When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.
To support more flexible (i.e. not at compile-time) specification of
libpq connection parameters, this change adds a new GUC, node_conninfo,
which must be a space-separated string of key-value pairs suitable for
parsing by libpq's connection establishment methods.
To avoid rebuilding and parsing these values at connection time, this
change also adds a cache in front of the configuration params to permit
immediate use of any previously-calculated parameters.
* Change worker_hash_partition_table() such that the
divergence between Citus planner's hashing and
worker_hash_partition_table() becomes the same.
* Rename single partitioning to single range partitioning.
* Add single hash repartitioning. Basically, logical planner
treats single hash and range partitioning almost equally.
Physical planner, on the other hand, treats single hash and
dual hash repartitioning almost equally (except for JoinPruning).
* Add a new GUC to enable this feature
After this change all the logic related to shard data fetch logic
will be removed. Planner won't plan any ShardFetchTask anymore.
Shard fetch related steps in real time executor and task-tracker
executor have been removed.
This commit introduces a new GUC to limit the intermediate
result size which we handle when we use read_intermediate_result
function for CTEs and complex subqueries.
Adds ```citus.enable_statistics_collection``` GUC variable, which ```true``` by default, unless built without libcurl. If statistics collection is enabled, sends basic usage data to Citus servers every 24 hours.
The data that is collected consists of:
- Citus version
- OS name & release
- Hardware Id
- Number of tables, rounded to next power of 2
- Size of data, rounded to next power of 2
- Number of workers
We added a new GUC citus.log_distributed_deadlock_detection
which is off by default. When set to on, we log some debug messages
related to the distributed deadlock to the server logs.
With this commit, the maintenance deamon starts to check for
distributed deadlocks.
We also introduced a GUC variable (distributed_deadlock_detection_factor)
whose value is multiplied with Postgres' deadlock_timeout. Setting
it to -1 disables the distributed deadlock detection.
We send SIGINT to a backend that is cancelled due to a deadlock. That
approach ends up being a very confusing error message.
With this commit we intercept the error messages and show a more
meaningful error message to the user.
Now that we already have the necessary infrastructure for detecting
distributed deadlocks. Thus, we don't need enable_deadlock_prevention
which is purely intended for preventing some forms of distributed
deadlocks.
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
maxTaskStringSize determines the size of worker query string.
It was originally hard coded to a specific value. This has caused
issues at some users. Since it determines initial shared memory
allocation, we did not want to set it to an arbitrary higher number.
Instead made it configurable.
This commit introduces a new GUC variable max_task_string_size
Changes in this variable requires restart to be in effect.
This commit adds distributed transaction id infrastructure in
the scope of distributed deadlock detection.
In general, the distributed transaction id consists of a tuple
in the form of: `(databaseId, initiatorNodeIdentifier, transactionId,
timestamp)`.
Briefly, we add a shared memory block on each node, which holds some
information per backend (i.e., an array `BackendData backends[MaxBackends]`).
Later, on each coordinated transaction, Citus sends
`SELECT assign_distributed_transaction_id()` right after `BEGIN`.
For that backend on the worker, the distributed transaction id is set to
the values assigned via the function call.
The aim of the above is to correlate the transactions on the coordinator
to the transactions on the worker nodes.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
In this PR, we aim to deduce whether each of the RTE_RELATION
is joined with at least on another RTE_RELATION on their partition keys. If each
RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
joined on their partition keys.
In order to do that, we invented a new equivalence class namely:
AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
identified by an unique id and consists of a list of AttributeEquivalenceMembers.
Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
whole query. The necessity of this arise since varno attributes are defined within
a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
and try to find equality among each RTE_RELATION's partition key.
Whenever we find an equality clause A = B, where both A and B originates from
relation attributes (i.e., not random expressions), we create an
AttributeEquivalenceClass to record this knowledge. If we later find another
equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
apply transitity rules and generate a new AttributeEquivalenceClass which includes
A, B and C.
Note that equality among the members are identified by the varattno and rteIdentity.
Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
each member attribute is identified by a AttributeEquivalenceMember. In the final
step, we try generate a common attribute equivalence class that holds as much as
AttributeEquivalenceMembers whose attributes are a partition keys.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
This adds a replication_model GUC which is used as the replication
model for any new distributed table that is not a reference table.
With this change, tables with replication factor 1 are no longer
implicitly MX tables.
The GUC is similarly respected during empty shard creation for e.g.
existing append-partitioned tables. If the model is set to streaming
while replication factor is greater than one, table and shard creation
routines will error until this invalid combination is corrected.
Changing this parameter requires superuser permissions.
They make fixing explain for prepared statement harder, and they don't
really fit into EXPLAIN in the first place. Additionally they're
currently not exercised in any tests.