With #4338, the executor is smart enough to failover to
local node if there is not enough space in max_connections
for remote connections.
For COPY, the logic is different. With #4034, we made COPY
work with the adaptive connection management slightly
differently. The cause of the difference is that COPY doesn't
know which placements are going to be accessed hence requires
to get connections up-front.
Similarly, COPY decides to use local execution up-front.
With this commit, we change the logic for COPY on local nodes:
Try to reserve a connection to local host. This logic follows
the same logic (e.g., citus.local_shared_pool_size) as the
executor because COPY also relies on TryToIncrementSharedConnectionCounter().
If reservation to local node fails, switch to local execution
Apart from this, if local execution is disabled, we follow the
exact same logic for multi-node Citus. It means that if we are
out of the connection, we'd give an error.
It seems that we were not considering the case where coordinator was
added to the cluster as a worker in the optimization of intermediate
results.
This could lead to errors when coordinator was added as a worker.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating table
from scratch. For this reason, we don't allow using alter_table udfs
with tables having any identity cols.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating shell
relation.
For this reason, we don't allow adding local tables -having identity cols-
to metadata.
Postgres doesn't allow inserting into columns having GENERATED ALWAYS
AS (...) STORED expressions.
For this reason, when executing undistribute_table or an alter_* udf,
we should skip copying such columns.
This is not bad since Postgres would already generate such columns.
Enables an overall plan to be parallel (e.g. over a partition
hierarchy), even though an individual ColumnarScan is not
parallel-aware.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
Previously, if columnar.enable_custom_scan was false, parallel paths
could remain, leading to an unexpected error.
Also, ensure that cheapest_parameterized_paths is cleared if a custom
scan is used.
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
When finding columns owning sequences, we shouldn't rely on atthasdef
since it might be true when column has GENERATED ALWAYS AS (...)
STORED expression.
* Fix partition column index issue
We send column names to worker_hash/range_partition_table methods, and
in these methods we check the column name index from tuple descriptor.
Then this index is used to decide the bucket that the current row will
be sent for the repartition.
This becomes a problem when there are the same column names in the
tupleDescriptor. Then we can choose the wrong index. Hence the
partitioned data will be put to wrong workers. Then the result could
miss some data because workers might contain different range of data.
An example:
TupleDescriptor contains "trip_id", "car_id", "car_id" for one table.
It contains only "car_id" for the other table. And assuming that the
tables will be partitioned by car_id, it is not certain what should be
used for deciding the bucket number for the first table. Assuming value
2 goes to bucket 2 and value 3 goes to bucket 3, it is not certain which
bucket "1 2 3" (trip_id, car_id, car_id) row will go to.
As a solution we send the index of partition column in targetList
instead of the column name.
The old API is kept so that if workers upgrade work, it still works
(though it will have the same bug)
* Use the same method so that backporting is easier
Fixing a division by zero in the cost calculations for scanning a columnar table.
Due to how the columns in a columnar table are counted an empty table would result in a division by zero. Instead this patch keeps the column selection ratio on zero when this happens, resulting in an accurate cost of zero pages to scan a columnar table.
fixes#4589
* Make undistribute_table() and citus_create_local_table() work with columnar
* Rename and use LocallyExecuteUtilityTask for UDF check
* Remove 'local' references in ExecuteUtilityCommand
/*
* Creating Citus local tables relies on functions that accesses
* shards locally (e.g., ExecuteAndLogDDLCommand()). As long as
* we don't teach those functions to access shards remotely, we
* cannot relax this check.
*/
The reason behind skipping postgres tables is that we support
foreign keys between postgres tables and reference tables
(without converting postgres tables to citus local tables)
when enable_local_reference_table_foreign_keys is false or
when coordinator is not added to metadata.
When enabled any foreign keys between local tables and reference
tables supported by converting the local table to a citus local
table.
When the coordinator is not in the metadata, the logic is disabled
as foreign keys are not allowed in this configuration.
If relation is not involved in any foreign key relationships,
foreign key graph would not return any relations for given
relationId as expected.
But even if it's the case, we should still undistribute the table
itself.
* Stronger check for triggers on columnar tables (#4493).
Previously, we used a simple ProcessUtility_hook. Change to use an
object_access_hook instead.
* Replace alter_table_set_access_method test on partition with foreign key
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
With citus shard helper view, we can easily see:
- where each shard is, which node, which port
- what kind of table it belongs to
- its size
With such a view, we can see shards that have a size bigger than some
value, which could be useful. Also debugging can be easier in production
as well with this view.
Fetch shards in one go per node
The previous implementation was slow because it would do a lot of round
trips, one per shard to be exact. Hence it is improved so that we fetch
all the shard_name, shard-size pairs per node in one go.
Construct shards_names, sizes query on coordinator
* Replace master_add_node with citus_add_node
* Replace master_activate_node with citus_activate_node
* Replace master_add_inactive_node with citus_add_inactive_node
* Use master udfs in old scripts
* Replace master_add_secondary_node with citus_add_secondary_node
* Replace master_disable_node with citus_disable_node
* Replace master_drain_node with citus_drain_node
* Replace master_remove_node with citus_remove_node
* Replace master_set_node_property with citus_set_node_property
* Replace master_unmark_object_distributed with citus_unmark_object_distributed
* Replace master_update_node with citus_update_node
* Replace master_update_shard_statistics with citus_update_shard_statistics
* Replace master_update_table_statistics with citus_update_table_statistics
* Rename master_conninfo_cache_invalidate to citus_conninfo_cache_invalidate
Rename master_dist_local_group_cache_invalidate to citus_dist_local_group_cache_invalidate
* Replace master_copy_shard_placement with citus_copy_shard_placement
* Replace master_move_shard_placement with citus_move_shard_placement
* Rename master_dist_node_cache_invalidate to citus_dist_node_cache_invalidate
* Rename master_dist_object_cache_invalidate to citus_dist_object_cache_invalidate
* Rename master_dist_partition_cache_invalidate to citus_dist_partition_cache_invalidate
* Rename master_dist_placement_cache_invalidate to citus_dist_placement_cache_invalidate
* Rename master_dist_shard_cache_invalidate to citus_dist_shard_cache_invalidate
* Drop master_modify_multiple_shards
* Rename master_drop_all_shards to citus_drop_all_shards
* Drop master_create_distributed_table
* Drop master_create_worker_shards
* Revert old function definitions
* Add missing revoke statement for citus_disable_node
* Rethrow original concurrent index creation failure message
* Alter test outputs for concurrent index creation
* Detect duplicate table failure in concurrent index creation
* Add test for conc. index creation w/out duplicates
* Prevent deadlock for long named partitioned index creation on single node
* Create IsSingleNodeCluster function
* Use both local and sequential execution
On top of our foreign key graph, implement the infrastructure to get
list of relations that are connected to input relation via a foreign key
graph.
We need this to support cascading create_citus_local_table &
undistribute_table operations.
Also add regression tests to see what our foreign key graph is able to
capture currently.
Attribute number in a subquery RTE and relation RTE means different
things. In a relation attribute number will point to the column number
in the table definition including the dropped columns as well however in
subquery, it means the index in the target list. When we convert a
relation RTE to subquery RTE we should either correct all the relevant
attribute numbers or we can just add a dummy column for the dropped
columns. We choose the latter in this commit because it is practically
too vulnerable to update all the vars in a query.
Another thing this commit fixes is that in case a join restriction
clause list contains a false clause, we should just returns a false
clause instead of the whole list, because the whole list will contain
restrictions from other RTEs as well and this breaks the query, which
can be seen from the output changes, now it is much simpler.
Also instead of adding single tests for dropped columns, we choose to
run the whole mixed queries with tables with dropped columns, this
revealed some bugs already, which are fixed in this commit.
It seems that there are only very few cases where that is useful, and
for now we prefer not having that check. This means that we might
perform some unnecessary checks, but that should be rare and not
performance critical.
Instead of sending NULL's over a network, we now convert the subqueries
in the form of:
SELECT t.a, NULL, NULL FROM (SELECT a FROM table)t;
And we recursively plan the inner part so that we don't send the NULL's
over network. We still need the NULLs in the outer subquery because we
currently don't have an easy way of updating all the necessary places in
the query.
Add some documentation for how the conversion is done
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
It seems that most of the updates were broken, we weren't aware of it
because there wasn't any data in the tables. They are broken mostly
because local tables do not have a shard id and some code paths should
be updated with that information, currently when there is an invalid
shard id, it is assumed to be pruned.
Consider local tables in router planner
In case there is a local table, the shard id will not be valid and there
are some checks that rely on shard id, we should skip these in case of
local tables, which is handled with a dummy placement.
Add citus local table dist table join tests
add local-dist table mixed joins tests
AllDataLocallyAccessible and ContainsLocalTableSubqueryJoin are removed.
We can possibly remove ModifiesLocalTableWithRemoteCitusLocalTable as
well. Though this removal has a side effect that now when all the data
is locally available, we could still wrap a relation into a subquery, I
guess that should be resolved in the router planner itself.
Add more tests
When we wrap an RTE to subquery we are updating the variables varno's as
1, however we should also update the varno's of vars in quals.
Also some other small code quality improvements are done.
The previous algorithm was not consistent and it could convert different
RTEs based on the table orders in the query. Now we convert local tables
if there is a distributed table which doesn't have a unique index. So if
there are 4 tables, local1, local2, dist1, dist2_with_pkey then we will
convert local1 and local2 in `auto` mode. Converting a distributed table
is not that logical because as there is a distributed table without a
unique index, we will need to convert the local tables anyway. So
converting the distributed table with pkey is redundant.
Remove FillLocalAndDistributedRTECandidates and use
ShouldConvertLocalTableJoinsToSubqueries, which simplifies things as we
rely on a single function to decide whether we should continue
converting RTE to subquery.
We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
Check equality in quals
We want to recursively plan distributed tables only if they have an
equality filter on a unique column. So '>' and '<' operators will not
trigger recursive planning of distributed tables in local-distributed
table joins.
Recursively plan distributed table only if the filter is constant
If the filter is not a constant then the join might return multiple rows
and there is a chance that the distributed table will return huge data.
Hence if the filter is not constant we choose to recursively plan the
local table.
When doing local-distributed table joins we convert one of them to
subquery. The current policy is that we convert distributed tables to
subquery if it has a unique index on a column that has unique
index(primary key also has a unique index).
UPDATEs on partitioned tables that affect only row partitions should
succeed, the rest should fail.
Also rename CStoreScan to ColumnarScan to make the error message more
relevant.
When Citus needs to parallelize queries on the local node (e.g., the node
executing the distributed query and the shards are the same), we need to
be mindful about the connection management. The reason is that the client
backends that are running distributed queries are competing with the client
backends that Citus initiates to parallelize the queries in order to get
a slot on the max_connections.
In that regard, we implemented a "failover" mechanism where if the distributed
queries cannot get a connection, the execution failovers the tasks to the local
execution.
The failover logic is follows:
- As the connection manager if it is OK to get a connection
- If yes, we are good.
- If no, we fail the workerPool and the failure triggers
the failover of the tasks to local execution queue
The decision of getting a connection is follows:
/*
* For local nodes, solely relying on citus.max_shared_pool_size or
* max_connections might not be sufficient. The former gives us
* a preview of the future (e.g., we let the new connections to establish,
* but they are not established yet). The latter gives us the close to
* precise view of the past (e.g., the active number of client backends).
*
* Overall, we want to limit both of the metrics. The former limit typically
* kics in under regular loads, where the load of the database increases in
* a reasonable pace. The latter limit typically kicks in when the database
* is issued lots of concurrent sessions at the same time, such as benchmarks.
*/
When distributing a columnar table, as well as changing options on a distributed columnar table, this patch will forward the settings from the coordinator to the workers.
For propagating options changes on an already distributed table this change is pretty straight forward. Before applying the change in options locally we will create a `DDLJob` that contains a call to `alter_columnar_table_set(...)` for every shard placement with all settings of the current table. This goes both for setting an option as well as resetting. This will reset the values to the defaults configured on the coordinator. Having the effect that the coordinator is authoritative on the settings and makes sure the shards have the same settings set as the table on the coordinator.
When a columnar table is distributed it is using the `TableDDLCommand` infra structure to create a new kind of `TableDDLCommand`. This new type, called a `TableDDLCommandFunction` contains a context and 2 function pointers to execute. One function returns the command as applied on the table, the second function will return the sql command to apply to a shard with a given shard id. The schema name is ignored as it will use the fully qualified name of the shard in the same schema as the base table.
Multi-row execution already uses sequential execution. When shards
are local, using local execution is profitable as it avoids
an extra connection establishment to the local node.
This is to avoid flaky changes like the following in test outputs:
-CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.
+CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.02 s.
Columnar options were by accident linked to the relfilenode instead of the regclass/relation oid. This PR moves everything related to columnar options to their own catalog table.
Considering the adaptive connection management
improvements that we plan to roll soon, it makes it
very helpful to know the number of active client
backends.
We are doing this addition to simplify yhe adaptive connection
management for single node Citus. In single node Citus, both the
client backends and Citus parallel queries would compete to get
slots on Postgres' `max_connections` on the same Citus database.
With adaptive connection management, we have the counters for
Citus parallel queries. That helps us to adaptively decide
on the remote executions pool size (e.g., throttle connections
if necessary).
However, we do not have any counters for the total number of
client backends on the database. For single node Citus, we
should consider all the client backends, not only the remote
connections that Citus does.
Of course Postgres internally knows how many client
backends are active. However, to get that number Postgres
iterates over all the backends. For examaple, see [pg_stat_get_db_numbackends](8e90ec5580/src/backend/utils/adt/pgstatfuncs.c (L1240))
where Postgres iterates over all the backends.
For our purpuses, we need this information on every connection
establishment. That's why we cannot affort to do this kind of
iterattion.
CitusTableTypeIdList() function iterates on all the entries of pg_dist_partition
and loads all the metadata in to the cache. This can be quite memory intensive
especially when there are lots of distributed tables.
When partitioned tables are used, it is common to have many distributed tables
given that each partition also becomes a distributed table.
CitusTableTypeIdList() is used on every CREATE TABLE .. PARTITION OF.. command
as well. It means that, anytime a partition is created, Citus loads all the
metadata to the cache. Note that Citus typically only loads the accessed table's
metadata to the cache.
* Move local execution after the remote execution
Before this commit, when both local and remote tasks
exist, the executor was starting the execution with
local execution. There is no strict requirements on
this.
Especially considering the adaptive connection management
improvements that we plan to roll soon, moving the local
execution after to the remote execution makes more sense.
The adaptive connection management for single node Citus
would look roughly as follows:
- Try to connect back to the coordinator for running
parallel queries.
- If succeeds, go on and execute tasks in parallel
- If fails, fallback to the local execution
So, we'll use local execution as a fallback mechanism. And,
moving it after to the remote execution allows us to implement
such further scenarios.
Before this commit, we let AdaptiveExecutorPreExecutorRun()
to be effective multiple times on every FETCH on cursors.
That does not affect the correctness of the query results,
but adds significant overhead.
TableAM API doesn't allow us to pass around a state variable along all of the tuple inserts belonging to the same command. We require this in columnar store, since we batch them, and when we have enough rows we flush them as stripes.
To do that, we keep a (relfilenode) -> stack of (subxact id, TableWriteState) global mapping.
**Inserts**
Whenever we want to insert a tuple, we look up for the relation's relfilenode in this mapping. If top of the stack matches current subtransaction, we us the existing TableWriteState. Otherwise, we allocate a new TableWriteState and push it on top of stack.
**(Sub)Transaction Commit/Aborts**
When the subtransaction or transaction is committed, we flush and pop all entries matching current SubTransactionId.
When the subtransaction or transaction is committed, we pop all entries matching current SubTransactionId and discard them without flushing.
**Reads**
Since we might have unwritten rows which needs to be read by a table scan, we flush write states on SELECTs. Since flushing the write state of upper transactions in a subtransaction will cause metadata being written in wrong subtransaction, we ERROR out if any of the upper subtransactions have unflushed rows.
**Table Drops**
We record in which subtransaction the table was dropped. When committing a subtransaction in which table was dropped, we propagate the drop to upper transaction. When aborting a subtransaction in which table was dropped, we mark table as not deleted.
When a relation is used on an OUTER JOIN with FALSE filters,
set_rel_pathlist_hook may not be called for the table.
There might be other cases as well, so do not rely on the hook
for classification of the tables.
Aliases that postgres choose for partitioned tables in explain output
might change in different pg versions, so normalize them and remove
the alternative test output
* Fix incorrect join related fields
Ruleutils expect to give the original index of join columns hence we
should consider the dropped columns while setting the fields in
SetJoinRelatedFieldsCompat.
* add some more tests for joins
* Move tests to join.sql and create a utility function
Disallow `ON TRUE` outer joins with reference & distributed tables
when reference table is outer relation by fixing the logic bug made
when calling `LeftListIsSubset` function.
Also, be more defensive when removing duplicate join restrictions
when join clause is empty for non-inner joins as they might still
contain useful information for non-inner joins.
It seems like Postgres could call set_rel_pathlist() for
the same relation multiple times. This breaks the logic
where we assume relationCount eqauls to the number of
entries in relationRestrictionList.
In summary, relationRestrictionList may contain duplicate
entries.
With this commit, we make sure that local execution adds the
intermediate result size as the distributed execution adds. Plus,
it enforces the citus.max_intermediate_result_size value.
Before this commit, the logic was:
- As long as the outer side of the JOIN is not a JOIN (e.g., relation
or subquery etc.), we check for the existence of any recurring
tuples. There were two implications of this decision.
First, even if a subquery which is on the outer side contains
distributed table JOIN reference table, Citus would unnecessarily throw
an error. Note that, the JOIN inside the subquery would already
be going to be tested recursively. But, as long as that check
passes, there is no reason for the upper JOIN to fail. An example, which
used to fail and now works:
SELECT * FROM (SELECT * FROM dist JOIN ref) as foo LEFT JOIN dist;
Second, certain JOINs, especially with ON (true) conditions were not
represented as Citus expects the JOINs to be in the format
DeferredErrorIfUnsupportedRecurringTuplesJoin().
Use short lived per-tuple context in citus_evaluate_expr like
(pg) evaluate_expr does.
We should not use planState->ExprContext when evaluating expressions
as it might lead to freeing the same executor twice (first one happens
in citus_evaluate_expr itself and the other one happens when postgres
doing clean-up for the top level executor state), which in turn might
cause seg.faults.
However, now as we don't have necessary planState info to evaluate
prepared statements, we also add planState->es_param_list_info to
per-tuple ExprContext.
With postgres 13, there is a global lock that prevents multiple VACUUMs
happening in the current database. This global lock is taken for a short
time but this creates a problem because of the following:
- We execute the VACUUM for the shell table through the standard process
utility. In this step the global lock is taken for the current database.
- If the current node has shard placements then it tries to execute
VACUUM over a connection to localhost with ExecuteUtilityTaskList.
- the VACUUM on shard placements cannot proceed because it is waiting
for the global lock for the current database to be released.
- The acquired lock from the VACUUM for shell table will not be released
until the transaction is committed.
- So there is a deadlock.
As a solution, we commit the current transaction in case of VACUUM after
the VACUUM is executed for the shell table. Executing the VACUUM on a
shell table is not important because the data there will probably be
truncated. PostprocessVacuumStmt takes the necessary locks on the shell
table so we don't need to take any extra locks after we commit the
current transaction.
Multi-row & router INSERT's were crashing with local execution if at
least one of the DEFAULT columns were not specified in VALUES list.
This was because, the changes we make on query->values_lists and
query->targetList was sufficient for deparsing given INSERT for remote
execution but not sufficient for local execution.
With this commit, DEFAULT value normalization for multi-row & router
INSERT's is fixed by adding dummy column references for unspecified
DEFAULT columns.
Citus has the logic to truncate the long shard names to prevent
various issues, including self-deadlocks. However, for partitioned
tables, when index is created on the parent table, the index names
on the partitions are auto-generated by Postgres. We use the same
Postgres function to generate the index names on the shards of the
partitions. If the length exceeds the limit, we switch to sequential
execution mode.
We currently do not support volatile functions in update/delete statements
because the function evaluation logic does not know how to distinguish
volatile functions (that need to be evaluated per row) from stable functions
(that need to be evaluated per query), and it is also not safe to push the
volatile functions down on replicated tables.
Add sort method parameter for regression tests
Fix check-style
Change sorting method parameters to enum
Polish
Add task fields to OutTask
Add test into multi_explain
Fix isolation test
As the previous versions of Citus don't know how to handle citus local
tables, we should prevent downgrading from 9.5 to older versions if any
citus local tables exists.
Pushing down the CALLs to the node that the CALL is executed is
dangerous and could lead to infinite recursion.
When the coordinator added as worker, Citus was by chance preventing
this. The coordinator was marked as "not metadatasynced" node
in pg_dist_node, which prevented CALL/function delegation to happen.
With this commit, we do the following:
- Fix metadatasynced column for the coordinator on pg_dist_node
- Prevent pushdown of function/procedure to the same node that
the function/procedure is being executed. Today, we do not sync
pg_dist_object (e.g., distributed functions metadata) to the
worker nodes. But, even if we do it now, the function call delegation
would prevent the infinite recursion.
* Not allow removing a single node with ref tables
We should not allow removing a node if it is the only node in the
cluster and there is a data on it. We have this check for distributed
tables but we didn't have it for reference tables.
* Update src/test/regress/expected/single_node.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* Update src/test/regress/sql/single_node.sql
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
This commit brings following features:
Foreign key support from citus local tables to reference tables
* Foreign key support from reference tables to citus local tables
(only with RESTRICT & NO ACTION behavior)
* ALTER TABLE ENABLE/DISABLE trigger command support
* CREATE/DROP/ALTER trigger command support
and disallows:
* ALTER TABLE ATTACH/DETACH PARTITION commands
* CREATE TABLE <postgres table> ATTACH PARTITION <citus local table>
commands
* Foreign keys from postgres tables to citus local tables
(the other way was already disallowed)
for citus local tables.
create_distributed_function(function_name,
distribution_arg_name,
colocate_with text)
This UDF did not allow colocate_with parameters when there were no
disttribution_arg_name supplied. This commit changes the behaviour to
allow missing distribution_arg_name parameters when the function should
be colocated with a reference table.
* Hide citus.subquery_pushdown flag
This flag is dangerous and could likely to let queries
return wrong results.
The flag has a very specific purpose for a very specific
data distribution and query structure. In those cases, when
the flag is set, the user can skip recursive planning altogether
*at their own risk*.
The meaning of the flag is that "I know what I'm doing such that
the query structure/data distribution is on my control, so Citus
can skip many correctness checks".
For regular users, enabling this flag is discouraged. We have to
keep the support only for backward compatibility for some users.
In addition to that, give a NOTICE to discourage new users to
use it.
* Update and separate test images
The build image was a single one and it would contain pg11, pg12 and
pg13. Now it is separated so that we can build each pg major
independently.
Tags are used as full postgres versions so that we can know which
version we use by looking at the tag. For example exttester:11.9 would
mean we are using pg11.9.
pg11 is updated from 11.5 to 11.9.
pg12 is updated from 12rc to 12.4.
* Ignore memory usage in pg13 explain
* Use citus instead of personal repo
AllTargetExpressionsAreColumnReferences would return false if a query
had an entry that is referencing the outer query. It seems safe to not
have this for non-distributed tables, such as reference tables. We
already have separate checks for other cases such as having limits.
The error message when index has opclassopts is improved and the commit
from postgres side is also included for future reference.
Also some minor style related changes are applied.
Error out if index has opclassopts.
Changelog entry on PG13:
Allow CREATE INDEX to specify the GiST signature length and maximum number of integer ranges (Nikita Glukhov)
It seems that we don't support propagating commands related to base
types. Therefore Alter TYPE options doesn't seem to apply to us. I have
added a test to verify that we don't propagate them.
Changelog entry on pg13:
Add ALTER TYPE options useful for extensions, like TOAST and I/O functions control (Tomas Vondra, Tom Lane)
Unicode escapes work as expected, related tests are added.
Changelog entry on PG13:
Allow Unicode escapes, e.g., E'\u####', U&'\####', to specify any character available in the database encoding, even when the database encoding is not UTF-8 (Tom Lane)
Tests for is_normalized and normalized ar eadded. One thing that seems
to be because of existent bug is that when we don't give the second
argument to normalize or is_normalized, which is optional, it crashes.
Because in the executor part, in the expression we don't have the
default argument.
Changelog entry in PG-13:
Add SQL functions NORMALIZE() to normalize Unicode strings, and IS NORMALIZED to check for normalization (Peter Eisentraut)
Commit on Postgres:
2991ac5fc9b3904ca4582be6d323497d7c3d17c9
It seems that row suffix notation is working fine with our code, a test
is added.
Changelog entry in PG13:
Allow ROW values values to have their members extracted with suffix notation (Tom Lane)
PG13 now supports dropping expression from a column such as generated
columns. We error out with this currently.
Changelog entry in postgres:
Add ALTER TABLE clause DROP EXPRESSION to remove generated properties from columns (Peter Eisentraut)
Postgres 13 added a new VACUUM option, PARALLEL. It is now supported
in our code as well.
Relevant changelog message on postgres:
Allow VACUUM to process indexes in parallel (Masahiko Sawada, Amit Kapila)
With pg13, constants functions from "FROM" clause are replaced. This
means that in citus side, we will see the constraints in restriction
info, instead of the function call. For example:
SELECT * FROM table1 JOIN add(3,5) sum ON (id = sum) ORDER BY id ASC;
Assuming that the function `add` returns constant, it will be evaluated
on postgres side. This means that this query will be routable because
there will be only one shard after pruning with the restrictions.
However before pg13, this would be multi shard query. And it would go
into recursive planning, the function would be evaluated on the
coordinator because it can be.
This means that with pg13, users will need to distribute the function
because when it is routable executable, it will currently also send the
function call to the worker in the query. So the function should exist
in the worker.
It could be better to replace the constant in the query tree as well so
that the query string sent to the worker has the constant value and
therefore it doesn't need the function. However I feel like users would
already have the function in workers if they have any multi shard query.
Commit on Postgres side:
7266d0997dd2a0632da38a594c78e25ff21df67e
CREATE EXTENSION <name> FROM <old_version> is not supported anymore with
postgres 13. An alternative output is added for pg13 where we basically
error for that statement.
The not-null constraint message changed with pg13 slightly hence a
normalization rule is added for that, which converts it to pg < 13
output.
Commit on postgres:
05f18c6b6b6e4b44302ee20a042cedc664532aa2
An extra debug message is added related to indexes on postgres, these
are safe to be ignored, so we can delete them from tests.
Commit on Postgres side:
612a1ab76724aa1514b6509269342649f8cab375
varnoold is renamed as varnosyn and varoattno is renamed as varattnosyn
so in the output we normalize the values as the old ones to simply pass
the tests.
With this patch, we introduce `locally_reserved_shared_connections.c/h` files
which are responsible for reserving some space in shared memory counters
upfront.
We sometimes need to reserve connections, but not necessarily
establish them. For example:
- COPY command should reserve connections as it cannot know which
connections it needs in which order. COPY establishes connections
as any input data hits the workers. For example, for router COPY
command, it only establishes 1 connection.
As discussed here (https://github.com/citusdata/citus/pull/3849#pullrequestreview-431792473),
COPY needs to reserve connections up-front, otherwise we can end
up with resource starvation/un-detected deadlocks.
* ensure propagation of CHECK statements to workers with parantheses & adjust regression test outputs
* add tests for distributing tables with simple CHECK constraints
* added test for CHECK on bool variable
Enable custom aggregates with multiple parameters to be executed on workers.
#2921 introduces distributed execution of custom aggregates. One of the limitations of this feature is that only aggregate functions with a single aggregation parameter can be pushed to worker nodes. Aim of this change is to remove that limitation and support handling of multi-parameter aggregates.
Resolves: #3997
See also: #2921
Some GUCs support a list of values which is indicated by GUC_LIST_INPUT flag.
When an ALTER ROLE .. SET statement is executed, the new configuration
default for affected users and databases are stored in the
setconfig(text[]) column in a pg_db_role_setting record.
If a GUC that supports a list of values is used in an ALTER ROLE .. SET
statement, we need to split the text into items delimited by commas.
As noted by Talha https://github.com/citusdata/citus/pull/4029#issuecomment-660466972 there was still some sort order flappiness in the test.
The root cause is that sorting on `1::text` sorts on the literal `'1'` which causes sorting to be indeterministic.
This behaviour is consistent with Postgres' behaviour, so no bug on Citus' side.
* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
As reported on #4011https://github.com/citusdata/citus/pull/4011/files#r453804702 some of the tests were flapping due to an indeterministic order for test outputs.
This PR makes the test output ordered for all tests returning non-zero rows.
Needs to be backported to 9.2, 9.3, 9.4
The reason we should use ActiveReadableNodeList instead of ActiveReadableNonCoordinatorNodeList is that if coordinator is added to cluster as a worker, it should be counted as well. Otherwise if there is only coordinator in the cluster, the count will be 0, hence we get a warning.
In MultiTaskTrackerExecute, we should connect to coordinator if it is
added to the cluster because it will also be assigned tasks.
ActiveReadableWorkerNodeList doesn't include coordinator, however if
coordinator is added as a worker, we should also include that while
planning. The current methods are very easily misusable and this
requires a refactoring to make the distinction between methods that
include coordinator and that don't very explicit as they can introduce
subtle/major bugs pretty easily.
We were using ALL_WORKERS TargetWorkerSet while sending temporary schema
creation and cleanup. We(well mostly I) thought that ALL_WORKERS would also include coordinator when it is added as a worker. It turns out that it was FILTERING OUT the coordinator even if it is added as a worker to the cluster.
So to have some context here, in repartitions, for each jobId we create
(at least we were supposed to) a schema in each worker node in the cluster. Then we partition each shard table into some intermediate files, which is called the PARTITION step. So after this partition step each node has some intermediate files having tuples in those nodes. Then we fetch the partition files to necessary worker nodes, which is called the FETCH step. Then from the files we create intermediate tables in the temporarily created schemas, which is called a MERGE step. Then after evaluating the result, we remove the temporary schemas(one for each job ID in each node) and files.
If node 1 has file1, and node 2 has file2 after PARTITION step, it is
enough to either move file1 from node1 to node2 or vice versa. So we
prune one of them.
In the MERGE step, if the schema for a given jobID doesn't exist, the
node tries to use the `public` schema if it is a superuser, which is
actually added for testing in the past.
So when we were not sending schema creation comands for each job ID to
the coordinator(because we were using ALL_WORKERS flag, and it doesn't
include the coordinator), we would basically not have any schemas for
repartitions in the coordinator. The PARTITION step would be executed on
the coordinator (because the tasks are generated in the planner part)
and it wouldn't give us any error because it doesn't have anything to do
with the temporary schemas(that we didn't create). But later two things
would happen:
- If by chance the fetch is pruned on the coordinator side, we the other
nodes would fetch the partitioned files from the coordinator and execute
the query as expected, because it has all the information.
- If the fetch tasks are not pruned in the coordinator, in the MERGE
step, the coordinator would either error out saying that the necessary
schema doesn't exist, or it would try to create the temporary tables
under public schema ( if it is a superuser). But then if we had the same
task ID with different jobID it would fail saying that the table already
exists, which is an error we were getting.
In the first case, the query would work okay, but it would still not do
the cleanup, hence we would leave the partitioned files from the
PARTITION step there. Hence ensure_no_intermediate_data_leak would fail.
To make things more explicit and prevent such bugs in the future,
ALL_WORKERS is named as ALL_NON_COORD_WORKERS. And a new flag to return
all the active nodes is added as ALL_DATA_NODES. For repartition case,
we don't use the only-reference table nodes but this version makes the
code simpler and there shouldn't be any significant performance issue
with that.
DESCRIPTION: Force aliases in deparsing for queries with anonymous column references
Fixes: #3985
The root cause has todo with discrepancies in the query tree we create. I think in the future we should spend some time on categorising all changes we made to ruleutils and see if we can change the data structure `query` we pass to the deparser to have an actual valid postgres query for the deparser to render.
For now the fix is to keep track, besides changing the names of the entries in the target list, also if we have a reference to an anonymous columns. If there are anonymous columns we set the `printaliases` flag to true which forces the deparser to add the aliases.
Static analysis found an issue where we could dereference `NULL`, because
`CreateDummyPlacement` could return `NULL` when there were no workers. This
PR changes it so that it never returns `NULL`, which was intended by
@marcocitus when doing this change: https://github.com/citusdata/citus/pull/3887/files#r438136433
While adding tests for citus on a single node I also added some more basic
tests and it turns out we error out on repartition joins. This has been
present since `shouldhaveshards` was introduced and is not trivial to fix.
So I created a separate issue for this: https://github.com/citusdata/citus/issues/3996
I recently forgot to add tests to a schedule in two of my PRs. One of
these was caught by review, but the other one was not. This adds a
script to causes CI to ensure that each test in the repo is included in
at least one schedule.
Three tests were found that were currently not part of a schedule. This PR
adds those three tests to a schedule as well and it also fixes some small
issues with these tests.
It was possible to get an assertion error, if a DML command was
cancelled that opened a connection and then "ROLLBACK TO SAVEPOINT" was
used to continue the transaction. The reason for this was that canceling
the transaction might leave the `claimedExclusively` flag on for (some
of) it's connections.
This caused an assertion failure because `CanUseExistingConnection`
would return false and a new connection would be opened, and then there
would be two connections doing DML for the same placement. Which is
disallowed. That this situation caused an assertion failure instead of
an error, means that without asserts this could possibly result in some
visibility bugs, similar to the ones described
https://github.com/citusdata/citus/issues/3867
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
* Not set TaskExecution with adaptive executor
Adaptive executor is using a utility method from task tracker for
repartition joins, however adaptive executor doesn't need taskExecution.
It is only used by task tracker. This causes a problem when explain
analyze is used because what taskExecution is pointing to might be
random.
We solve this by not setting taskExecution from adaptive executor. So it
will stay NULL as set by CreateTask.
* use same memory context as task for taskExecution
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
Due to the problem described in #3908 we don't cover the tdigest integration (and other extensions) on CI.
Due to this a bug got in the patch due to a change in `EXPLAIN VERBOSE` being merged concurrently with the tdigest integration. This PR fixes the test output that missed the newly added information.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
This can save a lot of data to be sent in some cases, thus improving
performance for which inter query bandwidth is the bottleneck.
There's some issues with enabling this as default, so that's currently not done.
DESCRIPTION: Adds support to partially push down tdigest aggregates
tdigest extensions: https://github.com/tvondra/tdigest
This PR implements the partial pushdown of tdigest calculations when possible. The extension adds a tdigest type which can be combined into the same structure. There are several aggregate functions that can be used to get;
- a quantile
- a list of quantiles
- the quantile of a hypothetical value
- a list of quantiles for a list of hypothetical values
These function can work both on values or tdigest types.
Since we can create tdigest values either by combining them, or based on a group of values we can rewrite the aggregates in such a way that most of the computation gets delegated to the compute on the shards. This both speeds up the percentile calculations because the values don't have to be sorted while at the same time making the transfer size from the shards to the coordinator significantly less.
We still recursively plan some cases, eg:
- INSERTs
- SELECT FOR UPDATE when reference tables in query
- Everything must be same single shard & replication model
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
Implements worker_save_query_explain_analyze and worker_last_saved_explain_analyze.
worker_save_query_explain_analyze executes and returns results of query while
saving its EXPLAIN ANALYZE to be fetched later.
worker_last_saved_explain_analyze returns the saved EXPLAIN ANALYZE result.
Append IF NOT EXISTS to CREATE SERVER commands generated by
pg_get_serverdef_string function when deparsing an existing server
object that a foreign table depends.
DESCRIPTION: Ignore pruned target list entries in coordinator plan
The postgres planner has the ability to prune target list entries that are proven not used in the output relation. When this happens at the `CitusCustomScan` boundary we need to _not_ return these pruned columns to not upset the rest of the planner.
By using the target list the planner asks us to return we fix issues that lead to Assertion failures, and potentially could be runtime errors when they hit in a production build.
Fixes#3809
In the code, we had the assumption that if restriction information
is NULL, it means that we cannot have any disributetd tables in
the subquery.
However, for subqueries in WHERE clause, that is not the case when
the subquery is ANDed with FALSE. In that case, Citus operates
on the originalQuery (which doesn't go through the standard_planner()),
and rely on the restriction information generated by standard_plannner().
As Postgres is smart enough to no generate restriction information for
subqueries ANDed with FALSE, we hit the assertion.
* Not append empty task in ExtractLocalAndRemoteTasks
ExtractLocalAndRemoteTasks extracts the local and remote tasks. If we do
not have a local task the localTaskPlacementList will be NIL, in this
case we should not append anything to local tasks. Previously we would
first check if a task contains a single placement or not, now we first
check if there is any local task before doing anything.
* fix copy of node task
Task node has task query, which might contain a list of strings in its
fields. We were using postgres copyObject for these lists. Postgres
assumes that each element of list will be a node type. If it is not a
node type it will error.
As a solution to that, a new macro is introduced to copy a list of
strings.
Physical planner doesn't support parameters. If the parameters have already
been resolved when the physical planner handling the queries, mark it.
The reason is that the executor is unaware of this, and sends the parameters
along with the worker queries, which fails for composite types.
(See `DissuadePlannerFromUsingPlan()` for the details of paramater resolving)
We currently put the actual error message to the detail part. However,
many drivers don't show detail part.
As connection errors are somehow common, and hard to trace back, can't
we added the detail to the message itself.
In addition to that, we changed "connection error" message, as it
was confusing to the users who think that the error was happening
while connecting to the coordinator. In fact, this error is showing
up when the coordinator fails to connect remote nodes.
* invalidate plan cache in master_update_node
If a plan is cached by postgres but a user uses master_update_node, then
when the plan cache is used for the updated node, they will get the old
nodename/nodepost in the plan. This is because the plan cache doesn't
know about the master_update_node. This could be a problem in prepared
statements or anything that goes into plancache. As a solution the plan
cache is invalidated inside master_update_node.
* add invalidate_inactive_shared_connections test function
We introduce invalidate_inactive_shared_connections udf to be used in
testing. It is possible that a connection count for an inactive node
will be greater than 0 and in that case it will not be removed at the
time of invalidation. However, later we don't have a mechanism to remove
it, which means that it will stay in the hash. For this not to cause a
problem, we use this udf in testing.
* move invalidate_inactive_shared_connections to udfs from test as it will be used in mx
* remove the test udf
* remove the IsInactive check
We initially considered removing entries just before any change to
pg_dist_node. However, that ended-up being very complex and making
MX even more complex.
Instead, we're switching to a simpler solution, where we remove entries
when the counter gets to 0.
With certain workloads, this may have some performance penalty. But, two
notes on that:
- When counter == 0, it implies that the cluster is not busy
- With cached connections, that's not possible
When we call SetTaskQueryString we would set the task type to
TASK_QUERY_TEXT, and some parts of the codebase rely on the fact that if
TASK_QUERY_TEXT is set, the data can be read safely. However if
SetTaskQueryString is called with a NULL taskQueryString this can cause
crashes. In that case taskQueryType will simply be set to
TASK_QUERY_NULL.
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
With this commit, we're introducing a new infrastructure to throttle
connections to the worker nodes. This infrastructure is useful for
multi-shard queries, router queries are have not been affected by this.
The goal is to prevent establishing more than citus.max_shared_pool_size
number of connections per worker node in total, across sessions.
To do that, we've introduced a new connection flag OPTIONAL_CONNECTION.
The idea is that some connections are optional such as the second
(and further connections) for the adaptive executor. A single connection
is enough to finish the distributed execution, the others are useful to
execute the query faster. Thus, they can be consider as optional connections.
When an optional connection is not allowed to the adaptive executor, it
simply skips it and continues the execution with the already established
connections. However, it'll keep retrying to establish optional
connections, in case some slots are open again.
* use local executon when in a transaction block
When we are inside a transaction block, there could be other methods
that need local execution, therefore we will use local execution in a
transaction block.
* update test outputs with transaction block local execution
* add a test to verify we dont leak intermediate schemas
* test that we don't leak intermediate schemas
We have tests to make sure that we don't intermediate any intermediate
files, tables etc but we don't test if we are leaking schemas. It makes
sense to test this as well.
* remove all repartition schemas in case of error
This solution is not an ideal one but it seems to be doing the job.
We should have a more generic solution for the cleanup but it seems that
putting the cleanup in the abort handler is dangerous and it was
crashing.
When the file does not exist, it could mean two different things.
First -- and a lot more common -- case is that a failure happened
in a concurrent backend on the same distributed transaction. And,
one of the backends in that transaction has already been roll
backed, which has already removed the file. If we throw an error
here, the user might see this error instead of the actual error
message. Instead, we prefer to WARN the user and pretend that the
file has no data in it. In the end, the user would see the actual
error message for the failure.
Second, in case of any bugs in intermediate result broadcasts,
we could try to read a non-existing file. That is most likely
to happen during development. Thus, when asserts enabled, we throw
an error instead of WARNING so that the developers cannot miss.
In case we don't care about the tupleStoreState in
ExecuteLocalTaskListExtended, it could be passed as null. In that case
we will get a seg error. This changes it so that a dummy tuple store
will be created when it is null.
Do not use local execution in ExecuteTaskListOutsideTransaction.
As we are going to run the tasks outside transaction, we shouldn't use local execution.
However, there is some problem when using local execution related to
repartition joins, when we solve that problem, we can execute the tasks
coming to this path with local execution.
Also logging the local command is simplified.
normalize job id in worker_hash_partition_table in test outputs.
This is possible whenever we aren't pulling up intermediate rows
We want to do this because this was done in 9.2,
some queries rely on the performance of grouping causing distinct values
This change was introduced when implementing window functions on coordinator
The purpose of null_parameters is to make sure that citus doesn't crash
with null parameters. (The related issue is #3493.) The logs in this
file are not that important and they are flaky. The flakiness is related
to postgres part as well so it is hard to reproduce them. Therefore it
makes sense to decrease the log level.
look at sent commands to simplify complex logic in vacuum test
also normalize connection id as that can differ when we don't have to
choose a specific connection.
It seems that sometimes the pruning is deferred and sometimes not with
this statement. What we care in this test is to see that it doesn't
crash. I think we don't care about the log statement for this line. So
it makes sense to not log this statement, and care about the result.
ExecuteTaskListExtended is the common method for different codepaths,
and instead of writing separate local execution logics in different
codepaths, it makes more sense to have the logic here. We still need to
do some refactoring, this is an initial step.
After this commit, we can run create shard commands locally. There is a
special case with shard creation commands. A create shard command might
have a concatenated query string, however local execution did not know
how to execute a task with multiple query strings. This is also
implemented in this commit. We go over each query in the concatenated
query string and plan/execute them one by one.
A more clean solution to this would be to make sure that each task has a
single query. We currently cannot do that because we need to ensure the
task dependencies. However, it would make sense to do that at some point
and it would simplify the code a lot.
It seems that one of the deadlock detection tests fails way too often in
our CI. The difference is only ordering. Currently it seems that it is a
good idea to disable this test for the sake of development.
In PostgreSQL, user defaults for config parameters can be changed by
ALTER ROLE .. SET statements. We wish to propagate those defaults
accross the Citus cluster so that the behaviour will be similar in
different workers.
The defaults can either be set in a specific database, or the whole
cluster, similarly they can be set for a single role or all roles.
We propagate the ALTER ROLE .. SET if all the conditions below are met:
- The query affects the current database, or all databases
- The user is already created in worker nodes
Some refactoring:
Consolidate expression which decides whether GROUP BY/HAVING are pushed down
Rename early pullUpIntermediateRows to hasNonDistributableAggregates
Create WorkerColumnName to handle formatting WORKER_COLUMN_FORMAT
Ignore NULL StringInfo pointers to SafeToPushdownWindowFunction
Fix bug where SubqueryPushdownMultiNodeTree mutates supplied Query,
SafeToPushdownWindowFunction requires the original query as it relies on rtable
We cache connections between nodes in our connection management code.
This is good for speed. For security this can be a problem though. If
the user changes settings related to TLS encryption they want those to
be applied to future queries. This is especially important when they did
not have TLS enabled before and now they want to enable it. This can
normally be achieved by changing citus.node_conninfo. However, because
connections are not reopened there will still be old connections that
might not be encrypted at all.
This commit changes that by marking all connections to be shutdown at
the end of their current transaction. This way running transactions will
succeed, even if placement requires connections to be reused for this
transaction. But after this transaction completes any future statements
will use a connection created with the new connection options.
If a connection is requested and a connection is found that is marked
for shutdown, then we don't return this connection. Instead a new one is
created. This is needed to make sure that if there are no running
transactions, then the next statement will not use an old cached
connection, since connections are only actually shutdown at the end of a
transaction.
If two tables have the same distribution column type, we implicitly
colocate them. This is useful since colocation has a big performance
impact in most applications.
When a table is rebalanced, all of the colocated tables are also
rebalanced. If table A and table B are colocated and we want to
rebalance table A, table B will also be rebalanced. We need replica
identity so that logical replication can replicate updates and deletes
during rebalancing. If table B does not have a replica identity we
error out.
A solution to this is to introduce a UDF so that colocation can be
updated. The remaining tables in the colocation group will stay
colocated. For example if table A, B and C are colocated and after
updating table B's colocations, table A and table C stay colocated.
The "updating colocation" step does not move any data around, it only
updated pg_dist_partition and pg_dist_colocation tables. Specifically it
creates a new colocation group for the table and updates the entry in
pg_dist_partition while invalidating any cache.
We can use local copy in INSERT..SELECT, so the check that disables
local execution is removed.
Also a test for local copy where the data size >
LOCAL_COPY_FLUSH_THRESHOLD is added.
use local execution with insert..select
If current transaction is connected to local group we should not use
local copy, because we might not see some of the changes that are made
over the connection to the local group.
DESCRIPTION: Fix left join shard pruning in pushdown planner
Due to #2481 which moves outer join planning through the pushdown planner we caused a regression on the shard pruning behaviour for outer joins.
In the pushdown planner we make a union of the placement groups for all shards accessed by a query based on the filters we see during planning. Unfortunately implicit filters for left joins are not available during this part. This causes the inner part of an outer join to not prune any shards away. When we take the union of the placement groups it shows the behaviour of not having any shards pruned.
Since the inner part of an outer query will not return any rows if the outer part does not contain any rows we have observed we do not have to add the shard intervals of the inner part of an outer query to the list of shard intervals to query.
Fixes: #3512
* reimplement ExecuteUtilityTaskListWithoutResults for local utility command execution
* introduce new functions for local execution of utility commands
* change ErrorIfTransactionAccessedPlacementsLocally logic for local utility command execution
* enable local execution for TRUNCATE command on distributed & reference tables
* update existing tests for local utility command execution
* enable local execution for DDL commands on distributed & reference tables
* enable local execution for DROP command on distributed & reference tables
* add normalization rules for cascaded commands
* add new tests for local utility command execution
* Add third column to master_evaluation_modify table
It was already added in some tests, but now make it globally
applicable to the test file.
* Add third column to master_evaluation_select table
As we'll use the column in some tests
* Add modify regression tests
For the combinations of: local/remote, router/fast-path:
- Distribution key is a const.
- Contains a function
- A column which is not dist. key is parametrized
* Add select regression tests
For the combinations of: local/remote, router/fast-path:
- Distribution key is a const.
- Contains a function
- A column which is not dist. key is parametrized
* Make some tests consistent to check-base
Add failing tests, make changes to avoid crashes at least
Fix HAVING subquery pushdown ignoring reference table only subqueries,
also include HAVING in recursive planning
Given that we have a function IsDistributedTable which includes reference tables,
it seems best to have IsDistributedTableRTE & QueryContainsDistributedTableRTE
reflect that they do not include reference tables in their check
Similarly SublinkList's name should reflect that it only scans WHERE
contain_agg_clause asserts that we don't have SubLinks,
use contain_aggs_of_level as suggested by pg sourcecode
Before this commit, we considered !ContainsRecurringRTE() enough
for NotContainsOnlyRecurringTuples. However, instead, we can check
for existince of any distributed table.
DESCRIPTION: Fixes a bug that causes wrong results with complex outer joins
There are 2 problems with our early exit strategy that this commit fixes:
1- When we decide that a subplan results are sent to all worker nodes,
we used to skip traversing the whole distributed plan, instead of
skipping only the subplan.
2- We used to consider all available nodes in the cluster (secondaries
and inactive nodes as well as active primaries) when deciding on early
exit strategy. This resulted in failures to early exit when there are
secondaries or inactive nodes.
DESCRIPTION: satisfy static analysis tool for a nullptr dereference
During the static analysis project on the codebase this code has been flagged as having the potential for a null pointer dereference. Funnily enough the author had already made a comment of it in the code this was not possible due to us setting the schema name before we pass in the statement. If we want to reuse this code in a later setting this comment might not always apply and we could actually run into null pointer dereference.
This patch changes a bit of the code around to first of all make sure there is no NULL pointer dereference in this code anymore.
Secondly we allow for better deparsing by setting and adhering to the `if_not_exists` flag on the statement.
And finally add support for all syntax described in the documentation of postgres (FROM was missing).
If the generated column does not come at the end of the column list,
columnNameList doesn't line up with the column indexes. Seek past
CREATE TABLE test_table (
test_id int PRIMARY KEY,
gen_n int GENERATED ALWAYS AS (1) STORED,
created_at TIMESTAMPTZ NOT NULL DEFAULT now()
);
SELECT create_distributed_table('test_table', 'test_id');
Would raise ERROR: cannot cast 23 to 1184
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
- Stop the daemon when citus extension is dropped
- Bail on maintenance daemon startup if myDbData is started with a non-zero pid
- Stop maintenance daemon from spawning itself
- Don't use postgres die, just wrap proc_exit(0)
- Assert(myDbData->workerPid == MyProcPid)
The two issues were that multiple daemons could be running for a database,
or that a daemon would be leftover after DROP EXTENSION citus
Previously a limitation in the shard pruning logic caused multi distribution value queries to always go into all the shards/workers whenever query also used OR conditions in WHERE clause.
Related to https://github.com/citusdata/citus/issues/2593 and https://github.com/citusdata/citus/issues/1537
There was no good workaround for this limitation. The limitation caused quite a bit of overhead with simple queries being sent to all workers/shards (especially with setups having lot of workers/shards).
An example of a previous plan which was inadequately pruned:
```
EXPLAIN SELECT count(*) FROM orders_hash_partitioned
WHERE (o_orderkey IN (1,2)) AND (o_custkey = 11 OR o_custkey = 22);
QUERY PLAN
---------------------------------------------------------------------
Aggregate (cost=0.00..0.00 rows=0 width=0)
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=xxxxx dbname=regression
-> Aggregate (cost=13.68..13.69 rows=1 width=8)
-> Seq Scan on orders_hash_partitioned_630000 orders_hash_partitioned (cost=0.00..13.68 rows=1 width=0)
Filter: ((o_orderkey = ANY ('{1,2}'::integer[])) AND ((o_custkey = 11) OR (o_custkey = 22)))
(9 rows)
```
After this commit the task count is what one would expect from the query defining multiple distinct values for the distribution column:
```
EXPLAIN SELECT count(*) FROM orders_hash_partitioned
WHERE (o_orderkey IN (1,2)) AND (o_custkey = 11 OR o_custkey = 22);
QUERY PLAN
---------------------------------------------------------------------
Aggregate (cost=0.00..0.00 rows=0 width=0)
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 2
Tasks Shown: One of 2
-> Task
Node: host=localhost port=xxxxx dbname=regression
-> Aggregate (cost=13.68..13.69 rows=1 width=8)
-> Seq Scan on orders_hash_partitioned_630000 orders_hash_partitioned (cost=0.00..13.68 rows=1 width=0)
Filter: ((o_orderkey = ANY ('{1,2}'::integer[])) AND ((o_custkey = 11) OR (o_custkey = 22)))
(9 rows)
```
"Core" of the pruning logic works as previously where it uses `PrunableInstances` to queue ORable valid constraints for shard pruning.
The difference is that now we build a compact internal representation of the query expression tree with PruningTreeNodes before actual shard pruning is run.
Pruning tree nodes represent boolean operators and the associated constraints of it. This internal format allows us to have compact representation of the query WHERE clauses which allows "core" pruning logic to work with OR-clauses correctly.
For example query having
`WHERE (o_orderkey IN (1,2)) AND (o_custkey=11 OR (o_shippriority > 1 AND o_shippriority < 10))`
gets transformed into:
1. AND(o_orderkey IN (1,2), OR(X, AND(X, X)))
2. AND(o_orderkey IN (1,2), OR(X, X))
3. AND(o_orderkey IN (1,2), X)
Here X is any set of unknown condition(s) for shard pruning.
This allow the final shard pruning to correctly recognize that shard pruning is done with the valid condition of `o_orderkey IN (1,2)`.
Another example with unprunable condition in query
`WHERE (o_orderkey IN (1,2)) OR (o_custkey=11 AND o_custkey=22)`
gets transformed into:
1. OR(o_orderkey IN (1,2), AND(X, X))
2. OR(o_orderkey IN (1,2), X)
Which is recognized as unprunable due to the OR condition between distribution column and unknown constraint -> goes to all shards.
Issue https://github.com/citusdata/citus/issues/1537 originally suggested transforming the query conditions into a full disjunctive normal form (DNF),
but this process of transforming into DNF is quite a heavy operation. It may "blow up" into a really large DNF form with complex queries having non trivial `WHERE` clauses.
I think the logic for shard pruning could be simplified further but I decided to leave the "core" of the shard pruning untouched.
On worker 2 it was waiting for dustbunnies_990001 to be
vacuumed/analyzed. This table doesn't actually exist, so that never
happend. Now it waits for the correct table and throws an error if it
waits more than 10 seconds.
The root of the problem is that, standard_planner() converts the following qual
```
{OPEXPR
:opno 98
:opfuncid 67
:opresulttype 16
:opretset false
:opcollid 0
:inputcollid 100
:args (
{VAR
:varno 1
:varattno 1
:vartype 25
:vartypmod -1
:varcollid 100
:varlevelsup 0
:varnoold 1
:varoattno 1
:location 45
}
{CONST
:consttype 25
:consttypmod -1
:constcollid 100
:constlen -1
:constbyval false
:constisnull true
:location 51
:constvalue <>
}
)
:location 49
}
```
To
```
(
{CONST
:consttype 16
:consttypmod -1
:constcollid 0
:constlen 1
:constbyval true
:constisnull true
:location -1
:constvalue <>
}
)
```
So, Citus doesn't deal with NULL values in real-time or non-fast path router queries.
And, in the FastPathRouter planner, we check constisnull in DistKeyInSimpleOpExpression().
However, in deferred pruning case, we do not check for isnull for const.
Thus, the fix consists of two parts:
- Let PruneShards() not crash when NULL parameter is passed
- For deferred shard pruning in fast-path queries, explicitly check that we have CONST which is not NULL
Mark existing objects that are not included in distributed object infrastructure
in older versions of Citus (but now should be) as distributed, after updating
Citus successfully.
DESCRIPTION: Fix unnecessary repartition on joins with more than 4 tables
In 9.1 we have introduced support for all CH-benCHmark queries by widening our definitions of joins to include joins with expressions in them. This had the undesired side effect of Q5 regressing on its plan by implementing a repartition join.
It turned out this regression was not directly related to widening of the join clause, nor the schema employed by CH-benCHmark. Instead it had to do with 4 or more tables being joined in a chain. A chain meaning:
```sql
SELECT * FROM a,b,c,d WHERE a.part = b.part AND b.part = c.part AND ....
```
Due to how our join order planner was implemented it would only keep track of 1 of the partition columns when comparing if the join could be executed locally. This manifested in a join chain of 4 tables to _always_ be executed as a repartition join. 3 tables joined in a chain would have the middle table shared by the two outer tables causing the local join possibility to be found.
With this patch we keep a unique list (or set) of all partition columns participating in the join. When a candidate table is checked for a possibility to execute a local join it will check if there is any partition column in that set that matches an equality join clause on the partition column of the candidate table.
By taking into account all partition columns in the left relation it will now find the local join path on >= 4 tables joined in a chain.
fixes: #3276
For example, a PARAM might reside inside a function just because
of a casting of a type such as the follows:
```
{FUNCEXPR
:funcid 1740
:funcresulttype 1700
:funcretset false
:funcvariadic false
:funcformat 2
:funccollid 0
:inputcollid 0
:args (
{PARAM
:paramkind 0
:paramid 15
:paramtype 23
:paramtypmod -1
:paramcollid 0
:location 356
}
)
```
We should recursively check the expression before bailing out.
Previously we only prevented AVG from being pushed down, but this is incorrect:
- array_agg, while somewhat non sensical to order by, will potentially be missing values
- combinefunc aggregation will raise errors about cstrings not being comparable (while we also can't know if the aggregate is commutative)
This commit limits approximating LIMIT pushdown when ordering by aggregates to:
min, max, sum, count, bit_and, bit_or, every, any
Which means of those we previously supported, we now exclude:
avg, array_agg, jsonb_agg, jsonb_object_agg, json_agg, json_object_agg, hll_add, hll_union, topn_add, topn_union
Previously, the logic for evaluting the functions and the parameters
were the same. That ended-up evaluting the functions inaccurately
on the coordinator. Instead, split the function evaluation logic
from parameter evalution logic.
Previously, we've identified the usedSubPlans by only looking
to the subPlanId.
With this commit, we're expanding it to also include information
on the location of the subPlan.
This is useful to distinguish the cases where the subPlan is used
either on only HAVING or both HAVING and any other part of the query.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
This can helpful in guiding us where to look when this test fails.
For example, if the result file has repartitioned_results_ prefix,
then we need to look into repartitioned insert/select. Otherwise
it is probably a CTE or a subquery.
When creating a new distributed table. The shards would colocate with shards
with SHARD_STATE_TO_DELETE (shardstate = 4). This means if that state was
because of a shard move the new shard would be created on two nodes and it
would not get deleted since it's shard state would be 1.
Comment from code:
/*
* We had to implement this hack because on Postgres11 and below, the originalQuery
* and the query would have significant differences in terms of CTEs where CTEs
* would not be inlined on the query (as standard_planner() wouldn't inline CTEs
* on PG 11 and below).
*
* Instead, we prefer to pass the inlined query to the distributed planning. We rely
* on the fact that the query includes subqueries, and it'd definitely go through
* query pushdown planning. During query pushdown planning, the only relevant query
* tree is the original query.
*/
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
This is purely to enable better performance with prepared statements.
Before this commit, the fast path queries with prepared statements
where the distribution key includes a parameter always went through
distributed planning. After this change, we only go through distributed
planning on the first 5 executions.
DESCRIPTION: Fixes a problem when adding a new node due to tables referenced in a functions body
Fixes#3378
It was reported that `master_add_node` would fail if a distributed function has a table name referenced in its declare section of the body. By default postgres validates the body of a function on creation. This is not a problem in the normal case as tables are replicated to the workers when we distribute functions.
However when a new node is added we first create dependencies on the workers before we try to create any tables, and the original tables get created out of bound when the metadata gets synced to the new node. This causes the function body validator to raise an error the table is not on the worker.
To mitigate this issue we set `check_function_bodies` to `off` right before we are creating the function.
The added test shows this does resolve the issue. (issue can be reproduced on the commit without the fix)
In this commit, we're introducing a way to prevent CTE inlining via a GUC.
The GUC is used in all the tests where PG 11 and PG 12 tests would diverge
otherwise.
Note that, in PG 12, the restriction information for CTEs are generated. It
means that for some queries involving CTEs, Citus planner (router planner/
pushdown planner) may behave differently. So, via the GUC, we prevent
tests to diverge on PG 11 vs PG 12.
When we drop PG 11 support, we should get rid of the GUC, and mark
relevant ctes as MATERIALIZED, which does the same thing.
These set of tests has changed in both PG 11 and PG 12.
The changes are only about CTE inlining kicking in both
versions, and yielding the exact same distributed planning.
With this commit, we're adding the specific tests for CTE inlining.
The test has a different output file for pg 11, because as mentioned
in the previous commits, PG 12 generates more restriction information
for CTEs.
In two places I've made code more straight forward by using ROUTINE in our own codegen
Two changes which may seem extraneous:
AppendFunctionName was updated to not use pg_get_function_identity_arguments.
This is because that function includes ORDER BY when printing an aggregate like my_rank.
While ALTER AGGREGATE my_rank(x "any" ORDER BY y "any") is accepted by postgres,
ALTER ROUTINE my_rank(x "any" ORDER BY y "any") is not.
Tests were updated to use macaddr over integer. Using integer is flaky, our logic
could sometimes end up on tables like users_table. I originally wanted to use money,
but money isn't hashable.
Fixes#3331
In #2389, we've implemented support for partitioned tables with rep > 1.
The implementation is limiting the use of modification queries on the
partitions. In fact, we error out when any partition is modified via
EnsurePartitionTableNotReplicated().
However, we seem to forgot an important case, where the parent table's
partition is marked as INVALID. In that case, at least one of the partition
becomes INVALID. However, we do not mark partitions as INVALID ever.
If the user queries the partition table directly, Citus could happily send
the query to INVALID placements -- which are not marked as INVALID.
This PR fixes it by marking the placements of the partitions as INVALID
as well.
The shard placement repair logic already re-creates all the partitions,
so should be fine in that front.
* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item
Currently in mx isolation tests the setup is the same except the creation of tables. Isolation framework lets us define multiple `setup` stages, therefore I thought that we can put the `mx_setup` to one file and prepend this prior to running tests.
How the structure works:
- cpp is used before running isolation tests to preprocess spec files. This way we can include any file we want to. Currently this is used to include mx common part.
- spec files are put to `/build/specs` for clear separation between generated files and template files
- a symbolic link is created for `/expected` in `build/expected/`.
- when running isolation tests, as the `inputdir`, `build` is passed so it runs the spec files from `build/specs` and checks the expected output from `build/expected`.
`/specs` is renamed as `/spec` because postgres first look at the `specs` file under current directory, so this is renamed to avoid that since we are running the isolation tests from `build/specs` now.
Note: now we use `//` instead of `#` in comments in spec files, because cpp interprets `#` as a directive and it ignores `//`.
Postgres keeps track of recursive CTEs in the queryTree in two ways:
- queryTree->hasRecursive is set to true, whenever a RECURSIVE CTE
is used in the SQL. Citus checks for it
- If the CTE is actually a recursive one (a.k.a., references itself)
Postgres marks CommonTableExpr->cterecursive as true as well
The tests that are changed in the PR doesn't cover (b), and this becomes
an issue with CTE inlining (#3161). In that case, Citus/Postgres can inline
such CTEs, and the queries works with Citus.
However, this tests intend to check if there is any recursive CTE in the queryTree.
So, we're actually making the CTEs recursive CTEs by referring itself.
We'll add cases where a recursive CTE works by inlining in #3161.
Use partition column's collation for range distributed tables
Don't allow non deterministic collations for hash distributed tables
CoPartitionedTables: don't compare unequal types
Test ALTER ROLE doesn't deadlock when coordinator added, or propagate from mx workers
Consolidate wait_until_metadata_sync & verify_metadata to multi_test_helpers
Previously,
- we'd push down ORDER BY, but this doesn't order intermediate results between workers
- we'd keep FILTER on master aggregate, which would raise an error about unexpected cstrings
Support for ARRAY[] expressions is limited to having a consistent shape,
eg ARRAY[(int,text),(int,text)] as opposed to ARRAY[(int,text),(float,text)] or ARRAY[(int,text),(int,text,float)]
* Improve extension command propagation tests
* patch for hardcoded citus extension name
(cherry picked from commit 0bb3dbac0afabda10e8928f9c17eda048dc4361a)
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
DESCRIPTION: Expression in reference join
Fixed: #2582
This patch allows arbitrary expressions in the join clause when joining to a reference table. An example of such joins could be found in CHbenCHmark queries 7, 8, 9 and 11; `mod((s_w_id * s_i_id),10000) = su_suppkey` and `ascii(substr(c_state,1,1)) = n2.n_nationkey`. Since the join is on a reference table these queries are able to be pushed down to the workers.
To implement these queries we will widen the `IsJoinClause` predicate to not check if the expressions are a type `Var` after stripping the implicit coerciens. Instead we define a join clause when the `Var`'s in a clause come from more than 1 table.
This allows more clauses to pass into the logical planner's `MultiNodeTree(...)` planning function. To compensate for this we tighten down the `LocalJoin`, `SinglePartitionJoin` and `DualPartitionJoin` to check for direct column references when planning. This allows the planner to work with arbitrary join expressions on reference tables.
When the user picks "round-robin" policy, the aim is that the load
is distributed across nodes. However, for reference tables on the
coordinator, since local execution kicks in immediately, round-robin
is ignored.
With this change, we're excluding the placement on the coordinator.
Although the approach seems a little bit invasive because of
modifications in the placement list, that sounds acceptable.
We could have done this in some other ways such as:
1) Add a field to "Task->roundRobinPlacement" (or such), which is
updated as the first element after RoundRobinPolicy is applied.
During the execution, if that placement is local to the coordinator,
skip it and try the other remote placements.
2) On TaskAccessesLocalNode()@local_execution.c, check
task_assignment_policy, if round-robin selected and there is local
placement on the coordinator, skip it. However, task assignment is done
on planning, but this decision is happening on the execution, which
could create weird edge cases.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
This is necassery to support Q20 of the CHbenCHmark: #2582.
To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.
The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
will convert the SEMI JOIN into an INNER JOIN during the planning. It
will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
planning, if it doesn't we replace all SEMI JOINs in the rewritten
query with INNER JOIN (which we already support).
Since we've removed the executor, we don't need the specific tests.
Since the tests are already using adaptive executor, they were passing.
But, we've plenty of extra tests for adaptive executor, so seems safe
to remove.
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
It looks like the logic to prevent RETURNING in reference tables to
have duplicate entries that comes from local and remote executions
leads to missing some tuples for distributed tables.
With this PR, we're ensuring to kick in the logic for reference tables
only.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
We've changed the logic for pulling RTE_RELATIONs in #3109 and
non-colocated subquery joins and partitioned tables.
@onurctirtir found this steps where I traced back and found the issues.
While looking into it in more detail, we decided to expand the list in a
way that the callers get all the relevant RTE_RELATIONs RELKIND_RELATION,
RELKIND_PARTITIONED_TABLE, RELKIND_FOREIGN_TABLE and RELKIND_MATVIEW.
These are all relation kinds that Citus planner is aware of.
When citus.enable_repartition_joins guc is set to on, and we have
adaptive executor, there was a typo in the debug message, which was
saying realtime executor no adaptive executor.
See #3125 for details on each item.
* Remove real-time/router executor tests-1
These are the ones which doesn't have '_%d' in the test
output files.
* Remove real-time/router executor tests-2
These are the ones which has in the test
output files.
* Move the tests outputs to correct place
* Make sure that single shard commits use 2PC on adaptive executor
It looks like we've messed the tests in #2891. Fixing back.
* Use adaptive executor for all router queries
This becomes important because when task-tracker is picked, we
used to pick router executor, which doesn't make sense.
* Remove explicit references to real-time/router executors in the tests
* JobExecutorType never picks real-time/router executors
* Make sure to go incremental in test output numbers
* Even users cannot pick real-time anymore
* Do not use real-time/router custom scans
* Get rid of unnecessary normalizations
* Reflect unneeded normalizations
* Get rid of unnecessary test output file
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
DESCRIPTION: Fix order for enum values and correctly support pg12
PG 12 introduces `ALTER TYPE ... ADD VALUE ...` during transactions. Earlier versions would error out when called in a transaction, hence we connect to workers outside of the transaction which could cause inconsistencies on pg12 now that postgres doesn't error with this syntax anymore.
During the implementation of this fix it became apparent there was an error with the ordering of enum labels when the type was recreated. A patch and test have been included.
Objectives:
(a) both super user and regular user should have the correct owner for the function on the worker
(b) The transactional semantics would work fine for both super user and regular user
(c) non-super-user and non-function owner would get a reasonable error message if tries to distribute the function
Co-authored-by: @serprex
* Add initial citus upgrade test
* Add restart databases and run tests in all nodes
* Add output for citus versions 8.0 8.1 8.2 and 8.3
* Add verify step for citus upgrade
* Add target for citus upgrade test in makefile
* Add check citus upgrade job
* Fix installation file path and add missing tar
* Run citus upgrade for v8.0 v8.1 v8.2 and v8.3
* Create upgrade_common file and rename upgrade check
* Add pg version to citus upgrade test
* Test with postgres 10 and 11 in citus upgrade tests
* Add readme for citus upgrade test
* Add some basic tests to citus upgrade tests
* Add citus upgrade mixed mode test
* Remove citus artifacts before installing another one
* Refactor citus upgrade test according to reviews
* quick and dirty rewrite of citus upgrade tests to support local execution.
I think we need to change the makefile in such a way that the tar files can be injected from the circle ci config file.
Also I removed some of the citus version checks you had to not have the requirement to pass that in separately from the pre tar file. I am not super happy with it, but two flags that need to be kept in sync is also not desirable. Instead I print out the citus version that is installed per node. This will not cause a failure if they are not what one would expect but it lets us verify we are running the expected version.
* use latest citusupgradetester in circleci
* update readme and use common alias for upgrade_common import
* Add PG12 test outputs
* Add jobs to run tests with pg 12
* use POSIX collate for compatibility between pg10/pg11/pg12
* do not override the new default value when running vanilla tests
* fix 2 problems with pg12 tests
* update pg12 images with pg12 rc1
* remove pg10 jobs
* Revert "Add PG12 test outputs"
This reverts commit f3545b92ef.
* change images to use latest instead of dev
* add missing coverage flags
DESCRIPTION: Disallow distributed functions for functions depending on an extension
Functions depending on an extension cannot (yet) be distributed by citus. If we would allow this it would cause issues with our dependency following mechanism as we stop following objects depending on an extension.
By not allowing functions to be distributed when they depend on an extension as well as not allowing to make distributed functions depend on an extension we won't break the ability to add new nodes. Allowing functions depending on extensions to be distributed at the moment could cause problems in that area.
DESCRIPTION: Propagate CREATE OR REPLACE FUNCTION
Distributed functions could be replaced, which should be propagated to the workers to keep the function in sync between all nodes.
Due to the complexity of deparsing the `CreateFunctionStmt` we actually produce the plan during the processing phase of our utilityhook. Since the changes have already been made in the catalog tables we can reuse `pg_get_functiondef` to get us the generated `CREATE OR REPLACE` sql.
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions
Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
This PR aims to add all the necessary logic to qualify and deparse all possible `{ALTER|DROP} .. {FUNCTION|PROCEDURE}` queries.
As Procedures are introduced in PG11, the code contains many PG version checks. I tried my best to make it easy to clean up once we drop PG10 support.
Here are some caveats:
- I assumed that the parse tree is a valid one. There are some queries that are not allowed, but still are parsed successfully by postgres planner. Such queries will result in errors in execution time. (e.g. `ALTER PROCEDURE p STRICT` -> `STRICT` action is valid for functions but not procedures. Postgres decides to parse them nevertheless.)
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
Since the distributed functions are useful when the workers have
metadata, we automatically sync it.
Also, after master_add_node(). We do it lazily and let the deamon
sync it. That's mainly because the metadata syncing cannot be done
in transaction blocks, and we don't want to add lots of transactional
limitations to master_add_node() and create_distributed_function().
* Enhance pg upgrade tests
* Add a specific upgrade test for pg_dist_partition
We store the index of distribution column, and when a column with an
index that is smaller than distribution column index is dropped before
an upgrade, the index should still match the distribution column after
an upgrade
With this commit, we're changing the API for create_distributed_function()
such that users can provide the distribution argument and the colocation
information.
We've recently merged two commits, db5d03931d
and eccba1d4c3, which actually operates
on the very similar places.
It turns out that we've an integration issue, where master_add_node()
fails to replicate the functions to newly added node.
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality
In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.
GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
DESCRIPTION: Rename remote types during type propagation
To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.
This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
DESCRIPTION: Add feature flag to turn off create type propagation
When `citus.enable_create_type_propagation` is set to `false` citus will not propagate `CREATE TYPE` statements to the workers. Types are still distributed when tables that depend on these types are distributed.
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.
SELECT create_distributed_function('add(int,int)');
The function definition should include the param types to properly
identify the correct function that we wish to distribute
@thanodnl told me it was a bit of a problem that it's impossible to see
the history of a UDF in git. The only way to do so is by reading all the
sql migration files from new to old. Another problem is that it's also
hard to review the changed UDF during code review, because to find out
what changed you have to do the same. I thought of a IMHO better (but
not perfect) way to handle this.
We keep the definition of a UDF in sql/udfs/{name_of_udf}/latest.sql.
That file we change whenever we need to make a change to the the UDF. On
top of that you also make a snapshot of the file in
sql/udfs/{name_of_udf}/{migration-version}.sql (e.g. 9.0-1.sql) by
copying the contents. This way you can easily view what the actual
changes were by looking at the latest.sql file.
There's still the question on how to use these files then. Sadly
postgres doesn't allow inclusion of other sql files in the migration sql
file (it does in psql using \i). So instead I used the C preprocessor+
make to compile a sql/xxx.sql to a build/sql/xxx.sql file. This final
build/sql/xxx.sql file has every occurence of #include "somefile.sql" in
sql/xxx.sql replaced by the contents of somefile.sql.
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
DESCRIPTION: Fix schema leak on CREATE INDEX statement
When a CREATE INDEX is cached between execution we might leak the schema name onto the cached statement of an earlier execution preventing the right index to be created.
Even though the cache is cleared when the search_path changes we can trigger this behaviour by having the schema already on the search path before a colliding table is created in a schema earlier on the `search_path`. When calling an unqualified create index via a function (used to trigger the caching behaviour) we see that the index is created on the wrong table after the schema leaked onto the statement.
By copying the complete `PlannedStmt` and `utilityStmt` during our planning phase for distributed ddls we make sure we are not leaking the schema name onto a cached data structure.
Caveat; COPY statements already have a lot of parsestree copying ongoing without directly putting it back on the `pstmt`. We should verify that copies modify the statement and potentially copy the complete `pstmt` there already.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/
* Add creating a citus cluster script
Creating a citus cluster is automated.
Before running this script:
- Citus should be installed and its control file should be added to postgres. (make install)
- Postgres should be installed.
* Initialize upgrade test table and fill
* Finalize the layout of upgrade tests
Postgres upgrade function is added.
The newly added UDFs(citus_prepare_pg_upgrade, citus_finish_pg_upgrade) are used to
perform upgrade.
* Refactor upgrade test and add config file
* Add schedules for upgrade testing
* Use pg_regress for upgrade tests
pg_regress is used for creating a simple distributed table in
upgrade tests. After upgrading another schedule is used to verify
that the distributed table exists. Router and realtime queries are
used for verifying.
* Run upgrade tests as a postgres user in a temp dir
postgres user is used for psql to be consistent at running tests.
A temp dir is created and the temp dir's permissions are changed so
that postgres user can access it. All psql commands are now run with
postgres user.
"Select * from t" query is changed as "Select * from t order by a"
so that the result is always in the same order.
* Add docopt and arguments for the upgrade script
Docopt dependency is added to parse flags in script.
Some refactoring in variable names is done.
* Add readme for upgrade tests
* Refactor upgrade tests
Use relative data path instead of absolute assuming that this script will
always be run from 'src/test/regress'
Remove 'citus-path' flag
Use specific version for docopt instead of *
Use named args in string formatting
* Resolve a security problem
Instead of using string formatting in subprocess.call, arguments
list is used. Otherwise users could do shell injection.
Shell = True is removed from subprocess call as it is not recommended
to use this.
* Add how the test works to readme
* Refactor some variables to be consistent
* Update upgrade script based on the reviews
It was possible that postgres server would stay running even when the script
crashes, atexit library is used to ensure that we always do a teardown where we stop
the databases.
Some formatting is done in the code for better readability.
Config class is used instead of a dictonary.
A target for upgrade test is added to makefile.
Unused flags/functions/variables are removed.
* Format commands and remove unnecessary flag from readme
This is a bug that got in when we inlined the body of a function into this loop. Earlier revisions had two loops, hence a function that would be reused.
With a return instead of a continue the list of dependencies being walked is dependent on the order in which we find them in pg_depend. This became apparent during pg12 compatibility. The order of entries in pg12 was luckily different causing a random test to fail due to this return.
By changing it to a continue we only skip the entries that we don’t want to follow instead of skipping all entries that happen to be found later.
sidefix for more stable isolation tests around ensure dependency
DESCRIPTION: Refactor ensure schema exists to dependency exists
Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.
We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.
Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
master_deactivate_node is updated to decrement the replication factor
Otherwise deactivation could have create_reference_table produce a second record
UpdateColocationGroupReplicationFactor is renamed UpdateColocationGroupReplicationFactorForReferenceTables
& the implementation looks up the record based on distributioncolumntype == InvalidOid, rather than by id
Otherwise the record's replication factor fails to be maintained when there are no reference tables
DESCRIPTION: Add functions to help with postgres upgrades
Currently there is [a list of manual steps](https://docs.citusdata.com/en/v8.2/admin_guide/upgrading_citus.html?highlight=upgrade#upgrading-postgresql-version-from-10-to-11) to perform during a postgres upgrade. These steps guarantee our catalog tables are kept and counter values are maintained across upgrades.
Having more than 1 command in our docs for users to manually execute during upgrades is error prone for both the user, and our docs. There are already 2 catalog tables that have been introduced to citus that have not been added to our docs for backing up during upgrades (`pg_authinfo` and `pg_dist_poolinfo`).
As we add more functionality to citus we run into situations where there are more steps required either before or after the upgrade. At the same time, when we move catalog tables to a place where the contents will be maintained automatically during upgrades we could have less steps in our docs. This will come to a hard to maintain matrix of citus versions and steps to be performed.
Instead we could take ownership of these steps within the extension itself. This PR introduces two new functions for the user to use instead of long lists of error prone instructions to follow.
- `citus_prepare_pg_upgrade`
This function should be called by the user right before shutting down the cluster. This will ensure all citus catalog tables are backed up in a location where the information will be retained during an upgrade.
- `citus_finish_pg_upgrade`
This function should be called right after a pg_upgrade of the cluster. This will restore the catalog tables to the state before the upgrade happend.
Both functions need to be executed both on the coordinator and on all the workers, in the same fashion our current documentation instructs to do.
There are two known problems with this function in its current form, which is also a problem with our docs. We should schedule time in the future to improve on this, but having it automated now is better as we are about to add extra steps to take after upgrades.
- When you install citus in a clean cluster we do enable ssl for communication between the coordinator and the workers. If an upgrade to a clean cluster is performed we do not setup ssl on the new cluster causing the communication to fail.
- There are no automated tests added in this PR to execute an upgrade test durning every build.
Our current test infrastructure does not allow for 2 versions of postgres to exist in the same environment. We will need to invest time to create a new testing harness that could run the following scenario:
1. Create cluster
2. Run extensible scripts to execute arbitrary statements on this cluster
3. Perform an upgrade by preparing, upgrading and finishing
4. Run extensible scripts to verify all objects created by earlier scripts exists in correct form in the upgraded cluster
Given the non trivial amount of work involved for such a suite I'd like to land this before we have
automated testing.
On a side note; As the reviewer noticed, the tables created in the public namespace are not visible in `psql` with `\d`. The backup catalog tables have the same name as the tables in `pg_catalog`. Due to postgres internals `pg_catalog` is first in the search path and therefore the non-qualified name would alwasy resolve to `pg_catalog.pg_dist_*`. Internally this is called a non-visible table as it would resolve to a different table without a qualified name. Only visible tables are shown with `\d`.
Before this commit, we've recorded the relation accesses in 3 different
places
- FindPlacementListConnection -- applies all executor in tx block
- StartPlacementExecutionOnSession() -- adaptive executor only
- StartPlacementListConnection() -- router/real-time only
This is different than Citus 8.2, and could lead to query execution times
increase considerably on multi-shard commands in transaction block
that are on partitioned tables.
Benchmarks:
```
1+8 c5.4xlarge cluster
Empty distributed partitioned table with 365 partitions: https://gist.github.com/onderkalaci/1edace4ed6bd6f061c8a15594865bb51#file-partitions_365-sql
./pgbench -f /tmp/multi_shard.sql -c10 -j10 -P 1 -T 120 postgres://citus:w3r6KLJpv3mxe9E-NIUeJw@c.fy5fkjcv45vcepaogqcaskmmkee.db.citusdata.com:5432/citus?sslmode=require
cat /tmp/multi_shard.sql
BEGIN;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
cat /tmp/single_shard.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
COMMIT;
cat /tmp/mix.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
```
The table shows `latency average` of pgbench runs explained above, so we have a pretty solid improvement even over 8.2.2.
| Test | Citus 8.2.2 | Citus 8.3.1 | Citus 8.3.2 (this branch) | Citus 8.3.1 (FKEYs disabled via GUC) |
| ------------- | ------------- | ------------- |------------- | ------------- |
|multi_shard | 2370.083 ms |3605.040 ms |1324.094 ms |1247.255 ms |
| single_shard | 85.338 ms |120.934 ms |73.216 ms | 78.765 ms |
| mix | 2434.459 ms | 3727.080 ms |1306.456 ms | 1280.326 ms |
Also automated all manual tests around multi user isolation for internal citus udf's
automate upgrade_to_reference_table tests
add negative tests for lock_relation_if_exists
add tests for permissions on worker_cleanup_job_schema_cache
add tests for worker_fetch_partition_file
add tests for worker_merge_files_into_table
fix problem with worker_merge_files_and_run_query when run as non-super user and add tests for behaviour
With this commit, we're introducing the Adaptive Executor.
The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on
https://github.com/citusdata/citus and can learn more about the history
of the change.
/*-------------------------------------------------------------------------
*
* adaptive_executor.c
*
* The adaptive executor executes a list of tasks (queries on shards) over
* a connection pool per worker node. The results of the queries, if any,
* are written to a tuple store.
*
* The concepts in the executor are modelled in a set of structs:
*
* - DistributedExecution:
* Execution of a Task list over a set of WorkerPools.
* - WorkerPool
* Pool of WorkerSessions for the same worker which opportunistically
* executes "unassigned" tasks from a queue.
* - WorkerSession:
* Connection to a worker that is used to execute "assigned" tasks
* from a queue and may execute unasssigned tasks from the WorkerPool.
* - ShardCommandExecution:
* Execution of a Task across a list of placements.
* - TaskPlacementExecution:
* Execution of a Task on a specific placement.
* Used in the WorkerPool and WorkerSession queues.
*
* Every connection pool (WorkerPool) and every connection (WorkerSession)
* have a queue of tasks that are ready to execute (readyTaskQueue) and a
* queue/set of pending tasks that may become ready later in the execution
* (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
* which keeps track of the state of execution and is referenced from a
* TaskPlacementExecution, which is the data structure that is actually
* added to the queues and describes the state of the execution of a task
* on a particular worker node.
*
* When the task list is part of a bigger distributed transaction, the
* shards that are accessed or modified by the task may have already been
* accessed earlier in the transaction. We need to make sure we use the
* same connection since it may hold relevant locks or have uncommitted
* writes. In that case we "assign" the task to a connection by adding
* it to the task queue of specific connection (in
* AssignTasksToConnections). Otherwise we consider the task unassigned
* and add it to the task queue of a worker pool, which means that it
* can be executed over any connection in the pool.
*
* A task may be executed on multiple placements in case of a reference
* table or a replicated distributed table. Depending on the type of
* task, it may not be ready to be executed on a worker node immediately.
* For instance, INSERTs on a reference table are executed serially across
* placements to avoid deadlocks when concurrent INSERTs take conflicting
* locks. At the beginning, only the "first" placement is ready to execute
* and therefore added to the readyTaskQueue in the pool or connection.
* The remaining placements are added to the pendingTaskQueue. Once
* execution on the first placement is done the second placement moves
* from pendingTaskQueue to readyTaskQueue. The same approach is used to
* fail over read-only tasks to another placement.
*
* Once all the tasks are added to a queue, the main loop in
* RunDistributedExecution repeatedly does the following:
*
* For each pool:
* - ManageWorkPool evaluates whether to open additional connections
* based on the number unassigned tasks that are ready to execute
* and the targetPoolSize of the execution.
*
* Poll all connections:
* - We use a WaitEventSet that contains all (non-failed) connections
* and is rebuilt whenever the set of active connections or any of
* their wait flags change.
*
* We almost always check for WL_SOCKET_READABLE because a session
* can emit notices at any time during execution, but it will only
* wake up WaitEventSetWait when there are actual bytes to read.
*
* We check for WL_SOCKET_WRITEABLE just after sending bytes in case
* there is not enough space in the TCP buffer. Since a socket is
* almost always writable we also use WL_SOCKET_WRITEABLE as a
* mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
* when a task moves from pending to ready.
*
* For each connection that is ready:
* - ConnectionStateMachine handles connection establishment and failure
* as well as command execution via TransactionStateMachine.
*
* When a connection is ready to execute a new task, it first checks its
* own readyTaskQueue and otherwise takes a task from the worker pool's
* readyTaskQueue (on a first-come-first-serve basis).
*
* In cases where the tasks finish quickly (e.g. <1ms), a single
* connection will often be sufficient to finish all tasks. It is
* therefore not necessary that all connections are established
* successfully or open a transaction (which may be blocked by an
* intermediate pgbouncer in transaction pooling mode). It is therefore
* essential that we take a task from the queue only after opening a
* transaction block.
*
* When a command on a worker finishes or the connection is lost, we call
* PlacementExecutionDone, which then updates the state of the task
* based on whether we need to run it on other placements. When a
* connection fails or all connections to a worker fail, we also call
* PlacementExecutionDone for all queued tasks to try the next placement
* and, if necessary, mark shard placements as inactive. If a task fails
* to execute on all placements, the execution fails and the distributed
* transaction rolls back.
*
* For multi-row INSERTs, tasks are executed sequentially by
* SequentialRunDistributedExecution instead of in parallel, which allows
* a high degree of concurrency without high risk of deadlocks.
* Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
* which forbids concurrency, but allows parallelism without high risk
* of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
* which indicates that we should use at most one connection per node, but
* can run tasks in parallel across nodes. This is used when there are
* writes to a reference table that has foreign keys from a distributed
* table.
*
* Execution finishes when all tasks are done, the query errors out, or
* the user cancels the query.
*
*-------------------------------------------------------------------------
*/
All the commits involved here:
* Initial unified executor prototype
* Latest changes
* Fix rebase conflicts to master branch
* Add missing variable for assertion
* Ensure that master_modify_multiple_shards() returns the affectedTupleCount
* Adjust intermediate result sizes
The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.
* Force one connection per placement (or co-located placements) when requested
The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.
That might be useful under certain circumstances:
(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command
Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.
* For parameters to be resolved before using them
For the details, see PostgreSQL's copyParamList()
* Unified executor sorts the returning output
* Ensure that unified executor doesn't ignore sequential execution of DDLJob's
Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.
To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.
This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql
Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.
* Fix 2PC conditions for DDL tasks
* Improve closing connections that are not fully established in unified execution
* Support foreign keys to reference tables in unified executor
The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
- If a parallel access happens on a distributed table which
has a foreign key to a reference table, one cannot modify
the reference table in the same transaction. Otherwise,
we're very likely to end-up with a self-distributed deadlock.
- If an access to a reference table happens, and then a parallel
access to a distributed table (which has a fkey to the reference
table) happens, we switch to sequential mode.
Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.
* Make sure to close the failed connections after the execution
* Improve comments
* Fix savepoints in unified executor.
* Rebuild the WaitEventSet only when necessary
* Unclaim connections on all errors.
* Improve failure handling for unified executor
- Implement the notion of errorOnAnyFailure. This is similar to
Critical Connections that the connection managament APIs provide
- If the nodes inside a modifying transaction expand, activate 2PC
- Fix few bugs related to wait event sets
- Mark placement INACTIVE during the execution as much as possible
as opposed to we do in the COMMIT handler
- Fix few bugs related to scheduling next placement executions
- Improve decision on when to use 2PC
Improve the logic to start a transaction block for distributed transactions
- Make sure that only reference table modifications are always
executed with distributed transactions
- Make sure that stored procedures and functions are executed
with distributed transactions
* Move waitEventSet to DistributedExecution
This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.
* Fix multi_insert_select test outputs
Two things:
1) One complex transaction block is now supported. Simply update
the test output
2) Due to dynamic nature of the unified executor, the orders of
the errors coming from the shards might change (e.g., all of
the queries on the shards would fail, but which one appears
on the error message?). To fix that, we simply added it to
our shardId normalization tool which happens just before diff.
* Fix subeury_and_cte test
The error message is updated from:
failed to execute task
To:
more than one row returned by a subquery or an expression
which is a lot clearer to the user.
* Fix intermediate_results test outputs
Simply update the error message from:
could not receive query results
to
result "squares" does not exist
which makes a lot more sense.
* Fix multi_function_in_join test
The error messages update from:
Failed to execute task XXX
To:
function f(..) does not exist
* Fix multi_query_directory_cleanup test
The unified executor does not create any intermediate files.
* Fix with_transactions test
A test case that just started to work fine
* Fix multi_router_planner test outputs
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix multi_router_planner_fast_path test
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block
* Fix ordering in isolation_multi_shard_modify_vs_all
* Add executor locks to unified executor
* Make sure to allocate enought WaitEvents
The previous code was missing the waitEvents for the latch and
postmaster death.
* Fix rebase conflicts for master rebase
* Make sure that TRUNCATE relies on unified executor
* Implement true sequential execution for multi-row INSERTS
Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.
However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.
* Remove SESSION_LIFESPAN flag in unified_executor
* Apply failure test updates
We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.
* Unified executor honors citus.node_connection_timeout
With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.
And, as a side effect this fixes failure_connection_establishment
test.
* Properly increment/decrement pool size variables
Before this commit, the idle and active connection
counts were not properly calculated.
* insert_select_executor goes through unified executor.
* Add missing file for task tracker
* Modify ExecuteTaskListExtended()'s signature
* Sort output of INSERT ... SELECT ... RETURNING
* Take partition locks correctly in unified executor
* Alternative implementation for force_max_query_parallelization
* Fix compile warnings in unified executor
* Fix style issues
* Decrement idleConnectionCount when idle connection is lost
* Always rebuild the wait event sets
In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.
* Make sure to allocate enough sized waitEventSet
With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.
Instead, re-allocate events when the connectino set changes.
* Implement SELECT FOR UPDATE on reference tables
On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
- Acquire executor locks
- Execute the query on all replicas
With this commit, we're implementing the same logic on the
new executor.
* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled
Otherwise, users would be very confused and their logic is very likely
to break.
* Fix build error
* Fix the newConnectionCount calculation in ManageWorkerPool
* Fix rebase conflicts
* Fix minor test output differences
* Fix citus indent
* Remove duplicate sorts that is added with rebase
* Create distributed table via executor
* Fix wait flags in CheckConnectionReady
* failure_savepoints output for unified executor.
* failure_vacuum output (pg 10) for unified executor.
* Fix WaitEventSetWait timeout in unified executor
* Stabilize failure_truncate test output
* Add an ORDER BY to multi_upsert
* Fix regression test outputs after rebase to master
* Add executor.c comment
* Rename executor.c to adaptive_executor.c
* Do not schedule tasks if the failed placement is not ready to execute
Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.
* Implement a proper custom scan node for adaptive executor
- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files
* Add slow start interval to the executor
* Expose max_cached_connection_per_worker to user
* Do not start slow when there are cached connections
* Consider ExecutorSlowStartInterval in NextEventTimeout
* Fix memory issues with ReceiveResults().
* Disable executor via TaskExecutorType
* Make sure to execute the tests with the other executor
* Use task_executor_type to enable-disable adaptive executor
* Remove useless code
* Adjust the regression tests
* Add slow start regression test
* Rebase to master
* Fix test failures in adaptive executor.
* Rebase to master - 2
* Improve comments & debug messages
* Set force_max_query_parallelization in isolation_citus_dist_activity
* Force max parallelization for creating shards when asked to use exclusive connection.
* Adjust the default pool size
* Expand description of max_adaptive_executor_pool_size GUC
* Update warnings in FinishRemoteTransactionCommit()
* Improve session clean up at the end of execution
Explicitly list all the states that the execution might end,
otherwise warn.
* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all
* Add more ORDER BYs to multi_mx_partitioning
- All the schema creations on the workers will now be via superuser connections
- If a shard is being repaired or a shard is replicated, we will create the
schema only in the relevant worker; and in all the other cases where a schema
creation is needed, we will block operations until we ensure the schema exists
in all the workers
GRANT queries are propagated on Enterprise. If a user attempts to
create a user and run a GRANT query before creating it on workers, we
fail. This issue does not happen in community as the user needs to run
the GRANTs on the workers manually.
When `master_update_node` is called to update a node's location it waits for appropriate locks to become available. This is useful during normal operation as new operations will be blocked till after the metadata update while running operations have time to finish.
When `master_update_node` is called after a node failure it is less useful to wait for running operations to finish as they can't. The lock being held indicates an operation that once attempted to commit will fail as the machine already failed. Now the downside is the failover is postponed till the termination point of the operation. This has been observed by users to take a significant amount of time causing the rest of the system to be observed unavailable.
With this patch it is possible in such situations to invoke `master_update_node` with 2 optional arguments:
- `force` (bool defaults to `false`): When called with true the update of the metadata will be forced to proceed by terminating conflicting backends. A cancel is not enough as the backend might be in idle time (eg. an interactive session, or going back and forth between an appliaction), therefore a more intrusive solution of termination is used here.
- `lock_cooldown` (int defaults to `10000`): This is the time in milliseconds before conflicting backends are terminated. This is to allow the backends to finish cleanly before terminating them. This allows the user to set an upperbound to the expected time to complete the metadata update, eg. performing the failover.
The functionality is implemented by spawning a background worker that has the task of helping a certain backend in acquiring its locks. The backend is either terminated on successful execution of the metadata update, or once the memory context of the expression gets reset, eg. on a cancel of the statement.
Adds support for propagation of SET LOCAL commands to all workers
involved in a query. For now, SET SESSION (i.e. plain SET) is not
supported whatsoever, though this code is intended as somewhat of a
base for implementing such support in the future.
As SET LOCAL modifications are scoped to the body of a BEGIN/END xact
block, queries wishing to use SET LOCAL propagation must be within such
a block. In addition, subsequent modifications after e.g. any SAVEPOINT
or ROLLBACK statements will correspondingly push or pop variable mod-
ifications onto an internal stack such that the behavior of changed
values across the cluster will be identical to such behavior on e.g.
single-node PostgreSQL (or equivalently, what values are visible to
the end user by running SHOW on such variables on the coordinator).
If nodes enter the set of participants at some point after SET LOCAL
modifications (or SAVEPOINT, ROLLBACK, etc.) have occurred, the SET
variable state is eagerly propagated to them upon their entrance (this
is identical to, and indeed just augments, the existing logic for the
propagation of the SAVEPOINT "stack").
A new GUC (citus.propagate_set_commands) has been added to control this
behavior. Though the code suggests the valid settings are 'none', 'local',
'session', and 'all', only 'none' (the default) and 'local' are presently
implemented: attempting to use other values will result in an error.
If replication factor eqauls to 2 and there are two worker nodes,
even if two modifications hit different shards, Citus doesn't use
2PC. The reason is that it doesn't fit into the definition of
"expanding participating worker nodes".
Thus, we're simply fixing the test to fit in the comment
on top of it.
The feature is only intended for getting consistent outputs for the regression tests.
RETURNING does not have any ordering gurantees and with unified executor, the ordering
of query executions on the shards are also becoming unpredictable. Thus, we're enforcing
ordering when a GUC is set.
We implicitly add an `ORDER BY` something equivalent of
`
RETURNING expr1, expr2, .. ,exprN
ORDER BY expr1, expr2, .. ,exprN
`
As described in the code comments as well, this is probably not the most
performant approach we could implement. However, since we're only
targeting regression tests, I don't see any issues with that. If we
decide to expand this to a feature to users, we should revisit the
implementation and improve the performance.
We used to rely on PG function flatten_join_alias_vars
to resolve actual columns referenced in target entry list.
The function goes deep and finds the actual relation. This logic
usually works fine. However, when joins are given an alias, inner
relation names are not visible to target entry entry. Thus relation
resolving should stop when we the target entry column refers an
rte of an aliased join.
We stopped using PG function and provided our own flatten function.
The rule for infinite recursion is the following:
- If the query contains a subquery which is recursively planned, and
no other subqueries can be recursively planned due to correlation
(e.g., LATERAL joins), the planner keeps recursing again and again.
One interesting thing here is that even if a subquery contains only intermediate
result(s), we re-recursively plan that. In the end, the logic in the code does the following:
- Try recursive planning any of the subqueries in the query tree
- If any subquery is recursively planned, call the planner again
where the subquery is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
- Try recursively planning any of the queries
- If any subquery is recursively planned, call the planner again
where the subquery (in this case it is already intermediate result)
is replaced with the intermediate result.
......
Following scenario resulted in distributed deadlock before this commit:
CREATE TABLE partitioning_test(id int, time date) PARTITION BY RANGE (time);
CREATE TABLE partitioning_test_2009 (LIKE partitioning_test);
CREATE TABLE partitioning_test_reference(id int PRIMARY KEY, subid int);
SELECT create_distributed_table('partitioning_test_2009', 'id'),
create_distributed_table('partitioning_test', 'id'),
create_reference_table('partitioning_test_reference');
ALTER TABLE partitioning_test ADD CONSTRAINT partitioning_reference_fkey FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test_2009 ADD CONSTRAINT partitioning_reference_fkey_2009 FOREIGN KEY (id) REFERENCES partitioning_test_reference(id) ON DELETE CASCADE;
ALTER TABLE partitioning_test ATTACH PARTITION partitioning_test_2009 FOR VALUES FROM ('2009-01-01') TO ('2010-01-01');
Since flattening query may flatten outer joins' columns into coalesce expr that is
in the USING part, and that was not expected before this commit, these queries were
erroring out. It is fixed by this commit with considering coalesce expression as well.
Before this commit, round-robin task assignment policy was relying
on the taskId. Thus, even inside a transaction, the tasks were
assigned to different nodes. This was especially problematic
while reading from reference tables within transaction blocks.
Because, we had to expand the distributed transaction to many
nodes that are not necessarily already in the distributed transaction.
In this context, we define "Fast Path Planning for SELECT" as trivial
queries where Citus can skip relying on the standard_planner() and
handle all the planning.
For router planner, standard_planner() is mostly important to generate
the necessary restriction information. Later, the restriction information
generated by the standard_planner is used to decide whether all the shards
that a distributed query touches reside on a single worker node. However,
standard_planner() does a lot of extra things such as cost estimation and
execution path generations which are completely unnecessary in the context
of distributed planning.
There are certain types of queries where Citus could skip relying on
standard_planner() to generate the restriction information. For queries
in the following format, Citus does not need any information that the
standard_planner() generates:
SELECT ... FROM single_table WHERE distribution_key = X; or
DELETE FROM single_table WHERE distribution_key = X; or
UPDATE single_table SET value_1 = value_2 + 1 WHERE distribution_key = X;
Note that the queries might not be as simple as the above such that
GROUP BY, WINDOW FUNCIONS, ORDER BY or HAVING etc. are all acceptable. The
only rule is that the query is on a single distributed (or reference) table
and there is a "distribution_key = X;" in the WHERE clause. With that, we
could use to decide the shard that a distributed query touches reside on
a worker node.
Failure&Cancellation tests for initial start_metadata_sync() calls
to worker and DDL queries that send metadata syncing messages to an MX node
Also adds message type definitions for messages that are exchanged
during metadata syncing
-
We used to error out if there is a reference table
in the query participating a union. This has caused
pushdownable queries to be evaluated in coordinator.
Now we let reference tables inside union queries as long
as there is a distributed table in from clause.
Existing join checks (reference table on the outer part)
sufficient enought that we do not need check the join relation
of reference tables.
Previously we allowed task assignment policy to have affect on router queries
with only intermediate results. However, that is erroneous since the code-path
that assigns placements relies on shardIds and placements, which doesn't exists
for intermediate results.
With this commit, we do not apply task assignment policies when a router query
hits only intermediate results.
We disable bunch of planning options on the workers. This might be
risky if any concurrent test relies on EXPLAIN OUTPUT as well. Still,
we want to keep this test, so we should try to not parallelize this
test with such test.
Before this commit, Citus supported INSERT...SELECT queries with
ON CONFLICT or RETURNING clauses only for pushdownable ones, since
queries supported via coordinator were utilizing COPY infrastructure
of PG to send selected tuples to the target worker nodes.
After this PR, INSERT...SELECT queries with ON CONFLICT or RETURNING
clauses will be performed in two phases via coordinator. In the first
phase selected tuples will be saved to the intermediate table which
is colocated with target table of the INSERT...SELECT query. Note that,
a utility function to save results to the colocated intermediate result
also implemented as a part of this commit. In the second phase, INSERT..
SELECT query is directly run on the worker node using the intermediate
table as the source table.
Description: Support round-robin `task_assignment_policy` for queries to reference tables.
This PR allows users to query multiple placements of shards in a round robin fashion. When `citus.task_assignment_policy` is set to `'round-robin'` the planner will use a round robin scheduling feature when multiple shard placements are available.
The primary use-case is spreading the load of reference table queries to all the nodes in the cluster instead of hammering only the first placement of the reference table. Since reference tables share the same path for selecting the shards with single shard queries that have multiple placements (`citus.shard_replication_factor > 1`) this setting also allows users to spread the query load on these shards.
For modifying queries we do not apply a round-robin strategy. This would be negated by an extra reordering step in the executor for such queries where a `first-replica` strategy is enforced.
In recent postgres builds you cannot set client_min_messages to
values higher then ERROR, if will silently set it to ERROR if so.
During some tests we would set it to fatal to hide random values
(eg. pid's of processes) from the test output. This patch will use
different tactics for hiding these values.
After Fast ALTER TABLE ADD COLUMN with a non-NULL default in PG11, physical heaps might not contain all attributes after a ALTER TABLE ADD COLUMN happens. heap_getattr() returns NULL when the physical tuple doesn't contain an attribute. So we should use heap_deform_tuple() in these cases, which fills in the missing attributes.
Our catalog tables evolve over time, and an upgrade might involve some ALTER TABLE ADD COLUMN commands.
Note that we don't need to worry about postgres catalog tables and we can use heap_getattr() for them, because they only change between major versions.
This also fixes#2453.
Assign the distributed transaction id before trying to acquire the
executor advisory locks. This is useful to show this backend in citus
lock graphs (e.g., dump_global_wait_edges() and citus_lock_waits).
I'm pretty sure a lot of this test functionality may be covered in some
of our existing regression tests, but I've included them to ensure we
put all failure-based tests under our new testing method for that kind
of test.
Didn't include lower replication factor, as (for a single-shard mod.),
it's indistinguishable from modifying a reference table. So these all
test modifications which hit a single, replicated shard.
Fairly straightforward; verified that modifications fail atomically if
a worker is down or fails mid-transaction (i.e. all workers need to ack
modifications to reference tables in order to persist changes).
Including several examples from #1926. I couldn't understand why the
recover_prepared_transactions "should be an error", and EXPLAIN has
changed since the original bug (so that it runs EXPLAINs in txns, I
think for EXPLAIN ANALYZE to not have side effects); other than that,
most of the reported bugs now error out rather than crash or return
an empty result set.
VACUUM runs outside of a transaction, so the failure modes for it are
somewhat straightforward, though ANALYZE runs in a 1pc transaction and
multi-table VACUUM can fail between statements (PG 11 and higher).
Tests various failure points during a multi-shard modification within
a transaction with multiple statements. Verifies three cases:
* Reference tables (single shard, many placements)
* Normal table with replication factor two
* Multi-shard table with no replication
In the replication-factor case, we expect shard health to be affected
in some transactions; most others fail the transaction entirely and
all we need verify is that no effects of the transaction are visible.
Had trouble testing the final PREPARE/COMMIT/ROLLBACK phase of the 2pc,
in particular because the error message produced includes the PID of
the backend, which is unpredictable.
Drop schema command fails in mx mode if there
is a partitioned table with active partitions.
This is due to fact that sql drop trigger receives
all the dropped objects including partitions. When
we call drop table on parent partition, it also drops
the partitions on the mx node. This causes the drop
table command on partitions to fail on mx node because
they are already dropped when the partition parent was
dropped.
With this work we did not require the table to exist on
worker_drop_distributed_table.
PG now allows foreign keys on partitioned tables.
Each foreign key constraint on partitioned table
is propagated down to partitions.
We used to create all constraints on shards when we are creating
a new shard, or when just simply moving a shard from one worker
to another. We also used the same logic when creating a copy of
coordinator table in mx node.
With this change we create the constraint on worker node only if
it is not an inherited constraint.
We used to set the execution mode in the truncate trigger. However,
when multiple tables are truncated with a single command, we could
set the execution mode very late. Instead, now set the execution mode
on the utility hook.
By setting the CPU tuple cost so high, we were triggering JIT. Instead,
we should use parallel_tuple_cost.
See: rhaas.blogspot.com/2018/06/using-forceparallelmode-correctly.html
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.
In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.
The necessity for such a restriction have two aspects:
- We need to acquire shard resource locks appropriately
- We need to handle marking partitions INVALID in case
of any failures. Note that, in theory, the parent table
should also become INVALID, which is too aggressive.
Reason for the failure is that PG11 introduced a new relation kind
RELKIND_PARTITIONED_INDEX to be used for partitioned indices.
We expanded our check to cover that case.
This commit uses *_walker instead of *_mutator for performance reasons.
Given that we're only updating a functionId in the tree, the approach
seems fine.
PG11 introduced PROCEDURE concept similar to FUNCTION
Procedure's allow committing/rolling back behavior.
This commmit adds regression tests for procedure calls.
With this commit, we implement two views that are very similar
to pg_stat_activity, but showing queries that are involved in
distributed queries:
- citus_dist_stat_activity: Shows all the distributed queries
- citus_worker_stat_activity: Shows all the queries on the shards
that are initiated by distributed queries.
Both views have the same columns in the outputs. In very basic terms, both of the views
are meant to provide some useful insights about the distributed
transactions within the cluster. As the names reveal, both views are similar to pg_stat_activity.
Also note that these views can be pretty useful on Citus MX clusters.
Note that when the views are queried from the worker nodes, they'd not show the distributed
transactions that are initiated from the coordinator node. The reason is that the worker
nodes do not know the host/port of the coordinator. Thus, it is advisable to query the
views from the coordinator.
If we bucket the columns that the views returns, we'd end up with the following:
- Hostnames and ports:
- query_hostname, query_hostport: The node that the query is running
- master_query_host_name, master_query_host_port: The node in the cluster
initiated the query.
Note that for citus_dist_stat_activity view, the query_hostname-query_hostport
is always the same with master_query_host_name-master_query_host_port. The
distinction is mostly relevant for citus_worker_stat_activity. For example,
on Citus MX, a users starts a transaction on Node-A, which starts worker
transactions on Node-B and Node-C. In that case, the query hostnames would be
Node-B and Node-C whereas the master_query_host_name would Node-A.
- Distributed transaction related things:
This is mostly the process_id, distributed transactionId and distributed transaction
number.
- pg_stat_activity columns:
These two views get all the columns from pg_stat_activity. We're basically joining
pg_stat_activity with get_all_active_transactions on process_id.
This test's output changes depending on which worker is
picked for explain (e.g., worker port in the output changes).
Given that the test is only aiming to ensure that CTEs inside
CTEs work fine in DML queries, it should be fine to get rid of
the EXPLAIN. The output is verified to be correct as well.
This commit fixes a bug where a concurrent DROP TABLE deadlocks
with SELECT (or DML) when the SELECT is executed from the workers.
The problem was that Citus used to remove the metadata before
droping the table on the workers. That creates a time window
where the SELECT starts running on some of the nodes and DROP
table on some of the other nodes.
This commit enables support for TRUNCATE on both
distributed table and reference tables.
The basic idea is to acquire lock on the relation by sending
the TRUNCATE command to all metedata worker nodes. We only
skip sending the TRUNCATE command to the node that actually
executus the command to prevent a self-distributed-deadlock.
Make sure that the coordinator sends the commands when the search
path synchronised with the coordinator's search_path. This is only
important when Citus sends the commands that are directly relayed
to the worker nodes. For example, the deparsed DLL commands or
queries always adds schema qualifications to the queries. So, they
do not require this change.
This commit by default enables hiding shard names on MX workers
by simple replacing `pg_table_is_visible()` calls with
`citus_table_is_visible()` calls on the MX worker nodes. The latter
function filters out tables that are known to be shards.
The main motivation of this change is a better UX. The functionality
can be opted out via a GUC.
We also added two views, namely citus_shards_on_worker and
citus_shard_indexes_on_worker such that users can query
them to see the shards and their corresponding indexes.
We also added debug messages such that the filtered tables can
be interactively seen by setting the level to DEBUG1.
- mitmdump now listens on port 9060
- Add some logging to fluent.py, making issues like this easier to debug in the future
- Fail the tests if something is already running on the port mitmProxy tries to use
- check-failure now works with VPATH builds
This commit adds an extensive failure testing, which covers quite
a bit of things and their combinations:
- 1PC vs 2PC
- Replication factor 1 and Replication factor 2
- Network failures and query cancellations
- Sequential vs Parallel query execution mode
- Lots of detail is in src/test/regress/mitmscripts/README
- Create a new target, make check-failure, which runs tests
- Tells travis how to install everything and run the tests
We can now support more complex count distinct operations by
pulling necessary columns to coordinator and evalutating the
aggreage at coordinator.
It supports broad range of expression with the restriction that
the expression must contain a column.
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.