* Update failure test dependencies
There was a security alert for cryptography. The vulnerability was fixed
in 3.2.0. The vulnebarility:
"RSA decryption was vulnerable to Bleichenbacher timing vulnerabilities,
which would impact people using RSA decryption in online scenarios."
The fix:
58494b41d6
It wasn't enough to only update crpytography because mitm was
incompatible with the new version, so mitm is also upgraded.
The steps to do in local:
python -m pip install -U cryptography
python -m pip install -U mitmproxy
If one wishes to iterate through a List and insert list elements in
PG13, it is not safe to use for_each_ptr as the List representation
in PostgreSQL no longer linked lists, but arrays, and it is possible
that the whole array is repalloc'ed if ther is not sufficient space
available.
See postgres commit 1cff1b95ab6ddae32faa3efe0d95a820dbfdc164 for more
information
When a relation is used on an OUTER JOIN with FALSE filters,
set_rel_pathlist_hook may not be called for the table.
There might be other cases as well, so do not rely on the hook
for classification of the tables.
Aliases that postgres choose for partitioned tables in explain output
might change in different pg versions, so normalize them and remove
the alternative test output
DESCRIPTION: Add UDF's to maintain cstore table options
This PR adds two UDF's and a view to interact and maintain the cstore table options.
- ``alter_cstore_table_set(relid REGCLASS, [ options ... ])``
- ``alter_cstore_table_reset(relid REGCLASS, [ options ... ])``
- ``cstore.cstore_options``
The `set` function takes options and their specific types. When specified it will change the option associated with the table to the provided value. When omitted no action is taken.
The `reset` function takes options as booleans. When set to `true` the value of the option associated with the table will be reset to the current default as specified by the associated GUC's.
The options view containes a record for every cstore table with its associated settings as columns.
RemoveDuplicateJoinRestrictions() function was introduced with the aim of decrasing the overall planning times by eliminating the duplicate JOIN restriction entries (#1989). However, it turns out that the function itself is so CPU intensive with a very high algorithmic complexity, it hurts a lot more than it helps. The function is a clear example of premature optimization.
The table below shows the difference clearly:
"distributed query planning
time master" RemoveDuplicateJoinRestrictions() execution time on master "Remove the function RemoveDuplicateJoinRestrictions()
this PR"
5 table INNER JOIN 9 msec 2msec 7 msec
10 table INNER JOIN 227 msec 194 msec 29 msec
20 table INNER JOIN 1 sec 235 msec 1 sec 139 msec 90 msecs
50 table INNER JOIN 24 seconds 21 seconds 1.5 seconds
100 table INNER JOIN 2 minutes 16 secods 1 minute 53 seconds 23 seconds
250 table INNER JOIN Bottleneck on JoinClauseList 18 minutes 52 seconds Bottleneck on JoinClauseList
5 table INNER JOIN in subquery 9 msec 0 msec 6 msec
10 table INNER JOIN subquery 33 msec 10 msec 32 msec
20 table INNER JOIN subquery 132 msec 67 msec 123 msec
50 table INNER JOIN subquery 1.2 seconds 900 msec 500 msec
100 table INNER JOIN subquery 6 seconds 5 seconds 2 seconds
250 table INNER JOIN subquery 54 seconds 37 seconds 20 seconds
5 table LEFT JOIN 5 msec 0 msec 5 msec
10 table LEFT JOIN 11 msec 0 msec 13 msec
20 table LEFT JOIN 26 msec 2 msec 30 msec
50 table LEFT JOIN 150 msec 15 msec 193 msec
100 table LEFT JOIN 757 msec 71 msec 722 msec
250 table LEFT JOIN 8 seconds 600 msec 8 seconds
5 JOINs among 2 table JOINs 37 msec 11 msec 25 msec
10 JOINs among 2 table JOINs 536 msec 306 msec 352 msec
20 JOINs among 2 table JOINs 794 msec 181 msec 640 msec
50 JOINs among 2 table JOINs 25 seconds 2 seconds 22 seconds
100 JOINs among 2 table JOINs Bottleneck on JoinClauseList 9 seconds Bottleneck on JoinClauseList
150 JOINs among 2 table JOINs Bottleneck on JoinClauseList 46 seconds Bottleneck on JoinClauseList
On top of the performance penalty, the function had a critical bug #4255, and with #4254 we hit one more important bug. It should be fixed by adding the followig check to the ContextCoversJoinRestriction():
```
static bool
JoinRelIdsSame(JoinRestriction *leftRestriction, JoinRestriction *rightRestriction)
{
Relids leftInnerRelIds = leftRestriction->innerrel->relids;
Relids rightInnerRelIds = rightRestriction->innerrel->relids;
if (!bms_equal(leftInnerRelIds, rightInnerRelIds))
{
return false;
}
Relids leftOuterRelIds = leftRestriction->outerrel->relids;
Relids rightOuterRelIds = rightRestriction->outerrel->relids;
if (!bms_equal(leftOuterRelIds, rightOuterRelIds))
{
return false;
}
return true;
}
```
However, adding this eliminates all the benefits tha RemoveDuplicateJoinRestrictions() brings.
I've used the commands here to generate the JOINs mentioned in the PR: https://gist.github.com/onderkalaci/fe8654f9df5916c7af4c7c5eb892561e#file-gistfile1-txt
Inner and outer JOINs behave roughly the same, to simplify the table only added INNER joins.
* Fix incorrect join related fields
Ruleutils expect to give the original index of join columns hence we
should consider the dropped columns while setting the fields in
SetJoinRelatedFieldsCompat.
* add some more tests for joins
* Move tests to join.sql and create a utility function