT SEARCH DICTIONARY objects depend on TEXT SEARCH TEMPLATE objects.
Since we do not yet support distributed TS TEMPLATE objects, we skip
dependency checks for text search templates, similar to what we do for
roles.
The user is expected to manually create the TEXT SEARCH TEMPLATE objects
before a) adding new nodes, b) creating TEXT SEARCH DICTIONARY objects.
If a worker node is being added, a command is sent to get the server_id of the worker from the pg_dist_node_metadata table. If the worker's id is the same as the node executing the code, we will know the node is trying to add itself. If the node tries to add itself without specifying `groupid:=0` the operation will result in an error.
Using CASCADE in a DELETE can inadvertently delete things we don't
intend to. It's safer to fail hard and make the user delete depending
things manually.
1) Remove useless columns
2) Show backends that are blocked on a DDL even before
gpid is assigned
3) One minor bugfix, where we clear distributedCommandOriginator
properly.
DESCRIPTION: Move pg_dist_object to pg_catalog
Historically `pg_dist_object` had been created in the `citus` schema as an experiment to understand if we could move our catalog tables to a branded schema. We quickly realised that this interfered with the UX on our managed services and other environments, where users connected via a user with the name of `citus`.
By default postgres put the username on the search_path. To be able to read the catalog in the `citus` schema we would need to grant access permissions to the schema. This caused newly created objects like tables etc, to default to this schema for creation. This failed due to the write permissions to that schema.
With this change we move the `pg_dist_object` catalog table to the `pg_catalog` schema, where our other schema's are also located. This makes the catalog table visible and readable by any user, like our other catalog tables, for debugging purposes.
Note: due to the change of schema, we had to disable 1 test that was running into a discrepancy between the schema and binary. Secondly, we needed to make the lookup functions for the `pg_dist_object` relation and their indexes less strict on the fallback of the naming due to an other test that, due to an unfortunate cache invalidation, needed to lookup the relation again. This makes that we won't default to _only_ resolving from `pg_catalog` outside of upgrades.
* Notice when create_distributed_function called without params
* Move variable comments to top
* Add valid check for cache entry
* add objtype to notice msg
* update test outputs
* Add more tests
* Address feedback
And also citus_calculate_gpid(nodeId,pid). These UDFs are just
wrappers for the existing functions. Useful for testing and simple
manipulation of citus_stat_activity.
It seems like our approach is way too restrictive and some places
are wrong. Now, we follow very similar approach to pg_stat_activity.
Some of the changes are pre-requsite for implementing citus_dist_stat_activity
via citus_stat_activity.
Clusters created pre-Citus 11 mostly didn't have metadata sync enabled.
For those clusters, we add a utility UDF which fixes some minor issues
and sync the necessary objects to the workers.
* [Columnar] Build columnar.so and let citus depends on it
Co-authored-by: Yanwen Jin <yanwjin@microsoft.com>
Co-authored-by: Ying Xu <32597660+yxu2162@users.noreply.github.com>
Co-authored-by: jeff-davis <Jeffrey.Davis@microsoft.com>
DESCRIPTION: Add GUC to control ddl creation behaviour in transactions
Historically we would _not_ propagate objects when we are in a transaction block. Creation of distributed tables would not always work in sequential mode, hence objects created in the same transaction as distributing a table that would use the just created object wouldn't work. The benefit was that the user could still benefit from parallelism.
Now that the creation of distributed tables is supported in sequential mode it would make sense for users to force transactional consistency of ddl commands for distributed tables. A transaction could switch more aggressively to sequential mode when creating new objects in a transaction.
We don't change the default behaviour just yet.
Also, many objects would not even propagate their creation when the transaction was already set to sequential, leaving the probability of a self deadlock. The new policy checks solve this discrepancy between objects as well.
The issue in question is caused when rebalance / replication call `FullShardPlacementList` which returns all shard placements (including those in disabled nodes with `citus_disable_node`). Eventually, `FindFillStateForPlacement` looks for the state across active workers and fails to find a state for the placements which are in the disabled workers causing a seg fault shortly after.
Approach:
* `ActivePlacementHash` was not using the status of the shard placement's node to determine if the node it is active. Initially, I just fixed that.
* Additionally, I refactored the code which handles active shards in replication / rebalance to:
* use a single function to determine if a shard placement is active.
* do the shard active shard filtering before calling `RebalancePlacementUpdates` and `ReplicationPlacementUpdates`, so test methods like `shard_placement_rebalance_array` and `shard_placement_replication_array` which have different shard placement active requirements can do their own filtering while using the same rebalance / replicate logic that `rebalance_table_shards` and `replicate_table_shards` use.
Fix#5664
CitusInitiatedBackend was a pre-mature implemenation of the whole
GlobalPID infrastructure. We used it to track whether any individual
query is triggered by Citus or not.
As of now, after GlobalPID is already in place, we don't need
CitusInitiatedBackend, in fact it could even be wrong.
#5685 introduced the resolution of dependencies for indices. This missed support for indices on partitioned tables. This change adds support for partitioned indices to the dependency resolution code.
It turns out `whereis` is incredibly slow on WSL2 (at least on my
machine):
```
$ time whereis diff
diff: /usr/bin/diff /usr/share/man/man1/diff.1.gz
real 0m0.408s
user 0m0.010s
sys 0m0.101s
```
This command is run by our custom `diff` script, which is run for every
test file that is run. So this adds lots of unnecessary runtime time to
tests.
This changes our custom `diff` script to only call `whereis` in the
strange case that `/usr/bin/diff` does not exist.
The impact of this small change on the total runtime of the tests on WSL
is huge. As an example the following command takes 18 seconds without
this change and 7 seconds with it:
```
make -C src/test/regress/ check-arbitrary-configs CONFIGS=PostgresConfig
```
(cherry picked from commit 4e93afd1f78854e1aaab63690c441b0b0598a82c)
(cherry picked from commit 0295fe2f5b)
(cherry picked from commit 878510725fab9cb6870b4504e0b1f055d7bbc68d)
Before this commit, dumping wait edges can only be used for
distributed deadlock detection purposes. With this commit,
we open the possibility that we can use it for any backend.
CREATE FUNCTION command together with it's dependencies.
If the function depends on any nondistributable object,
function will be created only locally. Parameterless
version of create_distributed_function becomes obsolete
with this change, it will deprecated from the code with a subsequent PR.
* When a worker tried to create a collation which had a dependency in the same worker node,
it would cause a deadlock, now it throws the correct "not a coordinator" error.
DESCRIPTION: Implement TEXT SEARCH CONFIGURATION propagation
The change adds support to Citus for propagating TEXT SEARCH CONFIGURATION objects. TSConfig objects cannot always be created in one create statement, and instead require a create statement followed by many alter statements to get turned into the object they should represent.
To support this we add functionality to the worker to create or replace objects based on a list of statements. When the lists of the local object and the remote object correspond 1:1 we skip the creation of the object and simply mark it distributed. This is especially important for TSConfig objects as initdb pre-populates databases with a dozen configurations (for many different languages).
When the user creates a new TSConfig based on the copy of an existing configuration there is no direct link to the object copied from. Since there is no link we can't simply rely on propagating the dependencies to the worker and send a qualified
We check for metadata consistency across the cluster in the test
isolation_metadata_sync_vs_all. However, some earlier tests in
enterprise repo leave invalid pg_dist_node entries in the worker nodes
that have Oid values for already dropped role objects.
To remedy that, I suggest that we move the test to earlier in the
schedule, thereby making the tests pass for the time being. We should
later introduce metadata checking either in a new isolation test or by
moving this test later in the schedule. However, we should do that after
we fix the underlying issue.
The low-level StoreAllActiveTransactions() function filters out
backends that exited.
Before this commit, if you run a pgbench, after that you'd still
see the backends show up:
```SQL
select count(*) from get_global_active_transactions();
┌───────┐
│ count │
├───────┤
│ 538 │
└───────┘
```
After this patch, only active backends show-up:
```SQL
select count(*) from get_global_active_transactions();
┌───────┐
│ count │
├───────┤
│ 72 │
└───────┘
```
DESCRIPTION: Prevent Citus table functions from being called on shards
The operations that guard against using shards are:
* Create Local Table
* Create distributed table (which affects reference table creation as well).
* I used a `ErrorIfRaltionIsKnownShard` instead of `ErrorIfIllegallyChangingKnownShard`.
`ErrorIfIllegallyChangingKnownShard` allows the operation if `citus.enable_manual_changes_to_shards`,
but I am not sure if it ever makes sense to create a distributed, reference, or citus local table out of a shard.
I tried to go over the code to identify other UDF-s where shards could be illegaly changed, but I could not find any other.
My knowledge of the codebase is not solid enough for me to say for sure.
Fixes#5610
This commit introduces several test cases for concurrent operations that
change metadata, and a concurrent metadata sync operation.
The overall structure is as follows:
- Session#1 starts metadata syncing in a transaction block
- Session#2 does an operation that change metadata
- Both sessions are committed
- Another session checks whether the metadata are the same accross all
nodes in the cluster.
* Break the dependency to CitusInitiatedBackend infrastructure
With this change, we start to show non-distributed backends as well
in citus_dist_stat_activity. I think that
(a) it is essential for making citus_lock_waits to work for blocked
on DDL commands.
(b) it is more expected from the user's perspective. The name of
the view is a little inconsistent now (e.g., citus_dist_stat_activity)
but we are already planning to improve the names with followup
PRs.
Also, we have global pids assigned, the CitusInitiatedBackend
becomes obsolete.
With https://github.com/citusdata/citus/pull/5657, Citus uses
a fixed application_name while connecting to remote nodes
for internal purposes.
It means that we cannot allow users to override it via
citus.node_conninfo.
Implement #5649
Allow create_distributed_function() on functions owned by extensions
1) Only update pg_dist_object, and do not propagate CREATE FUNCTION.
2) Ensure corresponding extension is in pg_dist_object.
3) Verify if dependencies exist on the function they should resolve to the extension.
4) Impact on node-scaling: We build a list of ddl commands based on all objects in
pg_dist_object. We need to omit the ddl's for the extension-function, as it
will get propagated by the virtue of the extension creation.
5) Extra checks for functions coming from extensions, to not propagate changes
via ddl commands, even though the function is marked as distributed in pg_dist_object
If the expression is simple, such as, SELECT function() or PEFORM function()
in PL/PgSQL code, PL engine does a simple expression evaluation which can't
interpret the Citus CustomScan Node. Code checks for simple expressions when
executing an UDF but missed the DO-Block scenario, this commit fixes it.
Removed dependency for EnsureTableOwner. Also removed pg_fini() and columnar_tableam_finish() Still need to remove CheckCitusVersion dependency to make Columnar_tableam.h dependency free from Citus.
Previously, we were wrapping targetlist nodes with Vars that reference
to the result of the worker query, if the node itself is not `Const` or
not a `Param`. Indeed, we should not do that unless the node itself is
a `Var` node or contains a `Var` within it (e.g.: `OpExpr(Var(column_a) > 2)`).
Otherwise, when worker query returns empty result set, then combine
query exec would crash since the `Var` would be pointing to an empty
tuple slot, which is not desirable for the node-executor methods.
Replaces citus.enable_object_propagation with citus.enable_metadata_sync
Also, within Citus 11 release cycle, we added citus.enable_metadata_sync_by_default,
that is also replaced with citus.enable_metadata_sync.
In essence, when citus.enable_metadata_sync is set to true, all the objects
and the metadata is send to the remote node.
We strongly advice that the users never changes the value of
this GUC.
With this commit, rebalancer backends are identified by application_name = citus_rebalancer
and the regular internal backends are identified by application_name = citus_internal
With this commit we've started to propagate sequences and shell
tables within the object dependency resolution. So, ensuring any
dependencies for any object will consider shell tables and sequences
as well. Separate logics for both shell tables and sequences have
been removed.
Since both shell tables and sequences logic were implemented as a
part of the metadata handling before that logic, we were propagating
them while syncing table metadata. With this commit we've divided
metadata (which means anything except shards thereafter) syncing
logic into multiple parts and implemented it either as a part of
ActivateNode. You can check the functions called in ActivateNode
to check definition of different metadata.
Definitions of start_metadata_sync_to_node and citus_activate_node
have also been updated. citus_activate_node will basically create
an active node with all metadata and reference table shards.
start_metadata_sync_to_node will be same with citus_activate_node
except replicating reference tables. stop_metadata_sync_to_node
will remove all the metadata. All of those UDFs need to be called
by superuser.
When creating a new table, we bypass the buffer cache and write the
initial pages directly with smgrwrite(). However, you're supposed to
use smgrextend() when extending a relation, rather than smgrwrite().
There isn't much difference between them, but smgrextend() updates the
relation size cache, which seems important, although I haven't seen
any real bugs caused by that.
Also, write the block to disk only after WAL-logging it, so that we
can include the LSN of the WAL record in the version that we write
out. Currently, the page as written to disk has LSN 0. That doesn't
cause any user-visible issues either, at worst it could make us
WAL-log a full page image of the page earlier than necessary, but that
doesn't matter currently because we WAL-log full page images of all
changes anyway.
I bumped into that issue with LSN 0 in the page header when testing
Citus with Zenith (https://github.com/zenithdb/zenith/issues/1176).
Zenith contains a check that PANICs if you write a block to disk
without WAL-logging it, and it works by checking the LSN of the page
that's written out. In this case, we are WAL-logging the page even
though the LSN on the page is 0, so it was a false alarm, but I'd love
to get this changed in Citus to keep the check in Zenith simple.
A downside of WAL-logging the page first is that if you run out of
disk space, you have already created the WAL record. So if you then
crash and restart, WAL recovery will likely run out of disk space,
too, which is bad. In practice, we have the same problem in other
places, like rewriteheap.c. Also, if you are on the brink of running
out of disk space, you will probably run out at WAL replay anyway,
regardless of which order we write these few pages. But if we wanted
to fix that, we could first extend the relation with zeros, and then
WAL-log the pages. That's how heap extension works.
It would be even nicer to use the buffer cache for this, and skip the
smgrimmedsync() on the relation. However, that would require more
work, because we don't have the Relation struct for the relation here.
We could use ReadBufferWithoutRelcache(), but that doesn't work for
unlogged tables. Unlogged tables are currently not supported
(https://github.com/citusdata/citus/issues/4742), but that would
become a problem if we want to support them in the future.
CreateFakeRelcacheEntry() also doesn't work with unlogged tables. We
could do things differently for logged and unlogged tables, but that
complicates the code further.
Co-authored-by: jeff-davis <Jeffrey.Davis@microsoft.com>
Citus heavily relies on application_name, see
`IsCitusInitiatedRemoteBackend()`.
But if the user set the application name, such as export PGAPPNAME=test_name,
Citus uses that name while connecting to the remote node.
With this commit, we ensure that Citus always connects with
the "citus" user name to the remote nodes.
With https://github.com/citusdata/citus/pull/2780, we allow
COPY to use any number of connections that the executor used
in a tx block.
Meaning that, while COPYing data to the shards, create_distributed_table
could allow sequential mode.
We fall back to local execution if we cannot establish any more
connections to local node. However, we should not do that for the
commands that we don't know how to execute locally (or we know we
shouldn't execute locally). To fix that, we take localExecutionSupported
take into account in CanFailoverPlacementExecutionToLocalExecution too.
Moreover, we also prompt a more accurate hint message to inform user
about whether the execution is failed because local execution is
disabled by them, or because local execution wasn't possible for given
command.
multi_log_hook() hook is called by EmitErrorReport() when emitting the
ereport either to frontend or to the server logs. And some callers of
EmitErrorReport() (e.g.: errfinish()) seems to assume that string fields
of given ErrorData object needs to be freed. For this reason, we copy the
message into heap here.
I don't think we have faced with such a problem before but it seems worth
fixing as it is theoretically possible due to the reasoning above.
BEGIN/COMMIT transaction block or in a UDF calling another UDF.
(2) Prohibit/Limit the delegated function not to do a 2PC (or any work on a
remote connection).
(3) Have a safety net to ensure the (2) i.e. we should block the connections
from the delegated procedure or make sure that no 2PC happens on the node.
(4) Such delegated functions are restricted to use only the distributed argument
value.
Note: To limit the scope of the project we are considering only Functions(not
procedures) for the initial work.
DESCRIPTION: Introduce a new flag "force_delegation" in create_distributed_function(),
which will allow a function to be delegated in an explicit transaction block.
Fixes#3265
Once the function is delegated to the worker, on that node during the planning
distributed_planner()
TryToDelegateFunctionCall()
CheckDelegatedFunctionExecution()
EnableInForceDelegatedFuncExecution()
Save the distribution argument (Constant)
ExecutorStart()
CitusBeginScan()
IsShardKeyValueAllowed()
Ensure to not use non-distribution argument.
ExecutorRun()
AdaptiveExecutor()
StartDistributedExecution()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the remoteTaskList.
NonPushableInsertSelectExecScan()
InitializeCopyShardState()
EnsureNoRemoteExecutionFromWorkers()
Ensure all the shards are local to the node in the placementList.
This also fixes a minor issue: Properly handle expressions+parameters in distribution arguments
* Removed distributed dependency in columnar_metadata.c
* Changed columnar_debug.c so that it no longer needed distributed/tuplestore and made it return a record instead of a tuplestore
* removed distributed/commands.h dependency
* Made columnar_tableam.c dependency-free
* Fixed spacing for columnar_store_memory_stats function
* indentation fix
* fixed test failures
* Require superuser while activating a node
With this change, we require ActiveNode() (hence citus_add_node(),
citus_activate_node()) explicitly require for a superuser.
Before this commit, these functions were designed to work with
non-superuser roles with the relevent GRANTs given.
However, that is not a widely used way for calling the functions
above.
Due to possibility of non-super user calling the UDFs, they were
designed in a way that some commands were using some additional
short-lived superuser connections. That is:
(a) breaking transactional behavior (e.g., ROLLBACK
wouldn't fully rollback the whole transaction)
(b) Making it very complicated to reason about which
parts of the node activation goes over which connections,
and becoming vulnerable to deadlocks / visibility issues.
In addition to starting a new transaction, we also need to tell other
backends --including the ones spawned for connections opened to
localhost to build indexes on shards of this relation-- that concurrent
index builds can safely ignore us.
Normally, DefineIndex() only does that if index doesn't have any
predicates (i.e.: where clause) and no index expressions at all.
However, now that we already called standard process utility, index
build on the shell table is finished anyway.
The reason behind doing so is that we cannot guarantee not grabbing any
snapshots via adaptive executor, and the backends creating indexes on
local shards (if any) might block on waiting for current xact of the
current backend to finish, which would cause self deadlocks that are not
detectable.
With https://github.com/citusdata/citus/pull/5493 we introduced
metadata specific connections.
With this connection we guarantee that there is a single metadata connection.
But note that this connection can be used for any other operation.
In other words, this connection is not only reserved for metadata
operations.
However, as https://github.com/citusdata/citus-enterprise/issues/715 showed
us that the logic has a flaw. We allowed ineligible connections to be
picked as metadata connections: such as exclusively claimed connections
or not fully initialized connections.
With this commit, we make sure that we only consider eligable connections
for metadata operations.
We prefer the background daemon to only sync node metadata. That's
why we move placement metadata changes from disable node to
activate node. With that, we can make sure that disable node
only changes node metadata, whereas activate node syncs all
the metadata changes. In essence, we already expect all
nodes to be up when a node is activated. So, this does not change
the behavior much.
Dropping sequences means we need to recreate
and hence losing the sequence.
With this commit, we keep the existing sequences
such that resyncing wouldn't drop the sequence.
We do that by breaking the dependency of the sequence
from the table.
Split distributed/version_compat.h into dependency-free
pg_version_compat.h, and the original which still has
dependencies. The original doesn't have much purpose, but until other
files have better discipline about including the correct header files,
then it's still needed.
Also make distributed/listutils.h dependency-free. Should be moved
outside of 'distributed' subdirectory, but that will cause significant
code churn, so leave for another cleanup patch.
Now both files can be included in columnar without creating a
dependency on citus.
Previously, we cheated by using the RM_GENERIC_ID record type, but not
actually using the generic WAL API. This worked because we always took
a full page image, and saved the extra work of allocating and copying
to a temporary page.
But it introduced complexity, and perhaps fragility, so better to just
use the API properly. The performance penalty for a serial data load
seems to be less than 1%.
Before this commit, Citus was triggering metadata syncing
in the background when a function is distributed. However,
with Citus 11, we expect all clusters to have metadata synced
enabled. So, we do not expect any nodes not to have the metadata.
This change:
(a) pro: simplifies the code and opens up possibilities
to simplify futher by reducing the scope of
bg worker to only sync node metadata
(b) pro: explicitly asks users to sync the metadata such that
any unforseen impact can be easily detected
(c) con: For distributed functions without distribution
argument, we do not necessarily require the metadata
sycned. However, for completeness and simplicity, we
do so.
With Citus 11, the default behavior is to sync the metadata.
However, partitioned tables created pre-Citus 11 might have
index names that are not compatiable with metadata syncing.
See https://github.com/citusdata/citus/issues/4962 for the
details.
With this commit, we record the existence of partitioned tables
such that we can fix it later if any exists.
With this commit, fix_partition_shard_index_names()
works significantly faster.
For example,
32 shards, 365 partitions, 5 indexes drop from ~120 seconds to ~44 seconds
32 shards, 1095 partitions, 5 indexes drop from ~600 seconds to ~265 seconds
`queryStringList` can be really long, because it may contain #partitions * #indexes entries.
Before this change, we were actually going through the executor where each command
in the query string triggers 1 round trip per entry in queryStringList.
The aim of this commit is to avoid the round-trips by creating a single query string.
I first simply tried sending `q1;q2;..;qn` . However, the executor is designed to
handle `q1;q2;..;qn` type of query executions via the infrastructure mentioned
above (e.g., by tracking the query indexes in the list and doing 1 statement
per round trip).
One another option could have been to change the executor such that only track
the query index when `queryStringList` is provided not with queryString
including multiple `;`s . That is (a) more work (b) could cause weird edge
cases with failure handling (c) felt like coding a special case in to the executor
(cherry picked from commit 90928cfd74)
Fix function signature generation
Fix comment typo
Add test for worker_create_or_replace_object
Add test for recreating distributed functions with OUT/TABLE params
Add test for recreating distributed function that returns setof int
Fix test output
Fix comment
Simply applies
```SQL
SELECT textlike(command, citus.grep_remote_commands)
```
And, if returns true, the command is logged. Else, the log is ignored.
When citus.grep_remote_commands is empty string, all commands are
logged.
This UDF coordinates connectivity checks accross the whole cluster.
This UDF gets the list of active readable nodes in the cluster, and
coordinates all connectivity checks in sequential order.
The algorithm is:
for sourceNode in activeReadableWorkerList:
c = connectToNode(sourceNode)
for targetNode in activeReadableWorkerList:
result = c.execute(
"SELECT citus_check_connection_to_node(targetNode.name,
targetNode.port")
emit sourceNode.name,
sourceNode.port,
targetNode.name,
targetNode.port,
result
- result -> true -> connection attempt from source to target succeeded
- result -> false -> connection attempt from source to target failed
- result -> NULL -> connection attempt from the current node to source node failed
I suggest you use the following query to get an overview on the connectivity:
SELECT bool_and(COALESCE(result, false))
FROM citus_check_cluster_node_health();
Whenever this query returns false, there is a connectivity issue, check in detail.
PostgreSQL does not need calling this function since 7.4 release, and it
is a NOOP.
For more details, check PostgreSQL commit below :
commit dd04e958c8b03c0f0512497651678c7816af3198
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Mar 9 03:34:10 2003 +0000
tuplestore_donestoring() isn't needed anymore, but provide a no-op
macro definition so as not to create compatibility problems.
diff --git a/src/include/utils/tuplestore.h b/src/include/utils/tuplestore.h
index b46babacd1..76fe9fb428 100644
--- a/src/include/utils/tuplestore.h
+++ b/src/include/utils/tuplestore.h
@@ -17,7 +17,7 @@
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
- * $Id: tuplestore.h,v 1.8 2003/03/09 02:19:13 tgl Exp $
+ * $Id: tuplestore.h,v 1.9 2003/03/09 03:34:10 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -41,6 +41,9 @@ extern Tuplestorestate *tuplestore_begin_heap(bool randomAccess,
extern void tuplestore_puttuple(Tuplestorestate *state, void *tuple);
+/* tuplestore_donestoring() used to be required, but is no longer used */
+#define tuplestore_donestoring(state) ((void) 0)
+
/* backwards scan is only allowed if randomAccess was specified 'true' */
extern void *tuplestore_gettuple(Tuplestorestate *state, bool forward,
bool *should_free);
We had 2 class definitions for CitusCacheManyConnectionsConfig, where
one of them was a copy of CitusSmallCopyBuffersConfig.
This commit leaves the intended class definition that configures caching
many connections, and removes the one that is a copy of another class
Since sequences are not marked as distributed while creating table if no
metadata worker node exists, we are marking all sequences distributed
while syncing metadata explicitly.
We've both allowed delegating functions and procedures from worker nodes
and also prevented delegation if a function/procedure has already been
propagated from another node.
Before that PR we were updating citus.pg_dist_object metadata, which keeps
the metadata related to objects on Citus, only on the coordinator node. In
order to allow using those object from worker nodes (or erroring out with
proper error message) we've started to propagate that metedata to worker
nodes as well.
citus_check_connection_to_node runs a simple query on a remote node and
reports whether this attempt was successful.
This UDF will be used to make sure each worker node can connect to all
the worker nodes in the cluster.
parameters:
nodename: required
nodeport: optional (default: 5432)
return value:
boolean success
* Update broken link for upgrade tests
* Update src/test/regress/README.md
Co-authored-by: Nils Dijk <nils@citusdata.com>
Co-authored-by: Nils Dijk <nils@citusdata.com>
As of master branch, Citus does all the modifications to replicated tables
(e.g., reference tables and distributed tables with replication factor > 1),
via 2PC and avoids any shardstate=3. As a side-effect of those changes,
handling node failures for replicated tables change.
With this PR, when one (or multiple) node failures happen, the users would
see query errors on modifications. If the problem is intermitant, that's OK,
once the node failure(s) recover by themselves, the modification queries would
succeed. If the node failure(s) are permenant, the users should call
`SELECT citus_disable_node(...)` to disable the node. As soon as the node is
disabled, modification would start to succeed. However, now the old node gets
behind. It means that, when the node is up again, the placements should be
re-created on the node. First, use `SELECT citus_activate_node()`. Then, use
`SELECT replicate_table_shards(...)` to replicate the missing placements on
the re-activated node.
With this commit, we make sure to use a dedicated connection per
node for all the metadata operations within the same transaction.
This is needed because the same metadata (e.g., metadata includes
the distributed table on the workers) can be modified accross
multiple connections.
With this connection we guarantee that there is a single metadata connection.
But note that this connection can be used for any other operation.
In other words, this connection is not only reserved for metadata
operations.
The checks for preventing to remove a node are very much reference
table centric. We are soon going to add the same checks for replicated
tables. So, make the checks generic such that:
(a) replicated tables fit naturally
(b) we can the same checks in `citus_disable_node`.
We do not use comments starting with # in spec files because it creates
errors from C preprocessor that expects directives after this character.
Instead use C style comments, i.e:
// single line comment
You can also use multiline comments as well
/*
* multi line comment
*/
We re-define the meaning of active shard placement. It used
to only be defined via shardstate == SHARD_STATE_ACTIVE.
Now, we also add one more check. The worker node that the
placement is on should be active as well.
This is a preparation for supporting citus_disable_node()
for MX with multiple failures at the same time.
With this change, the maintanince daemon only needs to
sync the "node metadata" (e.g., pg_dist_node), not the
shard metadata.
Before this commit, we acquire the metadata locks on the reference
tables while removing/disabling a node on all the MX nodes.
Although it has some marginal benefits, such as a concurrent
modification during remove/disable node blocks, instead of erroring
out, the drawbacks seems worse. Both citus_remove_node and citus_disable_node
are not tolerant to multiple node failures.
With this commit, we relax the locks. The implication is that while
a node is removed/disabled, users might see query errors. On the
other hand, this change becomes removing/disabling nodes more
tolerant to multiple node failures.
When refactoring storage layer in #4907, we deleted the code that allows
overwriting a disk page previously written but not known by metadata.
Readers can see the change that introduced the code allows doing so in
commit a8da9acc63.
The reasoning was that; as of 10.2, we started aligning page
reservations (`AlignReservation`) for subsequent writes right after
allocating pages from disk. That means, even if writer transaction
fails, subsequent writes are guaranteed to allocate a new page and write
to there. For this reason, attempting to write to a page allocated
before is not possible for a columnar table that user created when using
v10.2.x.
However, since the older versions of columnar doesn't do that, following
example scenario can still result in writing to such disk page, even if
user now upgraded to v10.2.x. This is because, when upgrading storage to
2.0 (`ColumnarStorageUpdateIfNeeded`), we calculate `reservedOffset` of
the metapage based on the highest used address known by stripe
metadata (`GetHighestUsedAddressAndId`). However, stripe metadata
doesn't have entries for aborted writes. As a result, highest used
address would be computed by ignoring pages that are allocated but not
used.
- User attempts writing to columnar table on Citus v10.0x/v10.1x.
- Write operation fails for some reason.
- User upgrades Citus to v10.2.x.
- When attempting to write to same columnar table, they hit to "attempt
to write columnar data .." error since write operation done in the
older version of columnar already allocated that page, and now we are
overwriting it.
For this reason, with this commit, we re-do the change done in
a8da9acc63.
And for the reasons given above, it wasn't possible to add a test for
this commit via usual code-paths. For this reason, added a UDF only for
testing purposes so that we can reproduce the exact scenario in our
regression test suite.
During pg upgrades, we have seen that it is not guaranteed that a
columnar table will be created after metadata objects got created.
Prior to changes done in this commit, we had such a dependency
relationship in `pg_depend`:
```
columnar_table ----> columnarAM ----> citus extension
^ ^
| |
columnar.storage_id_seq -------------------- |
|
columnar.stripe -------------------------------
```
Since `pg_upgrade` just knows to follow topological sort of the objects
when creating database dump, above dependency graph doesn't imply that
`columnar_table` should be created before metadata objects such as
`columnar.storage_id_seq` and `columnar.stripe` are created.
For this reason, with this commit we add new records to `pg_depend` to
make columnarAM depending on all rel objects living in `columnar`
schema. That way, `pg_upgrade` will know it needs to create those before
creating `columnarAM`, and similarly, before creating any tables using
`columnarAM`.
Note that in addition to inserting those records via installation script,
we also do the same in `citus_finish_pg_upgrade()`. This is because,
`pg_upgrade` rebuilds catalog tables in the new cluster and that means,
we must insert them in the new cluster too.
- [x] Add some more regression test coverage
- [x] Make sure returning works fine in case of
local execution + remote execution
(task->partiallyLocalOrRemote works as expected, already added tests)
- [x] Implement locking properly (and add isolation tests)
- [x] We do #shardcount round-trips on `SerializeNonCommutativeWrites`.
We made it a single round-trip.
- [x] Acquire locks for subselects on the workers & add isolation tests
- [x] Add a GUC to prevent modification from the workers, hence increase the
coordinator-only throughput
- The performance slightly drops (~%15), unless
`citus.allow_modifications_from_workers_to_replicated_tables`
is set to false
Drop extension might cascade to columnar.options before dropping a
columnar table. In that case, we were getting below error when opening
columnar.options to delete records for the columnar table that we are
about to drop.: "ERROR: could not open relation with OID 0".
I somehow reproduced this bug easily when upgrading pg, that is why
adding added the test to after_pg_upgrade_schedule.
We recently introduced a set of patches to 10.2, and introduced 10.2-4
migration version. This migration version only resides on `release-10.2`
branch, and is missing on our default branch. This creates a problem
because we do not have a valid migration path from 10.2 to latest 11.0.
To remedy this issue, I copied the relevant migration files from
`release-10.2` branch, and renamed some of our migration files on
default branch to make sure we have a linear upgrade path.
Before this commit, we required the user to be owner of the shard/table
in order to call lock_shard_resources.
However, that is too restrictive. We can have users with GRANTS
to the table who are not owners of the tables/shards.
With this commit, we allow such patterns.
This change creates a slightly higher abstraction of the `PartitionedResultDestReceiver` where it decouples the partitioning from writing it to a file. This allows for easier reuse for other `DestReceiver`'s that would like to route different tuples to different `DestReceiver`'s.
Originally there was a lot of state kept in `PartitionedResultDestReceiver` to be able to lazily create `FileDestReceivers` when the first tuple arrived for that target. This convoluted the implementation of the processing of tuples with where they should go.
This refactor changes that where it makes the `PartitionedResultDestReceiver` completely agnostic of what kind of Receivers it is writing to. When constructed you pass it a list of `DestReceiver` compatible pointers with the length of `partitionCount`. Internally the `PartitionedResultDestReceiver` keeps track of which `DestReceiver`'s have been started or not, and start them when they first receive a tuple.
Alternatively, if the instantiating code of the `PartitionedResultDestReceiver` wants, the startup can be turned from lazily to eagerly. When the startup is eager (not lazy) all `rStartup` functions on the list of `DestReceiver`'s are called during the startup of the `PartitionedResultDestReceiver` and marked as such.
A downside of this approach is the following. On highly partitioned destinations we now need to allocate a `FileDestReceiver` for every target, _always_. When the data passed into the `PartitionedResultDestReceiver` is highly skewed to a small set of `FileDestReceiver`'s this will waste some memory. Given the small size of a `FileDestReceiver`, and the fact that actual file handles are only created during the processing of the startup of the `FileDestReceiver` I think this memory waste is not a problem. If this would become a problem we could refactor the source list into some kind of generator object which can generate the `DestReceiver`'s on the fly.
* Refactor some checks in citus local tables
* all existing citus local tables are auto converted after upgrade
* Update warning messages in CreateCitusLocalTable
* Hide notice msg for auto converting local tables
* Hide hint msg
Co-authored-by: Ahmet Gedemenli <afgedemenli@gmail.com>
This PR is fixing 2 separate issues related to the local run of citus upgrade tests.
d3e7c825ab fixes the issue that, with our new testing infrastructure, we moved/renamed some of existing folders. This created a problem for local runs of citus upgrade tests since some paths were sensitive to such changes. This commit tries to make it more generic so that this issue is less likely to happen in the future, while also fixing the current issue.
93de6b60c3 we are fixing an issue that a new environment variable was added for citus upgrade tests, which is defined in the CI. 0cb51f8c37/.circleci/config.yml (L294)
This environment variable wasn't set in our local runs hence it would create problems. Instead of defining this environment variable in the local run, we change the citus_upgrade run command to use an existing env variable, which is now also set in the CI.
We fixed some crashes a while back that would only occur in cases where
the value of a distribution column would have result in a high or a very
low hash value. This adds a regression test for those crashes.
This test starts passing because of PR #4508, to be precise commit:
24e60b44a1
When I undo that commit this newly added test starts failing. This adds
this test to make sure we don't regress on this again.
Clang 13 complains about a suspicious string concatenation. It thinks we
might have missed a comma. This adds parentheses to make it clear that
concatenation is indeed what we meant.
There is a vulnerability in mitmproxy with the version we are using.
It would be hard to exploit anything with regards to the artifacts we ship as its only used in our test suite. Still its good hygiene to _not_ use software with known vulnerabilities.
This PR updates the version of python, mitmproxy and the crypto libraries used.
The latest version of mitmproxy for python 3.6 is not patched, hence the upgrade of python.
For our CI images this cascades into upgrading debian as well :)
For CI we bake these versions in our images so we need to update them as well.
Changes to the CI images: https://github.com/citusdata/the-process/pull/65
It seems like the decision for 2PC is more complicated than
it should be.
With this change, we do one behavioral change. In essense,
before this commit, when a SELECT task with replication factor > 1
is executed, the executor was triggering 2PC. And, in fact,
the transaction manager (`ConnectionModifiedPlacement()`) was
able to understand not to trigger 2PC when no modification happens.
However, for transaction blocks like:
BEGIN;
-- a command that triggers 2PC
-- A SELECT command on replication > 1
..
COMMIT;
The SELECT was used to be qualified as required 2PC. And, as a side-effect
the executor was setting `xactProperties.errorOnAnyFailure = true;`
So, the commands was failing at the time of execution. Now, they fail at
the end of the transaction.
In the past, we allowed users to manually switch to 1PC
(e.g., one phase commit). However, with this commit, we
don't. All multi-shard modifications are done via 2PC.
With Citus 9.0, we introduced `citus.single_shard_commit_protocol` which
defaults to 2PC.
With this commit, we prevent any user to set it to 1PC and drop support
for `citus.single_shard_commit_protocol`.
Although this might add some overhead for users, it is already the default
behaviour (so less likely) and marking placements as INVALID is much
worse.
- citus_get_all_dependencies_for_object: emulate what Citus
would qualify as
dependency when adding
a new node
- citus_get_dependencies_for_object: emulate what Citus would qualify
as dependency when creating an
object
Example use:
```SQL
-- find all the depedencies of table test
SELECT
pg_identify_object(t.classid, t.objid, t.objsubid)
FROM
(SELECT * FROM pg_get_object_address('table', '{test}', '{}')) as addr
JOIN LATERAL
citus_get_all_dependencies_for_object(addr.classid, addr.objid, addr.objsubid) as t(classid oid, objid oid, objsubid int)
ON TRUE
ORDER BY 1;
```
To run tests in parallel use:
```bash
make check-arbitrary-configs parallel=4
```
To run tests sequentially use:
```bash
make check-arbitrary-configs parallel=1
```
To run only some configs:
```bash
make check-arbitrary-base CONFIGS=CitusSingleNodeClusterConfig,CitusSmallSharedPoolSizeConfig
```
To run only some test files with some config:
```bash
make check-arbitrary-base CONFIGS=CitusSingleNodeClusterConfig EXTRA_TESTS=dropped_columns_1
```
To get a deterministic run, you can give the random's seed:
```bash
make check-arbitrary-configs parallel=4 seed=12312
```
The `seed` will be in the output of the run.
In our regular regression tests, we can see all the details about either planning or execution but this means
we need to run the same query under different configs/cluster setups again and again, which is not really maintanable.
When we don't care about the internals of how planning/execution is done but the correctness, especially with different configs
this infrastructure can be used.
With `check-arbitrary-configs` target, the following happens:
- a bunch of configs are loaded, which are defined in `config.py`. These configs have different settings such as different shard count, different citus settings, postgres settings, worker amount, or different metadata.
- For each config, a separate data directory is created for tests in `tmp_citus_test` with the config's name.
- For each config, `create_schedule` is run on the coordinator to setup the necessary tables.
- For each config, `sql_schedule` is run. `sql_schedule` is run on the coordinator if it is a non-mx cluster. And if it is mx, it is either run on the coordinator or a random worker.
- Tests results are checked if they match with the expected.
When tests results don't match, you can see the regression diffs in a config's datadir, such as `tmp_citus_tests/dataCitusSingleNodeClusterConfig`.
We also have a PostgresConfig which runs all the test suite with Postgres.
By default configs use regular user, but we have a config to run as a superuser as well.
So the infrastructure tests:
- Postgres vs Citus
- Mx vs Non-Mx
- Superuser vs regular user
- Arbitrary Citus configs
When you want to add a new test, you can add the create statements to `create_schedule` and add the sql queries to `sql_schedule`.
If you are adding Citus UDFs that should be a NO-OP for Postgres, make sure to override the UDFs in `postgres.sql`.
You can add your new config to `config.py`. Make sure to extend either `CitusDefaultClusterConfig` or `CitusMXBaseClusterConfig`.
On the CI, upon a failure, all logfiles will be uploaded as artifacts, so you can check the artifacts tab.
All the regressions will be shown as part of the job on CI.
In your local, you can check the regression diffs in config's datadirs as in `tmp_citus_tests/dataCitusSingleNodeClusterConfig`.
Add/fix tests
Fix creating partitions
Add test for mx - partition creating case
Enable cascading to partitioned tables
Fix mx partition adding test
Fix cascading through fkeys
Style
Disable converting with non-inherited fkeys
Fix detach bug
Early return in case of cascade & Add tests
Style
Fix undistribute_table bug & Fix test outputs
Remove RemovePartitionRelationIds
Test with undistribute_table
Add test for mx+convert+undistribute
Remove redundant usage of CreatePartitionedCitusLocalTable
Add some comments
Introduce bulk functions for generating attach/detach partition commands
Fix: Convert partitioned tables after adding fkey
Change the error message for partitions
Introduce function ErrorIfPartitionTableAddedToMetadata
Polish attach/detach command generation functions
Use time_partitions for testing
Move mx tests to citus_local_tables_mx
Add new partitioned table to cascade test
Add test with time series management UDFs
Fix test output
Fix: Assertion fail on relation access tracking
Style
Refactor creating partitioned citus local tables
Remove CreatePartitionedCitusLocalTable
Style
Error out if converting multi-level table
Revert some old tests
Error out adding partitioned partition
Polish
Polish/address
Fix create table partition of case
Use CascadeOperationForRelationIdList if no cascade needed
Fix create partition bug
Revert / Add new tests to mx
Style
Fix dropping fkey bug
Add test with IF NOT EXISTS
Convert to CLT when doing ATTACH PARTITION
Add comments
Add more tests with time series management
Edit the error message for converting the child
Use OR instead of AND in ErrorIfUnsupportedAlterTableStmt
Edit/improve tests
Disable ddl prop when dropping default column definitions
Disable/enable ddl prop just before/after the command
Add comment
Add sequence test
Add trigger test
Remove NeedCascadeViaForeignKeys
Add one more insert to sequence test
Add comment
Style
Fix test output shard ids
Update comments
Disable creating fkey on partitions
Move partition check to CreateCitusLocalTable
Add comment
Add check for attachingmulti-level partition
Add test for pg_constraint
Check pg_dist_partition in tests
Add test inserting on the worker
* Add udf to include shardId in broken partition shard index names
* Address reviews: rename index such that operations can be done on it
* More comprehensive index tests
* Final touches and formatting
Under high write concurrency, we were sometimes reading columnar
metapage as all zeros.
In `WriteToBlock()`, if `clear == true`, then it will clear the page before
writing the new one, rather than just adding data to the page. That
means any concurrent connection that is holding only a pin will be
able to see the all-zero state between the `InitPage()` and the
`memcpy_s()`.
Moreover, postgres/storage/buffer/README states that:
> Buffer access rules:
>
> 1. To scan a page for tuples, one must hold a pin and either shared or
> exclusive content lock. To examine the commit status (XIDs and status bits)
> of a tuple in a shared buffer, one must likewise hold a pin and either shared
> or exclusive lock.
For those reasons, we have to make sure to never keep a pin on the
page without (at least) the shared lock, to avoid having such problems.
A write operation might trigger index deletion if index already had
dead entries for the key we are about to insert.
There are two ways of index deletion:
a) simple deletion
b) bottom-up deletion (>= pg14)
Since columnar_index_fetch_tuple never sets all_dead to true,
columnarAM doesn't ever expect to receive simple deletion requests
(columnar_index_delete_tuples) as we don't mark any index entries
as dead.
However, since columnarAM doesn't delete any dead entries via simple
deletion, postgres might ask for a more comprehensive deletion
(i.e.: bottom-up) at some point when pg >= 14.
So with this commit, we start gracefully ignoring bottom-up deletion
requests made to columnar_index_delete_tuples.
Given that users can anyway "VACUUM FULL" their columnar tables,
we don't see any problem in ignoring deletion requests.
* Make (columnar.stripe) first_row_number index a unique constraint
Since stripe_first_row_number_idx is required to scan a columnar
table, we need to make sure that it is created before doing anything
with columnar tables during pg upgrades.
However, a plain btree index is not a dependency of a table, so
pg_upgrade cannot guarantee that stripe_first_row_number_idx gets
created when creating columnar.stripe, unless we make it a unique
"constraint".
To do that, drop stripe_first_row_number_idx and create a unique
constraint with the same name to keep the code change at minimum.
* Add more pg upgrade tests for columnar
* Fix a logic error in uprade_columnar_after test
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
We were trying to find the cause for a strange update bug. We thought
`pg_upgrade` succeeded and then were surprised that certain data was not
in the database after the upgrade. Instead `pg_upgrade` had failed
halfway through with an actionable error. It took us pretty long to
realise this.
This commit adds checking of exit codes to a lot more subprocess
executions. That should make debugging in the future much easier.
BuildStripeMetadata() calls HeapTupleHeaderGetXmin(), which must only
be called on a proper heap tuple with MVCC information. Make sure the
caller passes the heap tuple, and not a datum tuple.
Fixes#5318.
Considering all code-paths that we might interact with a columnar table,
add `CheckCitusVersion` calls to tableAM callbacks:
- initializing table scan (`columnar_beginscan` & `columnar_index_fetch_begin`)
- setting a new filenode for a relation (storage initializiation or a table rewrite)
- truncating the storage
- inserting tuple (single and multi)
Also add `CheckCitusVersion` call to:
- drop hook (`ColumnarTableDropHook`)
- `alter_columnar_table_set` & `alter_columnar_table_reset` UDFs
* Columnar: separate plain and exec quals.
Make a clear separation between plain quals, which contain constants
or extern params; and exec quals, which contain exec params and can't
be evaluated until a rescan.
Fixes#5258.
* more vanilla tests
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
When performing a partition-wise join, the planner will adjust paths
parameterized by the parent rel to instead parameterize by the child
rel directly. When this reparameterization happens, we also need to
adjust the join quals to reference the child rather than the parent.
Fixes#5257.
Not flush pending writes if given tid belongs to a "flushed" or
"aborted" stripe write, or to an "in-progress" stripe write of
another backend.
That way, we would reduce the cases where we flush single-tuple
stripes during index scan.
To do that, we follow below steps for index look-up's:
- Do not flush any pending writes and do stripe metadata look-up for
given tid.
If tuple with tid is found, then no need to do another look-up
since we already found the tuple without needing to flush pending
writes.
- If tuple is not found without flushing pending writes, then we have two
scenarios:
- If given tid belongs to a pending write of my backend, then do stripe
metadata look-up for given tid. But this time first **flush any pending
writes**.
- Otherwise, just return false from `index_fetch_tuple` since flushing
pending writes wouldn't help.
With 5825c44d5f, we made the changes to
skip aborted writes when scanning a columnar table.
However, looks like we forgot to handle such cases for the very first
call made to columnar_getnextslot. That means, that commit only
considered the intermediate stripe read operations.
However, functions called by columnar_getnextslot to find first stripe
to read (ColumnarBeginRead & ColumnarRescan) were not caring about
those aborted writes.
To fix that, we teach AdvanceStripeRead to find the very first stripe
to read, and then start using it where were blindly calling
FindNextStripeByRowNumber.
Recently there are some warnings during the compilation of Citus.
Part of the warnings come due to the `columnar_tableam.h` header not being properly guarded with defines and ifndef's.
This PR fixes these warnings.
Previously, even when `EXPLAIN` output tells that we will do
index-only scan, it was never the case since columnar tables
don't have the visibility fork that postgres is looking for.
For this reason, visibility check done in
`IndexOnlyNext->VM_ALL_VISIBLE`
code-path was always returning false and postgres was reading
the tuple from the columnar relation itself.
Previously, for regular table scans, we were setting `RelOptInfo->partial_pathlist`
to `NIL` via `set_rel_pathlist_hook` to discard scan `Path`s that need to use any
parallel workers, this was working nicely.
However, when building indexes, this hook doesn't get called so we were not
able to prevent spawning parallel workers when building an index. For this
reason, 9b4dc2f804 added basic
implementation for `columnar_parallelscan_*` callbacks but also made some
changes to skip using those workers when building the index.
However, now that we are doing stripe reservation in two stages, we call
`heap_inplace_update` at some point to complete stripe reservation.
However, postgres throws an error if we call `heap_inplace_update` during
a parallel operation, even if we don't actually make use of those workers.
For this reason, with this pr, we make sure to not generate scan `Path`s that
need to use any parallel workers by using `get_relation_info_hook`.
This is indeed useful to prevent spawning parallel workers during index builds.
If it is certain that we will not use any `parallel_worker`s for a columnar table,
then stripe entries inserted by aborted transactions become visible to
`SnapshotAny` and that causes `REINDEX` to fail by throwing a duplicate key
error.
To fix that:
* consider three states for a stripe write operation:
"flushed", "aborted", or "in-progress",
* make sure to have a clear separation between them, and
* act according to those three states when reading from a columnar table
Since PG14 we can now use binary encoding for arrays and composite types
that contain user defined types. This was fixed in this commit in
Postgres: 670c0a1d47
This change starts using that knowledge, by not necessarily falling back
to text encoding anymore for those types.
While doing this and testing a bit more I found various cases where
binary encoding would fail that our checks didn't cover. This fixes
those cases and adds tests for those. It also fixes EXPLAIN ANALYZE
never using binary encoding, which was a leftover of workaround that
was not necessary anymore.
Finally, it changes the default for both `citus.enable_binary_protocol`
and `citus.binary_worker_copy_format` to `true` for PG14 and up. In our
cloud offering `binary_worker_copy_format` already was true by default.
`enable_binary_protocol` had some bug with MX and user defined types,
this bug was fixed by the above mentioned fixes.
- get_missing_time_partition_ranges: Gets the ranges of missing partitions for the given table, interval and range unless any existing partition conflicts with calculated missing ranges.
- create_time_partitions: Creates partitions by getting range values from get_missing_time_partition_ranges.
- drop_old_time_partitions: Drops partitions of the table older than given threshold.
* Rename RecostColumnarPaths to CostColumnarPaths
* Rename RecostColumnarIndexPath to CostColumnarIndexPath
* Reorder args of CostColumnarScan to align with other two costing functions
* Not adjust index scan start-up cost
* Rename ColumnarIndexScanAddTotalCost to ColumnarIndexScanAdditionalCost
* Reflect that index scan will at least read one stripe in totalCost calculation
* Organize declarations in columnar_customscan.c
In PG 14, procedures can have OUT parameters. In Citus' procedure
delegation framework, we need to adjust the function expression
to get the outargs parameters.
Releven PG change:
e56bce5d43
Simply call Postgres' function to report the progress on
each row recieved.
Note that we currently do not support "COPY dist/ref TO .." progress
report nicely. Citus has some specialized logic to support
"COPY dist/ref TO .." such that it either converts the underlying
command into "COPY (SELECT * FROM dist/ref ) ..." or sends COPY
command to shards directly. In the former case, "tuples_processed"
is only updated when the executor returns all the tuples, so the
progress is not accurate. In the latter case, Citus can actually
implement the progress report. But, for the sake of consistency,
we prefer to not implement at all.
Added to PG 14 with https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=8a4f618e7ae3cb11b0b37d0f06f05c8ff905833f
It seems like there is a problem with Postgres14 with SELECT DISTINCT
COUNT. The issue is reported to Postgres and an alternative output is
added. We can remove the alternative output when the issue is fixed on
PG. If this is not an issue on PG(which is unlikely) we should consider
some other solution.
In order to avoid adding an alternative output, a function to check if a
given explan plan has a single task added. This doesn't change what the
changed tests intend to do.
Postgres changed stats expression types as of PG14. Hence we needed to
write the AppendColumnNames method. Also they removed the error on PG
side so we remove it as well.
Relevant commits on pg14:
a4d75c86bf15220df22de0a92c819ecef9db3849
388e75ad33489b77cfb9a8590a91e9287d8fb960
When queryId is not 0 and verbose is true, the query identifier is
emitted to the explain output. This is breaking Postgres outputs.
We disable de query identifier calculation in the tests.
Commit on PG that introduced the query identifier in the explain output:
4f0b0966c866ae9f0e15d7cc73ccf7ce4e1af84b
These changes were removed in commit: Introduces ExecSimpleRelationInsert_compat and modifyStateResultRelInfo macros
We shouldn't have removed them but instead kept them for before PG14
There was a small part in multi_partitioning that would need an
alternative output for pg14. Instead of adding an alternative for the
whole file, we created a new file, called partition_wise_join.sql and
added the alternative output for that.
When we check the exact version of the seg extension, it becomes a
problem when its version changes, such as from 1.3 to 1.4. So now we
modified the changes to check for that the version is the same in all
the cluster.
make_simple_restrictinfo and pull_varnos functions now have a new parameter
These new macros give us the ability to use this new parameter for PG14 and they don't give the parameter for previous versions
Relevant PG commit:
55dc86eca70b1dc18a79c141b3567efed910329d
Postgres tightened up its checks for invalid GUC names hence we started
to get an alternative output for one of our tests. We add an alternative
output since the file is relatively small.
Commit on PG:
3db826bd55cd1df0dd8c3d811f8e5b936d7ba1e4
Relevant PG commit:
9e38c2bb5093ceb0c04d6315ccd8975bd17add66
fix array_cat_agg for pg upgrades
array_cat_agg now needs to take anycompatiblearray instead of anyarray
because array_cat changed its type from anyarray to anycompatiblearray
with pg14.
To handle upgrades correctly, we drop the aggregate in
citus_pg_prepare_upgrade. To be able to drop it, we first remove the
dependency from pg_depend.
Then we create the right aggregate in citus_finish_pg_upgrade and we
also add the dependency back to pg_depend.
Postgres doesn't accept NULL for queryStrings in explain plans anymore.
Internally, there are some places in Postgres where they modified the
NULLS to ""(the empty string). So we do the same on citus side.
Commit on Postgres:
1111b2668d89bfcb6f502789158b1233ab4217a6
Postgres expects to set the HASH_STRINGS explicitly in case of the
default behaivor for string hash function.
Postgres Commit
b3817f5f774663d55931dd4fab9c5a94a15ae7ab
index_insert function now has a new parameter, indexUnchanged
This new macro give us the ability to use these new parameter for PG14 and they don't give the parameters for previous versions
Existing parameter is set to false
Relevant PG commit:
9dc718bdf2b1a574481a45624d42b674332e2903
es_result_relation_info is removed from Estate. In this commit we make some changes to handle that.
resultRelationInfo filed is added to ModifyState to support the removed field.
Relevant PG commits:
1375422c7826a2bf387be29895e961614f69de4b
a04daa97a4339c38e304cd6164d37da540d665a8
GetOldestXmin function is removed so we use GetOldestNonRemovableTransactionId functions instead
GetOldestNonRemovableTransactionId_compat picks the appropriate one
Relevant PG commit:
dc7420c2c9274a283779ec19718d2d16323640c0
get_partition_parent and RelationGetPartitionDesc functions now have new parameters to also include detached partitions
Thess new macros give us the ability to use these new parameter for PG14 and they don't give the parameters for previous versions
Existing parameters are set to not accept detached partitions
Relevant PG commit:
71f4c8c6f74ba021e55d35b1128d22fb8c6e1629
In two commits vacuumFlags in PGXACT is moved and then renamed to status flags
This macro uses the appropriate version of the flag
Relevant PG commits:
5788e258bb26495fab65ff3aa486268d1c50b123
cd9c1b3e197a9b53b840dcc87eb41b04d601a5f9
SetTuplestoreDestReceiverParams function now has two new parameters
This new macro give us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
Existing parameters are set to NULL to keep previous behavior
Relevant PG commit:
2f48ede080f42b97b594fb14102c82ca1001b80c
Some Copy related functions copied from Postgres had support for both old and new protocols
Postgres removed support for old version so we remove it too
Relevant PG commit:
3174d69fb96a66173224e60ec7053b988d5ed4d9
New macros: standard_ProcessUtility_compat, ProcessUtility_compat, ColumnarProcessUtility_compat, PrevProcessUtilityHook_compat
The functions now have a new bool parameter: readOnlyTree
These new macros give us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
In multi_ProcessUtility and ColumnarProcessUtility, before doing anything else, we check if readOnlyTree parameter is true and create a copy of pstmt
Existing readOnlyTree parameters are set to false since we already handle the read only case at multi_ProcessUtility and ColumnarProcessUtility
Relevant PG commit:
7c337b6b527b7052e6a751f966d5734c56f668b5
This function was copied from Postgres but it is not static at PG14
So we keep the definition only for previous versions
Relevant PG commit:
c532d15dddff14b01fe9ef1d465013cb8ef186df
BeginCopyFrom function now has a new whereClause parameter.
In the function this parameter is assigned to the whereClause field of the CopyFromState returned
Currently in Postgres there is only one place where this argument isn't NULL, and in previous PG version the whereClause argument of copy state is set right after the function call
Since we don't have such example all current whereClause parameters are set to NULL
Relevant PG commit:
c532d15dddff14b01fe9ef1d465013cb8ef186df
CopyState struct is divided into parts and one of them is CopyFromState
This macro uses the appropriate one for PG versions
Relevant PG commit:
c532d15dddff14b01fe9ef1d465013cb8ef186df
In ReindexStmt concurrent field is moved to options and then options are converted to params list.
This macro uses previous fields for previous versions and the new params list with a new function named IsReindexWithParam for PG14
Relevant PG commits:
844c05abc3f1c1703bf17cf44ab66351ed9711d2
b5913f6120792465f4394b93c15c2e2ac0c08376
VacOptTernaryValue enum is renamed to VacOptValue.
In the enum there were three values, VACOPT_TERNARY_DEFAULT, VACOPT_TERNARY_DISABLED, and VACOPT_TERNARY_ENABLED
Now there are four values VACOPTVALUE_UNSPECIFIED, VACOPTVALUE_AUTO, VACOPTVALUE_DISABLED, and VACOPTVALUE_ENABLED
New macros are VacOptValue_compat, VACOPTVALUE_UNSPECIFIED_COMPAT, VACOPTVALUE_DISABLED_COMPAT, and VACOPTVALUE_ENABLED_COMPAT
The VACOPTVALUE_UNSPECIFIED_COMPAT matches VACOPT_TERNARY_DEFAULT and VACOPTVALUE_UNSPECIFIED. And there are no macro for VACOPTVALUE_AUTO.
Relevant PG commit:
3499df0dee8c4ea51d264a674df5b5e31991319a
New macros: FuncnameGetCandidates_compat and expand_function_arguments_compat
The functions (the ones without _compat) now have a new bool include_out_arguments parameter
These new macros give us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
Existing include_out_arguments parameters are set to 'false' to keep current behavior
Relevant PG commit:
e56bce5d43789cce95d099554ae9593ada92b3b7
stats function now have a new bool print_to_stderr parameter
This new macro gives us the ability to use this new parameter for PG14 and it doesn't give the parameter for previous versions
Existing print_to_stderr parameter is set to true to keep current behavior
Relevant PG commit:
43620e328617c1f41a2a54c8cee01723064e3ffa
getObjectTypeDescription and getObjectIdentity functions now have a new bool missing_ok parameter
These new macros give us the ability to use this new parameter for PG14 and they don't give the parameter for previous versions
Currently all missing_ok parameters are set to false to keep current behavior
Relevant PG commit:
2a10fdc4307a667883f7a3369cb93a721ade9680
The STATUS_WAITING define is removed and an enum with PROC_WAIT_STATUS_WAITING is added instead
This macro uses appropriate one
Relevant PG commit:
a513f1dfbf2c29a51b0f7cbd5913ce2d2ee452c5
AlterTableStmt's relkind field is changed into objtype
New AlterTableStmtObjType macro uses the appropriate one
Relevant PG commit:
cc35d8933a211d9965eb1c1d2749a903d5735db2
Allow ColumnarScans to push down join quals by generating
parameterized paths. This significantly expands the utility of chunk
group filtering, making a ColumnarScan behave similar to an index when
on the inner of a nested loop join.
Also, evaluate all parameters on beginscan/rescan, which also works
for external parameters.
Fixes#4488.
Previously, we were doing `first_row_number` reservation for the first
row written to current `WriteState` but were doing `stripe_id`
reservation when flushing the `WriteState` and were inserting the
related record to `columnar.stripe` at that time as well.
However, inserting `columnar.stripe` record at flush-time is
problematic. This is because, as told in #5160, if relation has
any index-based constraints and if there are two concurrent
writes that are inserting conflicting key values for that constraint,
then postgres relies on `tableAM->fetch_index_tuple`
(=`columnar_fetch_index_tuple`) callback to return `true` when
indexAM is checking against possible constraint violations.
However, pending writes of other backends are not visible to concurrent
sessions in columnar since we were not inserting the stripe metadata
record until flushing the stripe.
With this commit, we split stripe reservation into two phases:
i) Reserve `stripe_id` and insert a "dummy" record to `columnar.stripe`
at the very same time we reserve `first_row_number`, i.e. when writing
the first row to the current `WriteState`.
ii) At flush time, do the storage level allocation and complete the
missing fields of the dummy record inserted into `columnar.stripe`
during i).
That way, any concurrent writes would be able to check against possible
constraint violations by using `SnapshotDirty` when scanning
`columnar.stripe`.
Note that `columnar_fetch_index_tuple` still wouldn't be able to fill
the output tupleslot for the requested tid but it would at least return
`true` for such index look-up's and we believe this should be sufficient
for the caller indexAM callback to make the concurrent writer block on
prior one.
That is how we fix#5160.
Only downside of reserving `stripe_id` at the same time we reserve
`first_row_number` is that now any aborted writes would also waste
some amount of `stripe_id` as in the case of `first_row_number` but
we are just wasting them one-by-one.
Considering the fact that we waste `first_row_number` by the amount
stripe row limit (=150k by default) in such cases, this shouldn't be
important at all.
Before starting to scan a columnar table, we always flush the pending
writes to disk.
However, we increment command counter after modifying metadata tables.
On the other hand, now that we _don't always use_ xact snapshot to scan
a columnar table, writes that we just flushed might not be visible to
the query that just flushed pending writes to disk since curcid of
provided snapshot would become smaller than the command id being used
when modifying metadata tables.
To give an example, before this change, below was a possible scenario
due to the changes that we made to use the correct snapshot.
```sql
CREATE TABLE t(a int, b int) USING columnar;
BEGIN;
INSERT INTO t VALUES (5, 10);
SELECT * FROM t;
┌───┬───┐
│ a │ b │
├───┼───┤
└───┴───┘
(0 rows)
SELECT * FROM t;
┌───┬────┐
│ a │ b │
├───┼────┤
│ 5 │ 10 │
└───┴────┘
(1 row)
```
In next commit, we will adjust curcid of the snapshot being used when
scanning the columnar table.
However, for index scan, snapshot is provided not when beginning scan
but within fetch-tuple call.
For this reason, start flushing pending writes in init_columnar_read_state
since this seem to be a prerequisite step that needs to be done before
scanning a columnar table regardless of the scan method being used.
Seems that we always increment the command counter right after
finishing metadata table modification.
For this reason, it makes sense to call CommandCounterIncrement
within FinishModifyRelation.
The logging of the amount of ignored moves crashed when no distributed
tables existed in a cluster. This also fixes in passing that the logging
of ignored moves logs the correct number of ignored moves if there
exist multiple colocation groups and all are rebalanced at the same time.
* Update failure tests README
I keep finding this page when trying to run failure tests, so updating the README that way:
https://github.com/pypa/pipenv/issues/3363#issuecomment-452171564
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
Co-authored-by: Hanefi Onaldi <Hanefi.Onaldi@microsoft.com>
In our testing infra structure, even though we use pinned versions of postgres, the auxiliary libraries might pull in newer versions. This is for example the case for libpq, which will now use the libpq libraries from 14beta3.
The changes in this PR are a lot due to the libpq changes.
We also have changed the citus version that is used as a base for the citus upgrades, from 10.0 to 10.1 . This caused columnar to enforce some extra limits on the settings, which conflicted with our upgrade tests.
The changes in failure tests are due to the libpq changes.
There are also a lot of changes on isolation tests outputs, hence we
updated all of them.
Co-authored-by: Nils Dijk <nils@citusdata.com>
`tcp_user_timeout` is the awesome relatively unknown big brother of the
TCP keepalive related options. Instead of depending on keepalives being
sent, this determines that a socket is dead by waiting at most N seconds
for an ack of data that it has sent. It's exposed in libpq starting from
PG12.
* We were anyway not testing reserved_offset in any of those tests
but other fields.
* This only happens with compressed columnar tables and is because the
libzstd/liblz4 versions that we have on exttester ci image might be different
than what we might have on our local environments.
DESCRIPTION: Fix a segfault caused by use after free in ConnectionsPlacementHash
Fix a segfault caused by retaining data in any of the hashmaps making up the Placement Connection Management.
We have seen production systems segfault due to random data referenced from ConnectionPlacementHash.
On investigation we found that the backends segfaulting on this had OOM errors closely prior to the segfault.
It has shown there are at least 15 places where an allocation can OOM that would cause ConnectionPlacementHash to retain pointers to memory from contexts that are subsequently freed. This would reproduce the segfault we have observed in production.
Conditions for these allocations are:
- allocated after first call to `AssociatePlacementWithShard`: https://github.com/citusdata/citus/blob/v10.0.3/src/backend/distributed/connection/placement_connection.c#L880-L881
- allocated before `StartNodeUserDatabaseConnection`: https://github.com/citusdata/citus/blob/v10.0.3/src/backend/distributed/connection/connection_management.c#L291
At least 15 points of memory allocation (which could fail) are between the callsites of both in a primary key lookup on a reference table - where we have seen an OOM cause a segfault moments later.
Instead of leaving any references in ConnectionPlacementHash, ConnectionShardHash and ColocatedPlacementsHash that could retain any pointers that are freed due to the TopTransactionContext being reset we clear all these hashes irregardless of the state of CurrentCoordinatedTransactionState.
Downside is that on any transaction abort we will now iterate through 4 hashmaps and clear their contents. Given that they are either already empty, which should cause a quick iteration, or non-empty, causing segfaults in subsequent executions, this overhead seems reasonable.
A better solution would be to move the creation of these hashmaps so they would live in the TopTransactionContext themself, assuming their contents would never outlive a transaction. This needs more investigation and is an involved refactor Hence fixing this quickly here.
All the callers except columnar_relation_copy_for_cluster were already
switching to right memory context when creating ColumnarReadState.
With this commit, we embed that logic into init_columnar_read_state
to avoid further such bugs.
That way, we start using the right memory context for
columnar_relation_copy_for_cluster too.
- Add support for CRETE INDEX ... ON ONLY: Before that commit we were not sending "ONLY" option to the worker nodes at all. With this commit, "ONLY" parameter will be sent to the worker nodes if it is necessary. (#4938)
- Add support for ALTER INDEX ... ATTACH PARTITION: Attach child_index to parent_index by creating same inheritance on shard level in addition to table level. (#4980)
* Synchronize hasmetadata flag on mx workers
* Switch to sequential execution
* Add test
* Use SetWorkerColumn
* Add test for stop_sync
* Remove usage of UpdateHasmetadataOnWorkersWithMetadata
* Remove MarkNodeMetadataSynced
* Fix test for metadatasynced
* Remove MarkNodeMetadataSynced
* Style
* Remove MarkNodeHasMetadata
* Remove UpdateDistNodeBoolAttr
* Refactor SetWorkerColumn
* Use SetWorkerColumnLocalOnly when setting up dependencies
* Use SetWorkerColumnLocalOnly in TriggerSyncMetadataToPrimaryNodes
* Style
* Make update command generator functions static
* Set metadatasynced before syncing
* Call SetWorkerColumn only if the sync is successful
* Try to sync all nodes
* Fix indexno
* Update metadatasynced locally first
* Break if a node fails to sync metadata
* Send worker commands optional
* Style & Rebase
* Add raiseOnError param to SetWorkerColumn
* Style
* Set metadatasynced for all metadata nodes
* Style
* Introduce SetWorkerColumnOptional
* Polish
* Style
* Dont send set command to not synced metadata nodes
* Style
* Polish
* Add test for stop_sync
* Add test for shouldhaveshards
* Add test for isactive flag
* Sort by placementid in the function verify_metadata
* Cover edge cases for failing nodes
* Add comments
* Add nodeport to isactive test
* Add warning if metadata out of sync
* Update warning message
In short, add wrappers around Postgres' AddWaitEventToSet() and
ModifyWaitEvent().
AddWaitEventToSet()/ModifyWaitEvent*() may throw hard errors. For
example, when the underlying socket for a connection is closed by
the remote server and already reflected by the OS, however
Citus hasn't had a chance to get this information. In that case,
if replication factor is >1, Citus can failover to other nodes
for executing the query. Even if replication factor = 1, Citus
can give much nicer errors.
So CitusAddWaitEventSetToSet()/CitusModifyWaitEvent() simply puts
AddWaitEventToSet()/ModifyWaitEvent() into a PG_TRY/PG_CATCH block
in order to catch any hard errors, and returns this information to
the caller.
As we use the current user to sync the metadata to the nodes
with #5105 (and many other PRs), there is no reason that
prevents us to use the coordinated transaction for metadata syncing.
This commit also renames few functions to reflect their actual
implementation.
Before this commit, creating a partition after a DROP column
on the parent (position before dist. key) was leading to
partition to have the wrong distribution column.
update_distributed_table_colocation can be called by the relation
owner, and internally it updates pg_dist_partition. With this
commit, update_distributed_table_colocation uses an internal
UDF to access pg_dist_partition.
As a result, this operation can now be done by regular users
on MX.
Instead of setting stripeReadState to NULL, call ColumnarResetRead
before re-scanning a columnar table since this function is already
designed for doing the necessary clean up when finishing a stripe
read.
Note that this change shouldn't have a great effect on memory usage
since AdvanceStripe was already doing the clean-up for all the
stripes except the last one.
Previously, we were only using chunk group reader for sequential scan.
However, to support index scans on columnar tables, now we use very
same low level functions for index scan too.
Since those low-level functions were only used for sequential scan, it
was guaranteed that we would never read the same chunk group more than
once, so we were freeing chunk buffers after deserializing them into a
separate buffer.
Now that we use those low level functions for index scan, we cannot
free chunk buffers since it's possible to read the same chunk group
again, such that:
- read chunk group 1 of stripe 5
- read chunk group 2 of stripe 5
- read chunk group 1 of stripe 5 again
Here, when we decide to read chunk group 1 for a second time,
chunk group 1 is not cached. Plus, before this commit, we were
freeing the chunk buffers for chunk group 1 after the first
read and then we were getting segfault or errors from low-level
de-compression APIs.
* Fix UNION not being pushdown
Postgres optimizes column fields that are not needed in the output. We
were relying on these fields to understand if it is safe to push down a
union query.
This fix looks at the parse query, which has the original column fields
to detect if it is safe to push down a union query.
* Add more tests
* Simplify code and make it more robust
* Process varlevelsup > 0 in FindReferencedTableColumn
* Only look for outers vars in union path
* Add more comments
* Remove UNION ALL specific logic for pulling up childvars
The progress monitor wouldn't actually update the size of the shard on
the target node when using "block_writes" as the `shard_transfer_mode`.
The reason for this is that the CREATE TABLE part of the shard creation
would only be committed once all data was moved as well. This caused
our size calculation to always return 0, since the table did not exist
yet in the session that the progress monitor used.
This is fixed by first committing creation of the table, and only then
starting the actual data copy.
The test output changes slightly. Apparently splitting this up in two
transactions instead of one, increases the table size after the copy by
about 40kB. The additional size used doesn't increase when with the
amount of data in the table is larger (it stays ~40kB per shard). So
this small change in test output is not considered an actual problem.
These two options were not included when creating the sequences on the
workers as part of metadata syncing.
The missing `data_type` part of the definition made finding the cause
of #5126 harder than necessary, because of confusing errors.
Before this commit, we always synced the metadata with superuser.
However, that creates various edge cases such as visibility errors
or self distributed deadlocks or complicates user access checks.
Instead, with this commit, we use the current user to sync the metadata.
Note that, `start_metadata_sync_to_node` still requires super user
because accessing certain metadata (like pg_dist_node) always require
superuser (e.g., the current user should be a superuser).
However, metadata syncing operations regarding the distributed
tables can now be done with regular users, as long as the user
is the owner of the table. A table owner can still insert non-sense
metadata, however it'd only affect its own table. So, we cannot do
anything about that.
With this commit, we add (`CREATE INDEX` / `REINDEX`) `CONCURRENTLY` support for columnar tables.
For that, we implement `columnar_index_validate_scan` callback.
The reasoning behind the implementation is as follows:
* Postgres function `validate_index` provides all the TIDs that are currently in the
index to `columnar_index_validate_scan` callback via a `tupleSort` object..
* We start scanning the table by using `columnar_getnextslot` as usual.
Before moving forward, note that `columnar_getnextslot` guarantees
to return tuples in the order of their TIDs.
* For us to use during table scan, postgres provides a snapshot guaranteeing
that any tuples that are valid according to that snapshot but are not in the
index must be added to the index.
* Then for each tuple that we read from our table, we continue iterating
given `tupleSort` to find the first TID that is greater than or equal to our
tuple's TID.
If both TID's are equal to each other, then we skip the tuple since it's already
indexed.
If the TID that we read from tupleSort is greater then our tuple's TID, then
we decide to insert this tuple into index.
systable_getnext already uses ForwardScanDirection if relation has any
open indexes, but let's be more explicit doing ordered scan on columnar
catalog tables.
This happens only when we have a "<" or "<=" filter on distribution
column of a range distributed table and that filter falls in between
two shards.
When the filter falls in between two shards:
If the filter is ">" or ">=", then UpperShardBoundary was
returning "upperBoundIndex - 1", where upperBoundIndex is
exclusive shard index used during binary seach.
This is expected since upperBoundIndex is an exclusive
index.
If the filter is "<" or "<=", then LowerShardBoundary was
returning "lowerBoundIndex + 1", where lowerBoundIndex is
inclusive shard index used during binary seach.
On the other hand, since lowerBoundIndex is an inclusive
index, we should just return lowerBoundIndex instead of
doing "+ 1". Before this commit, we were missing leftmost
shard in such queries.
* Remove useless conditional branches
The branch that we delete from UpperShardBoundary was obviously useless.
The other one in LowerShardBoundary became useless after we remove "+ 1"
from there.
This indeed is another proof of what & how we are fixing with this pr.
* Improve comments and add more
* Add some tests for upper bound calculation too
* Add parameter to cleanup metadata
* Set clear metadata default to true
* Add test for clearing metadata
* Separate test file for start/stop metadata syncing
* Fix stop_sync bug for secondary nodes
* Use PreventInTransactionBlock
* DRemovedebuggiing logs
* Remove relation not found logs from mx test
* Revert localGroupId when doing stop_sync
* Move metadata sync test to mx schedule
* Add test with name that needs to be quoted
* Add test for views and matviews
* Add test for distributed table with custom type
* Add comments to test
* Add test with stats, indexes and constraints
* Fix matview test
* Add test for dropped column
* Add notice messages to stop_metadata_sync
* Add coordinator check to stop metadat sync
* Revert local_group_id only if clearMetadata is true
* Add a final check to see the metadata is sane
* Remove the drop verbosity in test
* Remove table description tests from sync test
* Add stop sync to coordinator test
* Change the order in stop_sync
* Add test for hybrid (columnar+heap) partitioned table
* Change error to notice for stop sync to coordinator
* Sync at the end of the test to prevent any failures
* Add test case in a transaction block
* Remove relation not found tests
Ignore orphaned shards in more places
Only use active shard placements in RouterInsertTaskList
Use IncludingOrphanedPlacements in some more places
Fix comment
Add tests
The name and comment of this function did not indicate that it only
really could detect locally accessible citus local tables. This fixes
that, while also cleaning up the function a bit.
* Alter seq type when we first use the seq in a dist table
* Don't allow type changes when seq is used in dist table
* ALTER SEQUENCE propagation
* Tests for ALTER SEQUENCE propagation
* Relocate AlterSequenceType and ensure dependencies for sequence
* Support for citus local tables, and other fixes
* Final formatting
With the previous version of this check we would disallow distributed
tables that did not have a colocationid, to have a foreign key to a
reference table. This fixes that, since there's no reason to disallow
that.
Originally ReplicateShardToNode was meant for
`upgrade_to_reference_table`, which required handling of existing inactive
placements. These days `upgrade_to_reference_table` is deprecated and
cannot be used anymore. Now that we have SHARD_STATE_TO_DELETE too, this
left over code seemed error prone. So this removes support for
activating inactive reference table placemements, since these should not
be possible. If it finds a non active reference table placement anyway
it now errors out.
This also removes a few outdated comments related to `upgrade_to_refeference_table`.
Moving shards of reference tables was possible in at least one case:
```sql
select citus_disable_node('localhost', 9702);
create table r(x int);
select create_reference_table('r');
set citus.replicate_reference_tables_on_activate = off;
select citus_activate_node('localhost', 9702);
select citus_move_shard_placement(102008, 'localhost', 9701, 'localhost', 9702);
```
This would then remove the reference table shard on the source, causing
all kinds of issues. This fixes that by disallowing all shard moves
except for shards of distributed tables.
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
The first and main issue was that we were putting absolute pointers into
shared memory for the `steps` field of the `ProgressMonitorData`. This
pointer was being overwritten every time a process requested the monitor
steps, which is the only reason why this even worked in the first place.
To quote a part of a relevant stack overflow answer:
> First of all, putting absolute pointers in shared memory segments is
> terrible terible idea - those pointers would only be valid in the
> process that filled in their values. Shared memory segments are not
> guaranteed to attach at the same virtual address in every process.
> On the contrary - they attach where the system deems it possible when
> `shmaddr == NULL` is specified on call to `shmat()`
Source: https://stackoverflow.com/a/10781921/2570866
In this case a race condition occurred when a second process overwrote
the pointer in between the first process its write and read of the steps
field.
This issue is fixed by not storing the pointer in shared memory anymore.
Instead we now calculate it's position every time we need it.
The second race condition I have not been able to trigger, but I found
it while investigating this. This issue was that we published the handle
of the shared memory segment, before we initialized the data in the
steps. This means that during initialization of the data, a call to
`get_rebalance_progress()` could read partial data in an unsynchronized
manner.
With a recent commit, we made (644b266dee)
the behaviour of prepared statements for local cached plans has
slightly changed.
Now, Citus caches the plans when they are re-used. This make triggering
of local cached plans on the 7th execution, and 8th execution is the
first time the plan is used from the cached.
So, the tests are improved to cover 8th execution.
With local query caching, we try to avoid deparse/parse stages as the
operation is too costly.
However, we can do deparse/parse operations once per cached queries, right
before we put the plan into the cache. With that, we avoid edge
cases like (4239) or (5038).
In a sense, we are making the local plan caching behave similar for non-cached
local/remote queries, by forcing to deparse the query once.
A shard move would fail if there was an orphaned version of the shard on
the target node. With this change before actually fail, we try to clean
up orphaned shards to see if that fixes the issue.
Sometimes the background daemon doesn't cleanup orphaned shards quickly
enough. It's useful to have a UDF to trigger this removal when needed.
We already had a UDF like this but it was only used during testing. This
exposes that UDF to users. As a safety measure it cannot be run in a
transaction, because that would cause the background daemon to stop
cleaning up shards while this transaction is running.
* Add user-defined sequence support for MX
* Remove default part when propagating to workers
* Fix ALTER TABLE with sequences for mx tables
* Clean up and add tests
* Propagate DROP SEQUENCE
* Removing function parts
* Propagate ALTER SEQUENCE
* Change sequence type before propagation & cleanup
* Revert "Propagate ALTER SEQUENCE"
This reverts commit 2bef64c5a29f4e7224a7f43b43b88e0133c65159.
* Ensure sequence is not used in a different column with different type
* Insert select tests
* Propagate rename sequence stmt
* Fix issue with group ID cache invalidation
* Add ALTER TABLE ALTER COLUMN TYPE .. precaution
* Fix attnum inconsistency and add various tests
* Add ALTER SEQUENCE precaution
* Remove Citus hook
* More tests
Co-authored-by: Marco Slot <marco.slot@gmail.com>
We have a slightly different behavior when using truncate_local_data_after_distributing_table UDF on metadata synced clusters. This PR aims to add tests to cover such cases.
We allow distributing tables with data that have foreign keys to reference tables only on metadata synced clusters. This is the reason why some of my earlier tests failed when run on a single node Citus cluster.
InvalidateForeignKeyGraph sends an invalidation via shared memory to all
backends, including the current one.
However, we might not call AcceptInvalidationMessages before reading
from the cache below. It would be better to also add a call to
AcceptInvalidationMessages in IsForeignConstraintRelationshipGraphValid.
Previously this was usually done after argument parsing. This can cause
SEGFAULTs if the number or type of arguments changes in a new version.
By checking that Citus version is correct before doing any argument
parsing we protect against these types of issues. Issues like this have
occurred in pg_auto_failover, so it's not just a theoretical issue.
The main reason why these calls were not at the top of functions is
really just historical. It was because in the past we didn't allow
statements before declarations. Thus having this check before the
argument parsing would have only been possible if we first declared all
variables.
In addition to moving existing CheckCitusVersion calls it also adds
these calls to rebalancer related functions (they were missing there).
The current default citus settings for tests are not really best
practice anymore. However, we keep them because lots of tests depend on
them.
I noticed that I created the same test harness for new tests I added all
the time. This is a simple script that generates that harness, given a
name for the test.
To run:
src/test/regress/bin/create_test.py my_awesome_test
To be able to report progress of the rebalancer, the rebalancer updates
the state of a shard move in a shared memory segment. To then fetch the
progress, `get_rebalance_progress` can be called which reads this shared
memory.
Without this change it did so without using any synchronization
primitives, allowing for data races. This fixes that by using atomic
operations to update and read from the parts of the shared memory that
can be changed after initialization.
DESCRIPTION: fix shared dependencies that are not resident in a database
eg. databases depend on users (their owners) that both don’t have a
database they reside in. These dependencies are recorded in pg_shdepend
with a `dbid` of `InvalidOid` When we fetch our shared dependencies we don’t take
these links in account.
With this patch we use logic inspired by `classIdGetDbId` to decide when to use `MyDatabaseId` vs `InvalidOid` to correctly resolve dependencies between shared objects.
Without this change the rebalancer progress monitor gets the shard sizes
from the `shardlength` column in `pg_dist_placement`. This column needs to
be updated manually by calling `citus_update_table_statistics`.
However, `citus_update_table_statistics` could lead to distributed
deadlocks while database traffic is on-going (see #4752).
To work around this we don't use `shardlength` column anymore. Instead
for every rebalance we now fetch all shard sizes on the fly.
Two additional things this does are:
1. It adds tests for the rebalance progress function.
2. If a shard move cannot be done because a source or target node is
unreachable, then we error in stop the rebalance, instead of showing
a warning and continuing. When using the by_disk_size rebalance
strategy it's not safe to continue with other moves if a specific
move failed. It's possible that the failed move made space for the
next move, and because the failed move never happened this space now
does not exist.
3. Adds two new columns to the result of `get_rebalancer_progress` which
shows the size of the shard on the source and target node.
Fixes#4930
DESCRIPTION: Add support for ALTER DATABASE OWNER
This adds support for changing the database owner. It achieves this by marking the database as a distributed object. By marking the database as a distributed object it will look for its dependencies and order the user creation commands (enterprise only) before the alter of the database owner. This is mostly important when adding new nodes.
By having the database marked as a distributed object it can easily understand for which `ALTER DATABASE ... OWNER TO ...` commands to propagate by resolving the object address of the database and verifying it is a distributed object, and hence should propagate changes of owner ship to all workers.
Given the ownership of the database might have implications on subsequent commands in transactions we force sequential mode for transactions that have a `ALTER DATABASE ... OWNER TO ...` command in them. This will fail the transaction with meaningful help when the transaction already executed parallel statements.
By default the feature is turned off since roles are not automatically propagated, having it turned on would cause hard to understand errors for the user. It can be turned on by the user via setting the `citus.enable_alter_database_owner`.
Comment from the code:
/*
* Iterate until all the tasks are finished. Once all the tasks
* are finished, ensure that that all the connection initializations
* are also finished. Otherwise, those connections are terminated
* abruptly before they are established (or failed). Instead, we let
* the ConnectionStateMachine() to properly handle them.
*
* Note that we could have the connections that are not established
* as a side effect of slow-start algorithm. At the time the algorithm
* decides to establish new connections, the execution might have tasks
* to finish. But, the execution might finish before the new connections
* are established.
*/
Note that the abruptly terminated connections lead to the following errors:
2020-11-16 21:09:09.800 CET [16633] LOG: could not accept SSL connection: Connection reset by peer
2020-11-16 21:09:09.872 CET [16657] LOG: could not accept SSL connection: Undefined error: 0
2020-11-16 21:09:09.894 CET [16667] LOG: could not accept SSL connection: Connection reset by peer
To easily reproduce the issue:
- Create a single node Citus
- Add the coordinator to the metadata
- Create a distributed table with shards on the coordinator
- f.sql: select count(*) from test;
- pgbench -f /tmp/f.sql postgres -T 12 -c 40 -P 1 or pgbench -f /tmp/f.sql postgres -T 12 -c 40 -P 1 -C
With this commit, the executor becomes smarter about refrain to open
new connections. The very basic example is that, if the connection
establishments take 1000ms and task executions as 5 msecs, the executor
becomes smart enough to not establish new connections.
We often change result types of functions slightly. Our downgrade tests
wouldn't notice these changes. This change adds them to the description
of these items.
An example of an SQL change that isn't caught without this change and is
caught with the get_rebalance_progress change in this PR:
https://github.com/citusdata/citus/pull/4963
It was possible to block maintenance daemon by taking an SHARE ROW
EXCLUSIVE lock on pg_dist_placement. Until the lock is released
maintenance daemon would be blocked.
We should not block the maintenance daemon under any case hence now we
try to get the pg_dist_placement lock without waiting, if we cannot get
it then we don't try to drop the old placements.
DESCRIPTION: introduce `citus.local_hostname` GUC for connections to the current node
Citus once in a while needs to connect to itself for some systems operations. This used to be hardcoded to `localhost`. The hardcoded hostname causes some issues, for example in environments where `sslmode=verify-full` is required. It is not always desirable or even feasible to get `localhost` as an alt name on the certificate.
By introducing a GUC to use when connecting to the current instance the user has more control what network path is used and what hostname is required to be present in the server certificate.
Every move in the rebalancer algorithm results in an improvement in the
balance. However, even if the improvement in the balance was very small
the move was still chosen. This is especially problematic if the shard
itself is very big and the move will take a long time.
This changes the rebalancer algorithm to take the relative size of the
balance improvement into account when choosing moves. By default a move
will not be chosen if it improves the balance by less than half of the
size of the shard. An extra argument is added to the rebalancer
functions so that the user can decide to lower the default threshold if
the ignored move is wanted anyway.
* Make VACUUM hint for upgrade scenario actually work
* Suggest using VACUUM if metapage doesn't exist
Plus, suggest upgrading sql version as another option.
* Always force read metapage block
* Fix two typos
* Columnar: introduce columnar storage API.
This new API is responsible for the low-level storage details of
columnar; translating large reads and writes into individual block
reads and writes that respect the page headers and emit WAL. It's also
responsible for the columnar metapage, resource reservations (stripe
IDs, row numbers, and data), and truncation.
This new API is not used yet, but will be used in subsequent
forthcoming commits.
* Columnar: add columnar_storage_info() for debugging purposes.
* Columnar: expose ColumnarMetadataNewStorageId().
* Columnar: always initialize metapage at creation time.
This avoids the complexity of dealing with tables where the metapage
has not yet been initialized.
* Columnar: columnar storage upgrade/downgrade UDFs.
Necessary upgrade/downgrade step so that new code doesn't see an old
metapage.
* Columnar: improve metadata.c comment.
* Columnar: make ColumnarMetapage internal to the storage API.
Callers should not have or need direct access to the metapage.
* Columnar: perform resource reservation using storage API.
* Columnar: implement truncate using storage API.
* Columnar: implement read/write paths with storage API.
* Columnar: add storage tests.
* Revert "Columnar: don't include stripe reservation locks in lock graph."
This reverts commit c3dcd6b9f8.
No longer needed because the columnar storage API takes care of
concurrency for resource reservation.
* Columnar: remove unnecessary lock when reserving.
No longer necessary because the columnar storage API takes care of
concurrent resource reservation.
* Add simple upgrade tests for storage/ branch
* fix multi_extension.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* When moving a shard to a new node ensure there is enough space
* Add WairForMiliseconds time utility
* Add more tests and increase readability
* Remove the retry loop and use a single udf for disk stats
* Address review
* address review
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
This allows running the following command to update the expected files
with normalized output files for upgrade tests too:
```bash
cp src/test/regress/{results,expected}/upgrade_rebalance_strategy_before.out
```
The comment of DropMarkedShards described the behaviour that after a
failure we would continue trying to drop other shards. However the code
did not do this and would stop after the first failure. Instead of
simply fixing the comment I fixed the code, because the described
behaviour is more useful. Now a single shard that cannot be removed yet
does not block others from being removed.
We decrease memory usage by:
- Freeing temporary buffers
- Using separate memory context for blocks that uses "small" amount of
memory but can be repeated many times such as loops
Recently two new normalization line deletion rules have been added that
don't match the start of a line:
```
/local tables that are added to metadata but not chained with reference tables via foreign keys might be automatically converted back to postgres tables$/d
/Consider setting citus.enable_local_reference_table_foreign_keys to 'off' to disable this behavior$/d
```
Because `diff-filter` used `regex.match` these lines were not removed
when creating a new diff. This could cause some confusing diffs, where
the wrong lines were shown as changed. This fixes that by using
`regex.search` instead of `regex.match`.
As long as the VALUES clause contains constant values, we should not
recursively plan the queries/CTEs.
This is a follow-up work of #1805. So, we can easily apply OUTER join
checks as if VALUES clause is a reference table/immutable function.
* Fix problews with concurrent calls of DropMarkedShards
When trying to enable `citus.defer_drop_after_shard_move` by default it
turned out that DropMarkedShards was not safe to call concurrently.
This could especially cause big problems when also moving shards at the
same time. During tests it was possible to trigger a state where a shard
that was moved would not be available on any of the nodes anymore after
the move.
Currently DropMarkedShards is only called in production by the
maintenaince deamon. Since this is only a single process triggering such
a race is currently impossible in production settings. In future changes
we will want to call DropMarkedShards from other places too though.
* Add some isolation tests
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
This commit adds support for long partition names for distributed tables:
- ALTER TABLE dist_table ATTACH PARTITION ..
- CREATE TABLE .. PARTITION OF dist_table ..
Note: create_distributed_table UDF does not support long table and
partition names, and is not covered in this commit
* Introduce 3 partitioned size udfs
* Add tests for new partition size udfs
* Fix type incompatibilities
* Convert UDFs into pure sql functions
* Fix function comment
ConnParams(AuthInfo and PoolInfo) gets a snapshot, which will block the
remote connectinos to localhost. And the release of snapshot will be
blocked by the snapshot. This leads to a deadlock.
We warm up the conn params hash before starting a new transaction so
that the entries will already be there when we start a new transaction.
Hence GetConnParams will not get a snapshot.
* Columnar: use clause Vars for chunk group filtering.
This solves #4780 and also provides a cleaner separation between chunk
group filtering and projection pushdown.
* Columnar: sort and deduplicate Vars pulled from clauses.
* Columnar: cleanup variable names.
* Columnar: remove alternate test output.
* Columnar: do not recurse when looking for whereClauseVars.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
comparable to https://github.com/citusdata/tools/pull/88
this patch adds checks to the perl script running the testing harness of citus to start the postgres instances via the fixopen binary when present to work around `Interrupted System` call errors on OSX Big Sur.
Earlier versions of Citus (pre 9.0) had a bug where a user was able to get in a situation where a foreign key between two non-colocated tables was allowed. This was caused by the wrongful scoping together with only setting to on of a boolean variable in a loop, causing the `true` from an earlier iteration to leak into a new iteration.
This was 'by accident' solved in a refactor that was executed in the preparation of the 9.0 release. Only recently we had a user running into this and it was tracked down to this behaviour.
Given the dire situation a user could get them self into when running into this bug we have backported a fix to the latest 8.3 release branch.
To make sure this regression does not happen anymore in the future I propose we add the tests from the backport to our mainline.
For reference: https://github.com/citusdata/citus/pull/4840
With https://github.com/citusdata/citus/pull/4806 we enabled
2PC for any non-read-only local task. However, if the execution
is a single task, enabling 2PC (CoordinatedTransactionShouldUse2PC)
hits an assertion as we are not in a coordinated transaction.
There is no downside of using a coordinated transaction for single
task local queries.
* Columnar: fix misnamed file.
* Columnar: make compression not dependent on columnar.h.
* Columnar: rename columnar_metadata_tables.c to columnar_metadata.c.
* Columnar: make customscan not depend on columnar.h.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
Because setting the flag doesn't necessarily mean that we'll
use 2PC. If connections are read-only, we will not use 2PC.
In other words, we'll use 2PC only for connections that modified
any placements.
Before this commit, Citus used 2PC no matter what kind of
local query execution happens.
For example, if the coordinator has shards (and the workers as well),
even a simple SELECT query could start 2PC:
```SQL
WITH cte_1 AS (SELECT * FROM test LIMIT 10) SELECT count(*) FROM cte_1;
```
In this query, the local execution of the shards (and also intermediate
result reads) triggers the 2PC.
To prevent that, Citus now distinguishes local reads and local writes.
And, Citus switches to 2PC only if a modification happens. This may
still lead to unnecessary 2PCs when there is a local modification
and remote SELECTs only. Though, we handle that separately
via #4587.
Postgres keeps AFTER trigger state for each transaction, because we can have deferred AFTER triggers which will be fired at the end of a transaction. Postgres cleans up this state at the end of transaction.
Postgres processes ON COMMIT triggers after cleaning-up the AFTER trigger states. So if we fire any triggers in ON COMMIT, the AFTER trigger state won't be cleaned-up properly and the transaction state will be left in an inconsistent state, which might result in assertion failure.
So with this commit, we remove foreign keys between columnar metadata tables and enforce constraints between them manually when dropping columnar tables.
* Skip 2PC for readonly connections in a transaction
* Use ConnectionModifiedPlacement() function
* Remove the second check of ConnectionModifiedPlacement()
* Add order by to prevent flaky output
* Test using pg_dist_transaction
With this commit, we make sure to prevent infinite recursion for queries
in the format: [subquery with a UNION ALL] JOIN [table or subquery]
Also, fixes a bug where we pushdown UNION ALL below a JOIN even if the
UNION ALL is not safe to pushdown.
* Reimplement citus_update_table_statistics
* Update stats for the given table not colocation group
* Add tests for reimplemented citus_update_table_statistics
* Use coordinated transaction, merge with citus_shard_sizes functions
* Update the old master_update_table_statistics as well
* Use translated vars in postgres 13 as well
Postgres 13 removed translated vars with pg 13 so we had a special logic
for pg 13. However it had some bug, so now we copy the translated vars
before postgres deletes it. This also simplifies the logic.
* fix rtoffset with pg >= 13
/*
* The physical planner assumes that all worker queries would have
* target list entries based on the fact that at least the column
* on the JOINs have to be on the target list. However, there is
* an exception to that if there is a cartesian product join and
* there is no additional target list entries belong to one side
* of the JOIN. Once we support cartesian product join, we should
* remove this error.
*/
When we use PROCESS_UTILITY_TOPLEVEL it causes some problems when
combined with other extensions such as pg_audit. With this commit we use
PROCESS_UTILITY_QUERY in the codebase to fix those problems.
When executing alter_table / undistribute_table udf's, we should not try
to change sequence dependencies on MX workers if new table wouldn't
require syncing metadata.
Previously, we were checking that for input table. But in some cases, the
fact that input table requires syncing metadata doesn't imply the same
for resulting table (e.g when undistributing a Citus table).
Even more, doing that was giving an unexpected error when undistributing
a Citus table so this commit actually fixes that.
It seems that we need to consider only pseudo constants while doing some
shortcuts in planning. For example there could be a false clause but it
can contribute to the result in which case it will not be a pseudo
constant.
We would exclude tables without relationRestriction from conversion
candidates in local-distributed table joins. This could leave a leftover
local table which should have been converted to a subquery.
Ideally I would expect that in each call to CreateDistributedPlan we
would pass a new plan id, but that seems like a bigger change.
/*
* Colocated intermediate results are just files and not required to use
* the same connections with their co-located shards. So, we are free to
* use any connection we can get.
*
* Also, the current connection re-use logic does not know how to handle
* intermediate results as the intermediate results always truncates the
* existing files. That's why, we use one connection per intermediate
* result.
*/
We do not include dummy column if original task didn't return any
columns.
Otherwise, number of columns that original task returned wouldn't
match number of columns returned by worker_save_query_explain_analyze.
When COPY is used for copying into co-located files, it was
not allowed to use local execution. The primary reason was
Citus treating co-located intermediate results as co-located
shards, and COPY into the distributed table was done via
"format result". And, local execution of such COPY commands
was not implemented.
With this change, we implement support for local execution with
"format result". To do that, we use the buffer for every file
on shardState->copyOutState, similar to how local copy on
shards are implemented. In fact, the logic is similar to
local copy on shards, but instead of writing to the shards,
Citus writes the results to a file.
The logic relies on LOCAL_COPY_FLUSH_THRESHOLD, and flushes
only when the size exceeds the threshold. But, unlike local
copy on shards, in this case we write the headers and footers
just once.
* Sort results in citus_shards and give raw size
Sort results so that it is consistent and also similar to citus_tables.
Use raw size in the output so that doing operations on the size is
easier.
* Change column ordering
With #4338, the executor is smart enough to failover to
local node if there is not enough space in max_connections
for remote connections.
For COPY, the logic is different. With #4034, we made COPY
work with the adaptive connection management slightly
differently. The cause of the difference is that COPY doesn't
know which placements are going to be accessed hence requires
to get connections up-front.
Similarly, COPY decides to use local execution up-front.
With this commit, we change the logic for COPY on local nodes:
Try to reserve a connection to local host. This logic follows
the same logic (e.g., citus.local_shared_pool_size) as the
executor because COPY also relies on TryToIncrementSharedConnectionCounter().
If reservation to local node fails, switch to local execution
Apart from this, if local execution is disabled, we follow the
exact same logic for multi-node Citus. It means that if we are
out of the connection, we'd give an error.
It seems that we were not considering the case where coordinator was
added to the cluster as a worker in the optimization of intermediate
results.
This could lead to errors when coordinator was added as a worker.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating table
from scratch. For this reason, we don't allow using alter_table udfs
with tables having any identity cols.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating shell
relation.
For this reason, we don't allow adding local tables -having identity cols-
to metadata.
Postgres doesn't allow inserting into columns having GENERATED ALWAYS
AS (...) STORED expressions.
For this reason, when executing undistribute_table or an alter_* udf,
we should skip copying such columns.
This is not bad since Postgres would already generate such columns.
Enables an overall plan to be parallel (e.g. over a partition
hierarchy), even though an individual ColumnarScan is not
parallel-aware.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
Previously, if columnar.enable_custom_scan was false, parallel paths
could remain, leading to an unexpected error.
Also, ensure that cheapest_parameterized_paths is cleared if a custom
scan is used.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
When finding columns owning sequences, we shouldn't rely on atthasdef
since it might be true when column has GENERATED ALWAYS AS (...)
STORED expression.
Since create_citus_local_table doesn't specify cascadeViaForeignKeys
option, we can't directly call citus_add_local_table_to_metadata
from create_citus_local_table.
Instead, implement an internal method and call it from deprecated udf
too.
* Fix partition column index issue
We send column names to worker_hash/range_partition_table methods, and
in these methods we check the column name index from tuple descriptor.
Then this index is used to decide the bucket that the current row will
be sent for the repartition.
This becomes a problem when there are the same column names in the
tupleDescriptor. Then we can choose the wrong index. Hence the
partitioned data will be put to wrong workers. Then the result could
miss some data because workers might contain different range of data.
An example:
TupleDescriptor contains "trip_id", "car_id", "car_id" for one table.
It contains only "car_id" for the other table. And assuming that the
tables will be partitioned by car_id, it is not certain what should be
used for deciding the bucket number for the first table. Assuming value
2 goes to bucket 2 and value 3 goes to bucket 3, it is not certain which
bucket "1 2 3" (trip_id, car_id, car_id) row will go to.
As a solution we send the index of partition column in targetList
instead of the column name.
The old API is kept so that if workers upgrade work, it still works
(though it will have the same bug)
* Use the same method so that backporting is easier
Fixing a division by zero in the cost calculations for scanning a columnar table.
Due to how the columns in a columnar table are counted an empty table would result in a division by zero. Instead this patch keeps the column selection ratio on zero when this happens, resulting in an accurate cost of zero pages to scan a columnar table.
fixes#4589
In pg11.8 it seemingly tries to parse the full sql file creating the extension,
since we use syntax introduced in postgres 12 this fails.
This patch rewrites the statement not recognized by pg11.8 to be dynamically
executed from a string literal via `EXECUTE`.
* Make undistribute_table() and citus_create_local_table() work with columnar
* Rename and use LocallyExecuteUtilityTask for UDF check
* Remove 'local' references in ExecuteUtilityCommand
As described in the comment, we have observed crashes in production
due to a segfault caused by the dereference of a NULL pointer in our
connection statemachine.
As a mitigation, preventing system crashes, we provide an error with
a small explanation of the issue. Unfortunately the case is not
reliably reproduced yet, hence the inability to add tests.
DESCRIPTION: Prevent segfaults when SAVEPOINT handling cannot recover from connection failures
Currently we choose an arbitrary colocation id from all the matches for
a colocation id. This could mean that 2 distributed tables, which have
the same scheme could go into different colocation groups. This fix
makes sure that the same match will go to the same colocation group.
/*
* Creating Citus local tables relies on functions that accesses
* shards locally (e.g., ExecuteAndLogDDLCommand()). As long as
* we don't teach those functions to access shards remotely, we
* cannot relax this check.
*/
Logical replication status can take wal_receiver_status_interval
seconds to get updated. Default is 10s, which means tests in
which logical replication is used can take a long time to finish.
We reduce it to 1 second to speed these tests up.
Logical replication apply launcher launches workers every
wal_retrieve_retry_interval, so if we have many shard moves with
logical replication consecutively, they will be throttled by this
parameter. Default is 5s, we reduce it to 1s so we finish tests
faster.
The reason behind skipping postgres tables is that we support
foreign keys between postgres tables and reference tables
(without converting postgres tables to citus local tables)
when enable_local_reference_table_foreign_keys is false or
when coordinator is not added to metadata.
For certaion purposes, we drop and recreate the foreign
keys. As we acquire exclusive locks on the tables in between
drop and re-create, we can safely skip validation phase of
the foreign keys. The reason is purely being performance as
foreign key validation could take a long value.
When enabled any foreign keys between local tables and reference
tables supported by converting the local table to a citus local
table.
When the coordinator is not in the metadata, the logic is disabled
as foreign keys are not allowed in this configuration.
Because master_add_node(or others) might acquire ExclusiveLock
and their initiated sessions may call CoordinatorAddedAsWorkerNode().
With this we prevent potential deadlocks.
If relation is not involved in any foreign key relationships,
foreign key graph would not return any relations for given
relationId as expected.
But even if it's the case, we should still undistribute the table
itself.
DESCRIPTION: Add tests to verify crash recovery for columnar tables
Based on the Postgres TAP tooling we add a new test suite to the array of test suites for citus. It is modelled after `src/test/recovery` in the postgres project and takes the same place in our repository. It uses the perl modules defined in the postgres project to control the postgres nodes.
The test we add here focus on crash recovery. Our follower tests should cover the streaming replication behaviour.
It is hooked to our CI for both postgres 12 and postgres 13. We omit the recovery tests for postgres 11 as we do not have support for the columnar table access method.
* Stronger check for triggers on columnar tables (#4493).
Previously, we used a simple ProcessUtility_hook. Change to use an
object_access_hook instead.
* Replace alter_table_set_access_method test on partition with foreign key
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
With citus shard helper view, we can easily see:
- where each shard is, which node, which port
- what kind of table it belongs to
- its size
With such a view, we can see shards that have a size bigger than some
value, which could be useful. Also debugging can be easier in production
as well with this view.
Fetch shards in one go per node
The previous implementation was slow because it would do a lot of round
trips, one per shard to be exact. Hence it is improved so that we fetch
all the shard_name, shard-size pairs per node in one go.
Construct shards_names, sizes query on coordinator
* Replace master_add_node with citus_add_node
* Replace master_activate_node with citus_activate_node
* Replace master_add_inactive_node with citus_add_inactive_node
* Use master udfs in old scripts
* Replace master_add_secondary_node with citus_add_secondary_node
* Replace master_disable_node with citus_disable_node
* Replace master_drain_node with citus_drain_node
* Replace master_remove_node with citus_remove_node
* Replace master_set_node_property with citus_set_node_property
* Replace master_unmark_object_distributed with citus_unmark_object_distributed
* Replace master_update_node with citus_update_node
* Replace master_update_shard_statistics with citus_update_shard_statistics
* Replace master_update_table_statistics with citus_update_table_statistics
* Rename master_conninfo_cache_invalidate to citus_conninfo_cache_invalidate
Rename master_dist_local_group_cache_invalidate to citus_dist_local_group_cache_invalidate
* Replace master_copy_shard_placement with citus_copy_shard_placement
* Replace master_move_shard_placement with citus_move_shard_placement
* Rename master_dist_node_cache_invalidate to citus_dist_node_cache_invalidate
* Rename master_dist_object_cache_invalidate to citus_dist_object_cache_invalidate
* Rename master_dist_partition_cache_invalidate to citus_dist_partition_cache_invalidate
* Rename master_dist_placement_cache_invalidate to citus_dist_placement_cache_invalidate
* Rename master_dist_shard_cache_invalidate to citus_dist_shard_cache_invalidate
* Drop master_modify_multiple_shards
* Rename master_drop_all_shards to citus_drop_all_shards
* Drop master_create_distributed_table
* Drop master_create_worker_shards
* Revert old function definitions
* Add missing revoke statement for citus_disable_node
CREATE TABLE does not invalidate foreign key graph but some other set of
ddl commands do.
Previously, as we run multi_foreign_key & multi_foreign_key_relation_graph
in parallel, it's possible that multi_foreign_key invalidates foreign key
graph via some ddl commands and create table test in
multi_foreign_key_relation_graph becomes flaky.
So we un-parallelize those two tests.
We used to need WarnAboutLeakedPreparedTransaction()
as we didn't have auto 2PC recovery. But, we long have
2PC recovery by https://github.com/citusdata/citus/pull/1574
So, we don't need anymore.
* Rethrow original concurrent index creation failure message
* Alter test outputs for concurrent index creation
* Detect duplicate table failure in concurrent index creation
* Add test for conc. index creation w/out duplicates
* Prevent deadlock for long named partitioned index creation on single node
* Create IsSingleNodeCluster function
* Use both local and sequential execution
On top of our foreign key graph, implement the infrastructure to get
list of relations that are connected to input relation via a foreign key
graph.
We need this to support cascading create_citus_local_table &
undistribute_table operations.
Also add regression tests to see what our foreign key graph is able to
capture currently.
With this commit, we remove visited flags from ForeignConstraintRelationshipNode
struct since keeping local state in global object is both dangerous and
meaningless.
Also to improve readability, this commit also converts needless recursion to
iterative DFS to avoid passing local hash-map as another parameter to
GetConnectedListHelper function.
Attribute number in a subquery RTE and relation RTE means different
things. In a relation attribute number will point to the column number
in the table definition including the dropped columns as well however in
subquery, it means the index in the target list. When we convert a
relation RTE to subquery RTE we should either correct all the relevant
attribute numbers or we can just add a dummy column for the dropped
columns. We choose the latter in this commit because it is practically
too vulnerable to update all the vars in a query.
Another thing this commit fixes is that in case a join restriction
clause list contains a false clause, we should just returns a false
clause instead of the whole list, because the whole list will contain
restrictions from other RTEs as well and this breaks the query, which
can be seen from the output changes, now it is much simpler.
Also instead of adding single tests for dropped columns, we choose to
run the whole mixed queries with tables with dropped columns, this
revealed some bugs already, which are fixed in this commit.
It seems that there are only very few cases where that is useful, and
for now we prefer not having that check. This means that we might
perform some unnecessary checks, but that should be rare and not
performance critical.
Instead of sending NULL's over a network, we now convert the subqueries
in the form of:
SELECT t.a, NULL, NULL FROM (SELECT a FROM table)t;
And we recursively plan the inner part so that we don't send the NULL's
over network. We still need the NULLs in the outer subquery because we
currently don't have an easy way of updating all the necessary places in
the query.
Add some documentation for how the conversion is done
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
It seems that most of the updates were broken, we weren't aware of it
because there wasn't any data in the tables. They are broken mostly
because local tables do not have a shard id and some code paths should
be updated with that information, currently when there is an invalid
shard id, it is assumed to be pruned.
Consider local tables in router planner
In case there is a local table, the shard id will not be valid and there
are some checks that rely on shard id, we should skip these in case of
local tables, which is handled with a dummy placement.
Add citus local table dist table join tests
add local-dist table mixed joins tests
AllDataLocallyAccessible and ContainsLocalTableSubqueryJoin are removed.
We can possibly remove ModifiesLocalTableWithRemoteCitusLocalTable as
well. Though this removal has a side effect that now when all the data
is locally available, we could still wrap a relation into a subquery, I
guess that should be resolved in the router planner itself.
Add more tests
When we wrap an RTE to subquery we are updating the variables varno's as
1, however we should also update the varno's of vars in quals.
Also some other small code quality improvements are done.
The previous algorithm was not consistent and it could convert different
RTEs based on the table orders in the query. Now we convert local tables
if there is a distributed table which doesn't have a unique index. So if
there are 4 tables, local1, local2, dist1, dist2_with_pkey then we will
convert local1 and local2 in `auto` mode. Converting a distributed table
is not that logical because as there is a distributed table without a
unique index, we will need to convert the local tables anyway. So
converting the distributed table with pkey is redundant.
Remove FillLocalAndDistributedRTECandidates and use
ShouldConvertLocalTableJoinsToSubqueries, which simplifies things as we
rely on a single function to decide whether we should continue
converting RTE to subquery.
We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
Check equality in quals
We want to recursively plan distributed tables only if they have an
equality filter on a unique column. So '>' and '<' operators will not
trigger recursive planning of distributed tables in local-distributed
table joins.
Recursively plan distributed table only if the filter is constant
If the filter is not a constant then the join might return multiple rows
and there is a chance that the distributed table will return huge data.
Hence if the filter is not constant we choose to recursively plan the
local table.
When doing local-distributed table joins we convert one of them to
subquery. The current policy is that we convert distributed tables to
subquery if it has a unique index on a column that has unique
index(primary key also has a unique index).
The logical planner cannot handle joins between local and distributed table.
Instead, we can recursively plan one side of the join and let the logical
planner handle the rest.
Our algorithm is a little smart, trying not to recursively plan distributed
tables, but favors local tables.
UPDATEs on partitioned tables that affect only row partitions should
succeed, the rest should fail.
Also rename CStoreScan to ColumnarScan to make the error message more
relevant.
A utility function is added so that each caller can implement a handler
for each index on a given table. This means that the caller doesn't need
to worry about how to access each index, the only thing that it needs to
do each to implement a function to which each index on the table is
passed iteratively.