Attribute number in a subquery RTE and relation RTE means different
things. In a relation attribute number will point to the column number
in the table definition including the dropped columns as well however in
subquery, it means the index in the target list. When we convert a
relation RTE to subquery RTE we should either correct all the relevant
attribute numbers or we can just add a dummy column for the dropped
columns. We choose the latter in this commit because it is practically
too vulnerable to update all the vars in a query.
Another thing this commit fixes is that in case a join restriction
clause list contains a false clause, we should just returns a false
clause instead of the whole list, because the whole list will contain
restrictions from other RTEs as well and this breaks the query, which
can be seen from the output changes, now it is much simpler.
Also instead of adding single tests for dropped columns, we choose to
run the whole mixed queries with tables with dropped columns, this
revealed some bugs already, which are fixed in this commit.
It seems that there are only very few cases where that is useful, and
for now we prefer not having that check. This means that we might
perform some unnecessary checks, but that should be rare and not
performance critical.
Instead of sending NULL's over a network, we now convert the subqueries
in the form of:
SELECT t.a, NULL, NULL FROM (SELECT a FROM table)t;
And we recursively plan the inner part so that we don't send the NULL's
over network. We still need the NULLs in the outer subquery because we
currently don't have an easy way of updating all the necessary places in
the query.
Add some documentation for how the conversion is done
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
It seems that most of the updates were broken, we weren't aware of it
because there wasn't any data in the tables. They are broken mostly
because local tables do not have a shard id and some code paths should
be updated with that information, currently when there is an invalid
shard id, it is assumed to be pruned.
Consider local tables in router planner
In case there is a local table, the shard id will not be valid and there
are some checks that rely on shard id, we should skip these in case of
local tables, which is handled with a dummy placement.
Add citus local table dist table join tests
add local-dist table mixed joins tests
AllDataLocallyAccessible and ContainsLocalTableSubqueryJoin are removed.
We can possibly remove ModifiesLocalTableWithRemoteCitusLocalTable as
well. Though this removal has a side effect that now when all the data
is locally available, we could still wrap a relation into a subquery, I
guess that should be resolved in the router planner itself.
Add more tests
When we wrap an RTE to subquery we are updating the variables varno's as
1, however we should also update the varno's of vars in quals.
Also some other small code quality improvements are done.
The previous algorithm was not consistent and it could convert different
RTEs based on the table orders in the query. Now we convert local tables
if there is a distributed table which doesn't have a unique index. So if
there are 4 tables, local1, local2, dist1, dist2_with_pkey then we will
convert local1 and local2 in `auto` mode. Converting a distributed table
is not that logical because as there is a distributed table without a
unique index, we will need to convert the local tables anyway. So
converting the distributed table with pkey is redundant.
Remove FillLocalAndDistributedRTECandidates and use
ShouldConvertLocalTableJoinsToSubqueries, which simplifies things as we
rely on a single function to decide whether we should continue
converting RTE to subquery.
We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
Check equality in quals
We want to recursively plan distributed tables only if they have an
equality filter on a unique column. So '>' and '<' operators will not
trigger recursive planning of distributed tables in local-distributed
table joins.
Recursively plan distributed table only if the filter is constant
If the filter is not a constant then the join might return multiple rows
and there is a chance that the distributed table will return huge data.
Hence if the filter is not constant we choose to recursively plan the
local table.
When doing local-distributed table joins we convert one of them to
subquery. The current policy is that we convert distributed tables to
subquery if it has a unique index on a column that has unique
index(primary key also has a unique index).
The logical planner cannot handle joins between local and distributed table.
Instead, we can recursively plan one side of the join and let the logical
planner handle the rest.
Our algorithm is a little smart, trying not to recursively plan distributed
tables, but favors local tables.
The name of the function is different than the implemantation. Because
the function is designed to only consider SELECT queries. Also this
changes the assert with an error.
It seems that we forgot to pass the revelant
flag to enable Postgres' parallel query
capabilities on the shards when user does
EXPLAIN ANALYZE on a distributed table.
When a relation is used on an OUTER JOIN with FALSE filters,
set_rel_pathlist_hook may not be called for the table.
There might be other cases as well, so do not rely on the hook
for classification of the tables.
RemoveDuplicateJoinRestrictions() function was introduced with the aim of decrasing the overall planning times by eliminating the duplicate JOIN restriction entries (#1989). However, it turns out that the function itself is so CPU intensive with a very high algorithmic complexity, it hurts a lot more than it helps. The function is a clear example of premature optimization.
The table below shows the difference clearly:
"distributed query planning
time master" RemoveDuplicateJoinRestrictions() execution time on master "Remove the function RemoveDuplicateJoinRestrictions()
this PR"
5 table INNER JOIN 9 msec 2msec 7 msec
10 table INNER JOIN 227 msec 194 msec 29 msec
20 table INNER JOIN 1 sec 235 msec 1 sec 139 msec 90 msecs
50 table INNER JOIN 24 seconds 21 seconds 1.5 seconds
100 table INNER JOIN 2 minutes 16 secods 1 minute 53 seconds 23 seconds
250 table INNER JOIN Bottleneck on JoinClauseList 18 minutes 52 seconds Bottleneck on JoinClauseList
5 table INNER JOIN in subquery 9 msec 0 msec 6 msec
10 table INNER JOIN subquery 33 msec 10 msec 32 msec
20 table INNER JOIN subquery 132 msec 67 msec 123 msec
50 table INNER JOIN subquery 1.2 seconds 900 msec 500 msec
100 table INNER JOIN subquery 6 seconds 5 seconds 2 seconds
250 table INNER JOIN subquery 54 seconds 37 seconds 20 seconds
5 table LEFT JOIN 5 msec 0 msec 5 msec
10 table LEFT JOIN 11 msec 0 msec 13 msec
20 table LEFT JOIN 26 msec 2 msec 30 msec
50 table LEFT JOIN 150 msec 15 msec 193 msec
100 table LEFT JOIN 757 msec 71 msec 722 msec
250 table LEFT JOIN 8 seconds 600 msec 8 seconds
5 JOINs among 2 table JOINs 37 msec 11 msec 25 msec
10 JOINs among 2 table JOINs 536 msec 306 msec 352 msec
20 JOINs among 2 table JOINs 794 msec 181 msec 640 msec
50 JOINs among 2 table JOINs 25 seconds 2 seconds 22 seconds
100 JOINs among 2 table JOINs Bottleneck on JoinClauseList 9 seconds Bottleneck on JoinClauseList
150 JOINs among 2 table JOINs Bottleneck on JoinClauseList 46 seconds Bottleneck on JoinClauseList
On top of the performance penalty, the function had a critical bug #4255, and with #4254 we hit one more important bug. It should be fixed by adding the followig check to the ContextCoversJoinRestriction():
```
static bool
JoinRelIdsSame(JoinRestriction *leftRestriction, JoinRestriction *rightRestriction)
{
Relids leftInnerRelIds = leftRestriction->innerrel->relids;
Relids rightInnerRelIds = rightRestriction->innerrel->relids;
if (!bms_equal(leftInnerRelIds, rightInnerRelIds))
{
return false;
}
Relids leftOuterRelIds = leftRestriction->outerrel->relids;
Relids rightOuterRelIds = rightRestriction->outerrel->relids;
if (!bms_equal(leftOuterRelIds, rightOuterRelIds))
{
return false;
}
return true;
}
```
However, adding this eliminates all the benefits tha RemoveDuplicateJoinRestrictions() brings.
I've used the commands here to generate the JOINs mentioned in the PR: https://gist.github.com/onderkalaci/fe8654f9df5916c7af4c7c5eb892561e#file-gistfile1-txt
Inner and outer JOINs behave roughly the same, to simplify the table only added INNER joins.
* Fix incorrect join related fields
Ruleutils expect to give the original index of join columns hence we
should consider the dropped columns while setting the fields in
SetJoinRelatedFieldsCompat.
* add some more tests for joins
* Move tests to join.sql and create a utility function
Disallow `ON TRUE` outer joins with reference & distributed tables
when reference table is outer relation by fixing the logic bug made
when calling `LeftListIsSubset` function.
Also, be more defensive when removing duplicate join restrictions
when join clause is empty for non-inner joins as they might still
contain useful information for non-inner joins.
It seems like Postgres could call set_rel_pathlist() for
the same relation multiple times. This breaks the logic
where we assume relationCount eqauls to the number of
entries in relationRestrictionList.
In summary, relationRestrictionList may contain duplicate
entries.
We should not access CurrentLocalExecutionStatus directly because that
would mean that we could also set it directly, which we shouldn't
because we have checks to see if the new state is possible, otherwise we
error.
Before this commit, the logic was:
- As long as the outer side of the JOIN is not a JOIN (e.g., relation
or subquery etc.), we check for the existence of any recurring
tuples. There were two implications of this decision.
First, even if a subquery which is on the outer side contains
distributed table JOIN reference table, Citus would unnecessarily throw
an error. Note that, the JOIN inside the subquery would already
be going to be tested recursively. But, as long as that check
passes, there is no reason for the upper JOIN to fail. An example, which
used to fail and now works:
SELECT * FROM (SELECT * FROM dist JOIN ref) as foo LEFT JOIN dist;
Second, certain JOINs, especially with ON (true) conditions were not
represented as Citus expects the JOINs to be in the format
DeferredErrorIfUnsupportedRecurringTuplesJoin().
Multi-row & router INSERT's were crashing with local execution if at
least one of the DEFAULT columns were not specified in VALUES list.
This was because, the changes we make on query->values_lists and
query->targetList was sufficient for deparsing given INSERT for remote
execution but not sufficient for local execution.
With this commit, DEFAULT value normalization for multi-row & router
INSERT's is fixed by adding dummy column references for unspecified
DEFAULT columns.
We currently do not support volatile functions in update/delete statements
because the function evaluation logic does not know how to distinguish
volatile functions (that need to be evaluated per row) from stable functions
(that need to be evaluated per query), and it is also not safe to push the
volatile functions down on replicated tables.
Add sort method parameter for regression tests
Fix check-style
Change sorting method parameters to enum
Polish
Add task fields to OutTask
Add test into multi_explain
Fix isolation test
Pushing down the CALLs to the node that the CALL is executed is
dangerous and could lead to infinite recursion.
When the coordinator added as worker, Citus was by chance preventing
this. The coordinator was marked as "not metadatasynced" node
in pg_dist_node, which prevented CALL/function delegation to happen.
With this commit, we do the following:
- Fix metadatasynced column for the coordinator on pg_dist_node
- Prevent pushdown of function/procedure to the same node that
the function/procedure is being executed. Today, we do not sync
pg_dist_object (e.g., distributed functions metadata) to the
worker nodes. But, even if we do it now, the function call delegation
would prevent the infinite recursion.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
create_distributed_function(function_name,
distribution_arg_name,
colocate_with text)
This UDF did not allow colocate_with parameters when there were no
disttribution_arg_name supplied. This commit changes the behaviour to
allow missing distribution_arg_name parameters when the function should
be colocated with a reference table.
RemoveCoordinatorPlacement does not do what it says. It removes the
coordinator placement only if there are other placements, so it is not a
single node, and only if the coordinator has a placement.
AllTargetExpressionsAreColumnReferences would return false if a query
had an entry that is referencing the outer query. It seems safe to not
have this for non-distributed tables, such as reference tables. We
already have separate checks for other cases such as having limits.
FindNodeCheck is not clear about what the function is doing. They are
renamed to FindNodeMatchingCheckFunctionXXX. Also for choosing elements in these
functions, CheckNodeFunc type is introduced.
It seems that currently we process even postgres tables in explain
commands. This is because we register a hook for explain and we don't
have any check to see if the query has any citus table.
With this commit, we now send the buffer usage as well to the relevant
API. There is some duplicate in the code but it is because of the
existing structure, we can refactor this separately.
The codebase is updated to use varattnosync and varnosyn and we defined
the macros for older versions. This way we can just remove the macros
when we drop an older version.
The error message when index has opclassopts is improved and the commit
from postgres side is also included for future reference.
Also some minor style related changes are applied.
This commit mostly adds pg_get_triggerdef_command to our ruleutils_13.
This doesn't add anything extra for ruleutils 13 so it is basically a copy
of the change on ruleutils_12
Rte index is increased by range table index offset in pg >= 13. The
offset is removed with the pg >= 13.
Currently pushdown for union all is disabled because translatedVars is
set to nil on postgres side, and we were using translatedVars to
figure out if partition key has the same index in both sides of union
all. This should be fixed.
Commit on postgres side:
6ef77cf46e81f45716ec981cb08781d426181378
fix union all pushdown logic for pg13
Before pg 13, there was a field, translatedVars, and we were using that
to understand if the partition key has the same index on both sides of
the union all. With pg13 there is a parent_colnos field in appendRelInfo
and we can use that to get the attribute numbers(varattnos) in union all
vars. We make use of parent_colnos instead of translatedVars in pg >=13.
For joins 3 new fields are added, joinleftcols, joinrightcols, and
joinmergedcols. We are not interested in joinmergedcols because we
always expand the column used in joins. There joinmergedcols is always 0
in our case.
For filling joinleftcols and joinrightcols we basically construct the
lists with sequences so either list is of the form: [1 2 3 4 .... n]
Ruleutils is not completed synced with postgres ruleutils and the most
important part is identify_join_columns function change, which now uses
joinleftcols and joinrightcols.
Commit on postgres side:
9ce77d75c5ab094637cc4a446296dc3be6e3c221
A useful email thread:
https://www.postgresql.org/message-id/flat/7115.1577986646%40sss.pgh.pa.us#0ae1d66feeb400013fbaa67a7cccd6ca
PG13 uses joinmergedcols, joinleftcols and joinrightcols for finding
join order now. There relevant fields are set on citus side.
Postgres side commit:
9ce77d75c5ab094637cc4a446296dc3be6e3c221
Since PG13 changed the list, a listcell doesn't contain data anymore.
Therefore Set_ptr_value macro is created, so that depending on the
version it will either use cell->data.ptr_value or cell->ptr_value.
Commit on Postgres side:
1cff1b95ab6ddae32faa3efe0d95a820dbfdc164
Since ExplainOnePlan expects BufferUsage as well with PG >= 13,
ExplainOnePlanCompat is added.
Commit on Postgres side:
ed7a5095716ee498ecc406e1b8d5ab92c7662d10
Commit on postgres side:
05d8449e73694585b59f8b03aaa087f04cc4679a
Command on postgres side:
git log --all --grep="hashutils"
include common/hashfn.h for pg >= 13
tag_hash was moved from hsearch.h to hashutils.h then to hashfn.h
Commits on Postgres side:
9341c783cc42ffae5860c86bdc713bd47d734ffd
As the new planner and pg_plan_query_compat methods expect the query
string as well, macros are defined to be compatible in different
versions of postgres.
Relevant commit on Postgres:
6aba63ef3e606db71beb596210dd95fa73c44ce2
Command on Postgres:
git log --all --grep="pg_plan_query"
With PG13 heap_* (heap_open, heap_close etc) are replaced with table_*
(table_open, table_close etc).
It is better to use the new table access methods in the codebase and
define the macros for the previous versions as we can easily remove the
macro without having to change the codebase when we drop the support for
the old version.
Commits that introduced this change on Postgres:
f25968c49697db673f6cd2a07b3f7626779f1827
e0c4ec07284db817e1f8d9adfb3fffc952252db0
4b21acf522d751ba5b6679df391d5121b6c4a35f
Command to see relevant commits on Postgres side:
git log --all --grep="heap_open"
Pass the list to lnext API
lnext API now expects the list as well.
The commit on Postgres that introduced the change: 1cff1b95ab6ddae32faa3efe0d95a820dbfdc164
lnext_compat and list_delete_cell_compat macros are introduced so that
we can use these macros in the codebase without having to use #if
directives in the codebase.
Related commit on postgres:
1cff1b95ab6ddae32faa3efe0d95a820dbfdc164
Command to search in postgres:
git log --all --grep="list_delete_cell"
add ListCellAndListWrapper
When iterating a list in separate function calls, we need both the list
and the current cell starting from PG13, therefore
ListCellAndListWrapper is added to store both as a wrapper.
Use ListCellAndListWrapper in foreign key test udfs
As we iterate a list in these udfs using a functionContext, we need to
use the wrapper to be able to access both the list and the current cell.
With this patch, we introduce `locally_reserved_shared_connections.c/h` files
which are responsible for reserving some space in shared memory counters
upfront.
We sometimes need to reserve connections, but not necessarily
establish them. For example:
- COPY command should reserve connections as it cannot know which
connections it needs in which order. COPY establishes connections
as any input data hits the workers. For example, for router COPY
command, it only establishes 1 connection.
As discussed here (https://github.com/citusdata/citus/pull/3849#pullrequestreview-431792473),
COPY needs to reserve connections up-front, otherwise we can end
up with resource starvation/un-detected deadlocks.
Enable custom aggregates with multiple parameters to be executed on workers.
#2921 introduces distributed execution of custom aggregates. One of the limitations of this feature is that only aggregate functions with a single aggregation parameter can be pushed to worker nodes. Aim of this change is to remove that limitation and support handling of multi-parameter aggregates.
Resolves: #3997
See also: #2921