Commit Graph

176 Commits (61bc47e6a8339fc15b7caed631f72d5db06403b5)

Author SHA1 Message Date
SaitTalhaNisanci b3af63c8ce
Remove task tracker executor (#3850)
* use adaptive executor even if task-tracker is set

* Update check-multi-mx tests for adaptive executor

Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.

* Update limit_intermediate_size test

It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.

* Update multi_router_planner

It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR:  relation "authors_range_840010" does not exist
+CONTEXT:  while executing command on localhost:57637

* update repartition join tests for check-multi

* update isolation tests for repartitioning

* Error out if shard_replication_factor > 1 with repartitioning

As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.

* Remove MULTI_EXECUTOR_TASK_TRACKER

* Remove multi_task_tracker_executor

Some utility methods are moved to task_execution_utils.c.

* Remove task tracker protocol methods

* Remove task_tracker.c methods

* remove unused methods from multi_server_executor

* fix style

* remove task tracker specific tests from worker_schedule

* comment out task tracker udf calls in tests

We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.

* remove task tracker test from follower schedule

* remove task tracker tests from multi mx schedule

* Remove task-tracker specific functions from worker functions

* remove multi task tracker extra schedule

* Remove unused methods from multi physical planner

* remove task_executor_type related things in tests

* remove LoadTuplesIntoTupleStore

* Do initial cleanup for repartition leftovers

During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.

TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.

We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)

* Revert "remove task tracker tests from multi mx schedule"

This reverts commit 03ecc0a681.

* update multi mx repartition parallel tests

* not error with task_tracker_conninfo_cache_invalidate

* not run 4 repartition queries in parallel

It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.

As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.

If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).

Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702

* Set distributePlan->relationIdList when it is needed

It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.

* use adaptive executor even with shard_replication_factor > 1

It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.

* remove multi_resowner.c and deprecate some settings

* remove TaskExecution related leftovers

* change deprecated API error message

* not recursively plan single relatition repartition subquery

* recursively plan single relation repartition subquery

* test depreceated task tracker functions

* fix overlapping shard intervals in range-distributed test

* fix error message for citus_metadata_container

* drop task-tracker deprecated functions

* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it

* drop some functions, add downgrade script

Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.

* order by a test to fix flappiness
2020-07-18 13:11:36 +03:00
Jelte Fennema ab01571c9e
Fix crash with single node dummy placement (#3993)
Static analysis found an issue where we could dereference `NULL`, because 
`CreateDummyPlacement` could return `NULL` when there were no workers. This
PR changes it so that it never returns `NULL`, which was intended by 
@marcocitus when doing this change: https://github.com/citusdata/citus/pull/3887/files#r438136433

While adding tests for citus on a single node I also added some more basic
tests and it turns out we error out on repartition joins. This has been
present since `shouldhaveshards` was introduced and is not trivial to fix.
So I created a separate issue for this: https://github.com/citusdata/citus/issues/3996
2020-07-08 17:11:25 +02:00
Hadi Moshayedi 1f6d6ee4a5 Show query text in EXPLAIN output 2020-06-11 02:19:55 -07:00
SaitTalhaNisanci 164c00cf08
Fix typo: longer visible -> no longer visible (#3803) 2020-04-27 16:32:46 +03:00
Onder Kalaci e182215d96 Improve connection error message from the worker nodes
We currently put the actual error message to the detail part. However,
many drivers don't show detail part.

As connection errors are somehow common, and hard to trace back, can't
we added the detail to the message itself.

In addition to that, we changed "connection error" message, as it
was confusing to the users who think that the error was happening
while connecting to the coordinator. In fact, this error is showing
up when the coordinator fails to connect remote nodes.
2020-04-20 13:32:55 +02:00
Hanefi Önaldı 0c5d0cfee9
Notice message to help truncate local data after distribution 2020-04-17 13:21:34 +03:00
Halil Ozan Akgul a701fc774a Adds multi_schedule_hyperscale schedule 2020-04-10 15:54:47 +03:00
Halil Ozan Akgul c8a81ef1ce Changes copy to \copy 2020-04-10 13:03:15 +03:00
Marco Slot 924cd7343a Defer reference table replication to shard creation time 2020-04-08 12:41:36 -07:00
Marco Slot 90056f7d3c Remove copy from worker for append-partitioned table 2020-01-13 23:03:40 -08:00
Philip Dubé 863bf49507 Implement pulling up rows to coordinator when aggregates cannot be pushed down. Enabled by default 2020-01-07 01:16:04 +00:00
Marco Slot ba39d72fe1 Fix incorrect union all pushdown issue 2020-01-01 09:03:50 +01:00
Marco Slot b21b6905ae Do not repeat GROUP BY distribution_column on coordinator
Allow arbitrary aggregates to be pushed down in these scenarios
2019-12-25 01:33:41 +00:00
Philip Dubé 261a9de42d Fix typos:
VAR_SET_VALUE_KIND -> VAR_SET_VALUE kind
beginnig -> beginning
plannig -> planning
the the -> the
er then -> er than
2019-11-25 23:24:13 +00:00
Philip Dubé c563e0825c Strip trailing whitespace and add final newline (#3186)
This brings files in line with our editorconfig file
2019-11-21 14:25:37 +01:00
Jelte Fennema 7abedc38b0
Support subqueries in HAVING (#3098)
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it

Fixes #520
Fixes #756
Closes #2047
2019-10-16 16:40:14 +02:00
Jelte Fennema 01da11f264
Change citus truncate trigger to AFTER and add more upgrade tests (#3070)
* Add more upgrade tests

* Fix citus trigger generation after upgrade

citus_truncate_trigger runs before truncate when created by create_distributed_table:
492d1b2cba/src/backend/distributed/commands/create_distributed_table.c (L1163)

* Remove pg_dist_jobid_seq
2019-10-07 16:43:04 +02:00
Nils Dijk 2879689441
Distribute Types to worker nodes (#2893)
DESCRIPTION: Distribute Types to worker nodes

When to propagate
==============

There are two logical moments that types could be distributed to the worker nodes
 - When they get used ( just in time distribution )
 - When they get created ( proactive distribution )

The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.

The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.

Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.

Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.

There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.

Lets assume the following transaction:

```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```

Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.

How propagation works
=================

Just in time
-----------

Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.

Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.

For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).

Proactive distribution
---------------------

When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.

Keeping the type up to date
====================

For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
 - `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
 - `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
 - `AlterEnumStmt` encapsulates changes to enum values.
    Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.

Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.

All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
2019-09-13 17:46:07 +02:00
Philip Dubé 0e233c63a3 multi_colocation_utils: sort by nodeport, not placementid
multi_copy: replace smgr with aclitem, smgr is removed in pg12
2019-07-25 14:33:43 +00:00
Hadi Moshayedi 46608e42f9 Add hyperscale tutorial to the regression tests. 2019-07-10 10:47:55 +02:00
Önder Kalacı 40da78c6fd
Introduce the adaptive executor (#2798)
With this commit, we're introducing the Adaptive Executor. 


The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on 
https://github.com/citusdata/citus and can learn more about the history
of the change.

/*-------------------------------------------------------------------------
 *
 * adaptive_executor.c
 *
 * The adaptive executor executes a list of tasks (queries on shards) over
 * a connection pool per worker node. The results of the queries, if any,
 * are written to a tuple store.
 *
 * The concepts in the executor are modelled in a set of structs:
 *
 * - DistributedExecution:
 *     Execution of a Task list over a set of WorkerPools.
 * - WorkerPool
 *     Pool of WorkerSessions for the same worker which opportunistically
 *     executes "unassigned" tasks from a queue.
 * - WorkerSession:
 *     Connection to a worker that is used to execute "assigned" tasks
 *     from a queue and may execute unasssigned tasks from the WorkerPool.
 * - ShardCommandExecution:
 *     Execution of a Task across a list of placements.
 * - TaskPlacementExecution:
 *     Execution of a Task on a specific placement.
 *     Used in the WorkerPool and WorkerSession queues.
 *
 * Every connection pool (WorkerPool) and every connection (WorkerSession)
 * have a queue of tasks that are ready to execute (readyTaskQueue) and a
 * queue/set of pending tasks that may become ready later in the execution
 * (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
 * which keeps track of the state of execution and is referenced from a
 * TaskPlacementExecution, which is the data structure that is actually
 * added to the queues and describes the state of the execution of a task
 * on a particular worker node.
 *
 * When the task list is part of a bigger distributed transaction, the
 * shards that are accessed or modified by the task may have already been
 * accessed earlier in the transaction. We need to make sure we use the
 * same connection since it may hold relevant locks or have uncommitted
 * writes. In that case we "assign" the task to a connection by adding
 * it to the task queue of specific connection (in
 * AssignTasksToConnections). Otherwise we consider the task unassigned
 * and add it to the task queue of a worker pool, which means that it
 * can be executed over any connection in the pool.
 *
 * A task may be executed on multiple placements in case of a reference
 * table or a replicated distributed table. Depending on the type of
 * task, it may not be ready to be executed on a worker node immediately.
 * For instance, INSERTs on a reference table are executed serially across
 * placements to avoid deadlocks when concurrent INSERTs take conflicting
 * locks. At the beginning, only the "first" placement is ready to execute
 * and therefore added to the readyTaskQueue in the pool or connection.
 * The remaining placements are added to the pendingTaskQueue. Once
 * execution on the first placement is done the second placement moves
 * from pendingTaskQueue to readyTaskQueue. The same approach is used to
 * fail over read-only tasks to another placement.
 *
 * Once all the tasks are added to a queue, the main loop in
 * RunDistributedExecution repeatedly does the following:
 *
 * For each pool:
 * - ManageWorkPool evaluates whether to open additional connections
 *   based on the number unassigned tasks that are ready to execute
 *   and the targetPoolSize of the execution.
 *
 * Poll all connections:
 * - We use a WaitEventSet that contains all (non-failed) connections
 *   and is rebuilt whenever the set of active connections or any of
 *   their wait flags change.
 *
 *   We almost always check for WL_SOCKET_READABLE because a session
 *   can emit notices at any time during execution, but it will only
 *   wake up WaitEventSetWait when there are actual bytes to read.
 *
 *   We check for WL_SOCKET_WRITEABLE just after sending bytes in case
 *   there is not enough space in the TCP buffer. Since a socket is
 *   almost always writable we also use WL_SOCKET_WRITEABLE as a
 *   mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
 *   when a task moves from pending to ready.
 *
 * For each connection that is ready:
 * - ConnectionStateMachine handles connection establishment and failure
 *   as well as command execution via TransactionStateMachine.
 *
 * When a connection is ready to execute a new task, it first checks its
 * own readyTaskQueue and otherwise takes a task from the worker pool's
 * readyTaskQueue (on a first-come-first-serve basis).
 *
 * In cases where the tasks finish quickly (e.g. <1ms), a single
 * connection will often be sufficient to finish all tasks. It is
 * therefore not necessary that all connections are established
 * successfully or open a transaction (which may be blocked by an
 * intermediate pgbouncer in transaction pooling mode). It is therefore
 * essential that we take a task from the queue only after opening a
 * transaction block.
 *
 * When a command on a worker finishes or the connection is lost, we call
 * PlacementExecutionDone, which then updates the state of the task
 * based on whether we need to run it on other placements. When a
 * connection fails or all connections to a worker fail, we also call
 * PlacementExecutionDone for all queued tasks to try the next placement
 * and, if necessary, mark shard placements as inactive. If a task fails
 * to execute on all placements, the execution fails and the distributed
 * transaction rolls back.
 *
 * For multi-row INSERTs, tasks are executed sequentially by
 * SequentialRunDistributedExecution instead of in parallel, which allows
 * a high degree of concurrency without high risk of deadlocks.
 * Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
 * which forbids concurrency, but allows parallelism without high risk
 * of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
 * which indicates that we should use at most one connection per node, but
 * can run tasks in parallel across nodes. This is used when there are
 * writes to a reference table that has foreign keys from a distributed
 * table.
 *
 * Execution finishes when all tasks are done, the query errors out, or
 * the user cancels the query.
 *
 *-------------------------------------------------------------------------
 */



All the commits involved here:
* Initial unified executor prototype

* Latest changes

* Fix rebase conflicts to master branch

* Add missing variable for assertion

* Ensure that master_modify_multiple_shards() returns the affectedTupleCount

* Adjust intermediate result sizes

The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.

* Force one connection per placement (or co-located placements) when requested

The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.

That might be useful under certain circumstances:

(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command

Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.

* For parameters to be resolved before using them

For the details, see PostgreSQL's copyParamList()

* Unified executor sorts the returning output

* Ensure that unified executor doesn't ignore sequential execution of DDLJob's

Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.

To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.

This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql

Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.

* Fix 2PC conditions for DDL tasks

* Improve closing connections that are not fully established in unified execution

* Support foreign keys to reference tables in unified executor

The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
    - If a parallel access happens on a distributed table which
      has a foreign key to a reference table, one cannot modify
      the reference table in the same transaction. Otherwise,
      we're very likely to end-up with a self-distributed deadlock.
    - If an access to a reference table happens, and then a parallel
      access to a distributed table (which has a fkey to the reference
      table) happens, we switch to sequential mode.

Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.

* Make sure to close the failed connections after the execution

* Improve comments

* Fix savepoints in unified executor.

* Rebuild the WaitEventSet only when necessary

* Unclaim connections on all errors.

* Improve failure handling for unified executor

   - Implement the notion of errorOnAnyFailure. This is similar to
     Critical Connections that the connection managament APIs provide
   - If the nodes inside a modifying transaction expand, activate 2PC
   - Fix few bugs related to wait event sets
   - Mark placement INACTIVE during the execution as much as possible
     as opposed to we do in the COMMIT handler
   - Fix few bugs related to scheduling next placement executions
   - Improve decision on when to use 2PC

Improve the logic to start a transaction block for distributed transactions

- Make sure that only reference table modifications are always
  executed with distributed transactions
- Make sure that stored procedures and functions are executed
  with distributed transactions

* Move waitEventSet to DistributedExecution

This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.

* Fix multi_insert_select test outputs

Two things:
   1) One complex transaction block is now supported. Simply update
      the test output
   2) Due to dynamic nature of the unified executor, the orders of
      the errors coming from the shards might change (e.g., all of
      the queries on the shards would fail, but which one appears
      on the error message?). To fix that, we simply added it to
      our shardId normalization tool which happens just before diff.

* Fix subeury_and_cte test

The error message is updated from:
	failed to execute task
To:
        more than one row returned by a subquery or an expression

which is a lot clearer to the user.

* Fix intermediate_results test outputs

Simply update the error message from:
	could not receive query results
to
	result "squares" does not exist

which makes a lot more sense.

* Fix multi_function_in_join test

The error messages update from:
     Failed to execute task XXX
To:
     function f(..) does not exist

* Fix multi_query_directory_cleanup test

The unified executor does not create any intermediate files.

* Fix with_transactions test

A test case that just started to work fine

* Fix multi_router_planner test outputs

The error message is update from:
	Could not receive query results
To:
	Relation does not exists

which is a lot more clearer for the users

* Fix multi_router_planner_fast_path test

The error message is update from:
	Could not receive query results
To:
	Relation does not exists

which is a lot more clearer for the users

* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block

* Fix ordering in isolation_multi_shard_modify_vs_all

* Add executor locks to unified executor

* Make sure to allocate enought WaitEvents

The previous code was missing the waitEvents for the latch and
postmaster death.

* Fix rebase conflicts for master rebase

* Make sure that TRUNCATE relies on unified executor

* Implement true sequential execution for multi-row INSERTS

Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.

However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.

* Remove SESSION_LIFESPAN flag in unified_executor

* Apply failure test updates

We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.

* Unified executor honors citus.node_connection_timeout

With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.

And, as a side effect this fixes failure_connection_establishment
test.

* Properly increment/decrement pool size variables

Before this commit, the idle and active connection
counts were not properly calculated.

* insert_select_executor goes through unified executor.

* Add missing file for task tracker

* Modify ExecuteTaskListExtended()'s signature

* Sort output of INSERT ... SELECT ... RETURNING

* Take partition locks correctly in unified executor

* Alternative implementation for force_max_query_parallelization

* Fix compile warnings in unified executor

* Fix style issues

* Decrement idleConnectionCount when idle connection is lost

* Always rebuild the wait event sets

In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.

* Make sure to allocate enough sized waitEventSet

With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.

Instead, re-allocate events when the connectino set changes.

* Implement SELECT FOR UPDATE on reference tables

On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
   - Acquire executor locks
   - Execute the query on all replicas

With this commit, we're implementing the same logic on the
new executor.

* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled

Otherwise, users would be very confused and their logic is very likely
to break.

* Fix build error

* Fix the newConnectionCount calculation in ManageWorkerPool

* Fix rebase conflicts

* Fix minor test output differences

* Fix citus indent

* Remove duplicate sorts that is added with rebase

* Create distributed table via executor

* Fix wait flags in CheckConnectionReady

* failure_savepoints output for unified executor.

* failure_vacuum output (pg 10) for unified executor.

* Fix WaitEventSetWait timeout in unified executor

* Stabilize failure_truncate test output

* Add an ORDER BY to multi_upsert

* Fix regression test outputs after rebase to master

* Add executor.c comment

* Rename executor.c to adaptive_executor.c

* Do not schedule tasks if the failed placement is not ready to execute

Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.

* Implement a proper custom scan node for adaptive executor

- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files

* Add slow start interval to the executor

* Expose max_cached_connection_per_worker to user

* Do not start slow when there are cached connections

* Consider ExecutorSlowStartInterval in NextEventTimeout

* Fix memory issues with ReceiveResults().

* Disable executor via TaskExecutorType

* Make sure to execute the tests with the other executor

* Use task_executor_type to enable-disable adaptive executor

* Remove useless code

* Adjust the regression tests

* Add slow start regression test

* Rebase to master

* Fix test failures in adaptive executor.

* Rebase to master - 2

* Improve comments & debug messages

* Set force_max_query_parallelization in isolation_citus_dist_activity

* Force max parallelization for creating shards when asked to use exclusive connection.

* Adjust the default pool size

* Expand description of max_adaptive_executor_pool_size GUC

* Update warnings in FinishRemoteTransactionCommit()

* Improve session clean up at the end of execution

Explicitly list all the states that the execution might end,
otherwise warn.

* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all

* Add more ORDER BYs to multi_mx_partitioning
2019-06-28 14:04:40 +02:00
Hadi Moshayedi 4bbae02778 Make COPY compatible with unified executor. 2019-06-20 19:53:40 +02:00
Marco Slot b3fcf2a48f Deprecate master_modify_multiple_shards 2019-05-24 15:22:06 +02:00
Onder Kalaci 58e90ad60d Add order by multi_outer_join 2019-04-09 12:53:57 +03:00
Onder Kalaci 92e87738dd Make sure that the regression test output is durable to different execution orders
Mostly add order bys and suppress worker node ports in the test
outputs.
2019-04-08 11:48:08 +03:00
Marco Slot 1656b519c4 Plan outer joins through pushdown planning 2019-01-05 20:55:27 +01:00
Hanefi Onaldi b3d897039a constraint validation regression tests 2018-11-26 14:04:51 +03:00
Nils Dijk 6cf4516fdb
fix \d change for indexes in pg11 2018-08-15 23:27:31 -06:00
Nils Dijk 2a9d47e1a6
fix pg11 tests 2018-08-15 23:27:31 -06:00
mehmet furkan şahin 6d0fbbace7 ALTER TABLE %s ADD COLUMN constraint check is added 2018-07-24 15:53:05 +03:00
Murat Tuncer f20258ef10 Expand count distinct support
We can now support more complex count distinct operations by
pulling necessary columns to coordinator and evalutating the
aggreage at coordinator.

It supports broad range of expression with the restriction that
the expression must contain a column.
2018-07-06 09:44:20 +03:00
Onder Kalaci ed47e4e6b9 Remove placementId from the ORDER BY to make results consistent 2018-05-11 17:04:50 +03:00
mehmet furkan şahin 785a86ed0a Tests are updated to use create_distributed_table 2018-05-10 11:18:59 +03:00
mehmet furkan şahin ef90122cd3 shard count for some of the tests are increased 2018-05-03 10:44:43 +03:00
velioglu 121ff39b26 Removes large_table_shard_count GUC 2018-04-29 10:34:50 +02:00
Marco Slot 3d3c19a717
Improve messages for essential connection failures 2018-04-26 12:58:47 -06:00
Brian Cloutier 0104790385 Fix hard-coded temp directory in multi_copy
/tmp does not exist on Windows, use :temp_dir instead
2018-04-17 15:01:22 -07:00
velioglu 82b2d21b0c Convert broadcast join to reference join
After this commit large_table_shard_count wont be used to
check whether broadcast join, which is renamed as reference
join, can be applied. Reference join can only be applied over
reference tables.
2018-04-13 12:58:14 +03:00
velioglu 72dfe4a289 Adds colocation check to local join 2018-04-04 22:49:27 +03:00
velioglu 698d585fb5 Remove broadcast join logic
After this change all the logic related to shard data fetch logic
will be removed. Planner won't plan any ShardFetchTask anymore.
Shard fetch related steps in real time executor and task-tracker
executor have been removed.
2018-03-30 11:45:19 +03:00
Brian Cloutier 9aff4384a1 Make tests platform independent
- Force all platforms to use the same collation
- Force all platforms to use the same locale
- Use /dev/null or NUL, depending on platform
- Use /tmp or %TEMP%, dpeending on platform
2018-03-27 14:18:48 -07:00
Metin Doslu e86d34256c Change default to false for citus.skip_jsonb_validation_in_copy 2018-03-06 13:19:47 +02:00
Metin Doslu bcf660475a Add support for modifying CTEs 2018-02-27 15:08:32 +02:00
Onder Kalaci 4d4648aabd Change single shard mx test tables to reference tables 2018-02-26 13:28:24 +02:00
Murat Tuncer 901b543e20 Fix count distinct using field select on top level query
We were allowing count distict queries even if they were
not directly on columns if the query is grouped on
distribution column.

When performing these checks we were skipping subqueries
because they also perform this check in a more concise manner.
We relied on oid SUBQUERY_RELATION_ID (10000) to decide if
a given RTE relation id denotes a subquery, however, we also
use SUBQUERY_PUSHDOWN_RELATION_ID (10001) for some subqueries.

We skip both type of subqueries with this change.
2018-02-06 13:16:10 +03:00
Marco Slot 6f7c3bd73b Skip JSON validation on coordinator during COPY 2018-02-02 15:33:27 +01:00
Dimitri Fontaine c9760fbb64 Fix CREATE INDEX with storage options on distributed tables.
By sharing the implementation of the function AppendOptionListToString on
three call sites, we would expand an extra OPTIONS keyword in a create index
statement, and omit other bits of the specific syntax here.

This patch introduces an AppendStorageParametersToString() function that is
very similar to AppendOptionListToString() but handles WITH(a="foo",...)
syntax that is used in reloptions (aka Storage Parameters).

Fixes #1747.
2018-01-17 21:56:40 +01:00
Dimitri Fontaine 952da72c55 Implement ALTER TABLE|INDEX ... SET|RESET ().
PostgreSQL implements support for several relation kinds in a single
statement, such as in the AlterTableStmt case, which supports both tables
and indexes and more (see ATExecSetRelOptions in PostgreSQL source code file
src/backend/commands/tablecmds.c for an example of that).

As a consequence, this patch implements support for setting and resetting
storage parameters on both relation kinds.
2018-01-17 21:56:40 +01:00
Dimitri Fontaine 17266e3301 Implement ALTER INDEX ... RENAME TO ...
The command is now distributed among the shards when the table is
distributed. To that effect, we fill in the DDLJob's targetRelationId with
the OID of the table for which the index is defined, rather than the OID of
the index itself.
2018-01-17 21:56:40 +01:00
Dimitri Fontaine e010238280 Implement ALTER TABLE ... RENAME TO ...
The implementation was already mostly in place, but the code was protected
by a principled check against the operation. Turns out there's a nasty
concurrency bug though with long identifier names, much as in #1664.

To prevent deadlocks from happening, we could either review the DDL
transaction management in shards and placements, or we can simply reject
names with (NAMEDATALEN - 1) chars or more — that's because of the
PostgreSQL array types being created with a one-char prefix: '_'.
2018-01-11 13:21:24 +01:00