Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
The root of the problem is that, standard_planner() converts the following qual
```
{OPEXPR
:opno 98
:opfuncid 67
:opresulttype 16
:opretset false
:opcollid 0
:inputcollid 100
:args (
{VAR
:varno 1
:varattno 1
:vartype 25
:vartypmod -1
:varcollid 100
:varlevelsup 0
:varnoold 1
:varoattno 1
:location 45
}
{CONST
:consttype 25
:consttypmod -1
:constcollid 100
:constlen -1
:constbyval false
:constisnull true
:location 51
:constvalue <>
}
)
:location 49
}
```
To
```
(
{CONST
:consttype 16
:consttypmod -1
:constcollid 0
:constlen 1
:constbyval true
:constisnull true
:location -1
:constvalue <>
}
)
```
So, Citus doesn't deal with NULL values in real-time or non-fast path router queries.
And, in the FastPathRouter planner, we check constisnull in DistKeyInSimpleOpExpression().
However, in deferred pruning case, we do not check for isnull for const.
Thus, the fix consists of two parts:
- Let PruneShards() not crash when NULL parameter is passed
- For deferred shard pruning in fast-path queries, explicitly check that we have CONST which is not NULL
Sometimes during errors workers will create files while we're deleting intermediate directories
example:
DEBUG: could not remove file "base/pgsql_job_cache/10_0_431": Directory not empty
DETAIL: WARNING from localhost:57637
Previously, the logic for evaluting the functions and the parameters
were the same. That ended-up evaluting the functions inaccurately
on the coordinator. Instead, split the function evaluation logic
from parameter evalution logic.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
adaptive_executor: sort includes, use foreach_ptr, remove lies from FinishDistributedExecution docs
connection_management: rename msecs, which isn't milliseconds
placement_connection: small typos
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
This is purely to enable better performance with prepared statements.
Before this commit, the fast path queries with prepared statements
where the distribution key includes a parameter always went through
distributed planning. After this change, we only go through distributed
planning on the first 5 executions.
We need to know which placement succeeded in executing the worker_partition_query_result() call. Otherwise we wouldn't know which node to fetch from. This change allows that by introducing Task::perPlacementQueryStrings.
Fixes#3331
In #2389, we've implemented support for partitioned tables with rep > 1.
The implementation is limiting the use of modification queries on the
partitions. In fact, we error out when any partition is modified via
EnsurePartitionTableNotReplicated().
However, we seem to forgot an important case, where the parent table's
partition is marked as INVALID. In that case, at least one of the partition
becomes INVALID. However, we do not mark partitions as INVALID ever.
If the user queries the partition table directly, Citus could happily send
the query to INVALID placements -- which are not marked as INVALID.
This PR fixes it by marking the placements of the partitions as INVALID
as well.
The shard placement repair logic already re-creates all the partitions,
so should be fine in that front.
Different versions of reindent tool reformatted citus_custom_scan.c
and citus_copyfuncs.c differently. So some developers spent some
extra attention not to commit these two files after reindent.
This PR tries to address this.
* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item
DESCRIPTION: Fix counter that keeps track of internal depth in executor
While reviewing #3302 I ran into the `ExecutorLevel` variable which used a variable to keep the original value to restore on successful exit. I haven't explored the full space and if it is possible to get into an inconsistent state. However using `PG_TRY`/`PG_CATCH` seems generally more correct.
Given very bad things will happen if this level is not reset, I kept the failsafe of setting the variiable back to 0 on the `XactCallback` but I did add an assert to treat it as a developer bug.
Test ALTER ROLE doesn't deadlock when coordinator added, or propagate from mx workers
Consolidate wait_until_metadata_sync & verify_metadata to multi_test_helpers
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
When the user picks "round-robin" policy, the aim is that the load
is distributed across nodes. However, for reference tables on the
coordinator, since local execution kicks in immediately, round-robin
is ignored.
With this change, we're excluding the placement on the coordinator.
Although the approach seems a little bit invasive because of
modifications in the placement list, that sounds acceptable.
We could have done this in some other ways such as:
1) Add a field to "Task->roundRobinPlacement" (or such), which is
updated as the first element after RoundRobinPolicy is applied.
During the execution, if that placement is local to the coordinator,
skip it and try the other remote placements.
2) On TaskAccessesLocalNode()@local_execution.c, check
task_assignment_policy, if round-robin selected and there is local
placement on the coordinator, skip it. However, task assignment is done
on planning, but this decision is happening on the execution, which
could create weird edge cases.
It looks like the logic to prevent RETURNING in reference tables to
have duplicate entries that comes from local and remote executions
leads to missing some tuples for distributed tables.
With this PR, we're ensuring to kick in the logic for reference tables
only.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
When citus.enable_repartition_joins guc is set to on, and we have
adaptive executor, there was a typo in the debug message, which was
saying realtime executor no adaptive executor.
See #3125 for details on each item.
* Remove real-time/router executor tests-1
These are the ones which doesn't have '_%d' in the test
output files.
* Remove real-time/router executor tests-2
These are the ones which has in the test
output files.
* Move the tests outputs to correct place
* Make sure that single shard commits use 2PC on adaptive executor
It looks like we've messed the tests in #2891. Fixing back.
* Use adaptive executor for all router queries
This becomes important because when task-tracker is picked, we
used to pick router executor, which doesn't make sense.
* Remove explicit references to real-time/router executors in the tests
* JobExecutorType never picks real-time/router executors
* Make sure to go incremental in test output numbers
* Even users cannot pick real-time anymore
* Do not use real-time/router custom scans
* Get rid of unnecessary normalizations
* Reflect unneeded normalizations
* Get rid of unnecessary test output file