With the previous version of this check we would disallow distributed
tables that did not have a colocationid, to have a foreign key to a
reference table. This fixes that, since there's no reason to disallow
that.
(cherry picked from commit e9bfb8eddd)
Moving shards of reference tables was possible in at least one case:
```sql
select citus_disable_node('localhost', 9702);
create table r(x int);
select create_reference_table('r');
set citus.replicate_reference_tables_on_activate = off;
select citus_activate_node('localhost', 9702);
select citus_move_shard_placement(102008, 'localhost', 9701, 'localhost', 9702);
```
This would then remove the reference table shard on the source, causing
all kinds of issues. This fixes that by disallowing all shard moves
except for shards of distributed tables.
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
(cherry picked from commit d1d386a904)
The first and main issue was that we were putting absolute pointers into
shared memory for the `steps` field of the `ProgressMonitorData`. This
pointer was being overwritten every time a process requested the monitor
steps, which is the only reason why this even worked in the first place.
To quote a part of a relevant stack overflow answer:
> First of all, putting absolute pointers in shared memory segments is
> terrible terible idea - those pointers would only be valid in the
> process that filled in their values. Shared memory segments are not
> guaranteed to attach at the same virtual address in every process.
> On the contrary - they attach where the system deems it possible when
> `shmaddr == NULL` is specified on call to `shmat()`
Source: https://stackoverflow.com/a/10781921/2570866
In this case a race condition occurred when a second process overwrote
the pointer in between the first process its write and read of the steps
field.
This issue is fixed by not storing the pointer in shared memory anymore.
Instead we now calculate it's position every time we need it.
The second race condition I have not been able to trigger, but I found
it while investigating this. This issue was that we published the handle
of the shared memory segment, before we initialized the data in the
steps. This means that during initialization of the data, a call to
`get_rebalance_progress()` could read partial data in an unsynchronized
manner.
(cherry picked from commit ca00b63272)
This happens only when we have a "<" or "<=" filter on distribution
column of a range distributed table and that filter falls in between
two shards.
When the filter falls in between two shards:
If the filter is ">" or ">=", then UpperShardBoundary was
returning "upperBoundIndex - 1", where upperBoundIndex is
exclusive shard index used during binary seach.
This is expected since upperBoundIndex is an exclusive
index.
If the filter is "<" or "<=", then LowerShardBoundary was
returning "lowerBoundIndex + 1", where lowerBoundIndex is
inclusive shard index used during binary seach.
On the other hand, since lowerBoundIndex is an inclusive
index, we should just return lowerBoundIndex instead of
doing "+ 1". Before this commit, we were missing leftmost
shard in such queries.
* Remove useless conditional branches
The branch that we delete from UpperShardBoundary was obviously useless.
The other one in LowerShardBoundary became useless after we remove "+ 1"
from there.
This indeed is another proof of what & how we are fixing with this pr.
* Improve comments and add more
* Add some tests for upper bound calculation too
(cherry picked from commit b118d4188e)
With local query caching, we try to avoid deparse/parse stages as the
operation is too costly.
However, we can do deparse/parse operations once per cached queries, right
before we put the plan into the cache. With that, we avoid edge
cases like (4239) or (5038).
In a sense, we are making the local plan caching behave similar for non-cached
local/remote queries, by forcing to deparse the query once.
(cherry picked from commit 69ca943e58)
A shard move would fail if there was an orphaned version of the shard on
the target node. With this change before actually fail, we try to clean
up orphaned shards to see if that fixes the issue.
Sometimes the background daemon doesn't cleanup orphaned shards quickly
enough. It's useful to have a UDF to trigger this removal when needed.
We already had a UDF like this but it was only used during testing. This
exposes that UDF to users. As a safety measure it cannot be run in a
transaction, because that would cause the background daemon to stop
cleaning up shards while this transaction is running.
* Add user-defined sequence support for MX
* Remove default part when propagating to workers
* Fix ALTER TABLE with sequences for mx tables
* Clean up and add tests
* Propagate DROP SEQUENCE
* Removing function parts
* Propagate ALTER SEQUENCE
* Change sequence type before propagation & cleanup
* Revert "Propagate ALTER SEQUENCE"
This reverts commit 2bef64c5a29f4e7224a7f43b43b88e0133c65159.
* Ensure sequence is not used in a different column with different type
* Insert select tests
* Propagate rename sequence stmt
* Fix issue with group ID cache invalidation
* Add ALTER TABLE ALTER COLUMN TYPE .. precaution
* Fix attnum inconsistency and add various tests
* Add ALTER SEQUENCE precaution
* Remove Citus hook
* More tests
Co-authored-by: Marco Slot <marco.slot@gmail.com>
We have a slightly different behavior when using truncate_local_data_after_distributing_table UDF on metadata synced clusters. This PR aims to add tests to cover such cases.
We allow distributing tables with data that have foreign keys to reference tables only on metadata synced clusters. This is the reason why some of my earlier tests failed when run on a single node Citus cluster.
InvalidateForeignKeyGraph sends an invalidation via shared memory to all
backends, including the current one.
However, we might not call AcceptInvalidationMessages before reading
from the cache below. It would be better to also add a call to
AcceptInvalidationMessages in IsForeignConstraintRelationshipGraphValid.
Previously this was usually done after argument parsing. This can cause
SEGFAULTs if the number or type of arguments changes in a new version.
By checking that Citus version is correct before doing any argument
parsing we protect against these types of issues. Issues like this have
occurred in pg_auto_failover, so it's not just a theoretical issue.
The main reason why these calls were not at the top of functions is
really just historical. It was because in the past we didn't allow
statements before declarations. Thus having this check before the
argument parsing would have only been possible if we first declared all
variables.
In addition to moving existing CheckCitusVersion calls it also adds
these calls to rebalancer related functions (they were missing there).