Before this commit, we were erroring out for queries containing parameterized SQL functions
like 'SELECT parameterized_sql_query(value)' as we should, however we were returning wrong
results for queries like 'SELECT * FROM parameterized_sql_query(value)'. With this commit
we started to error out on such queries too.
In this PR, we aim to deduce whether each of the RTE_RELATION
is joined with at least on another RTE_RELATION on their partition keys. If each
RTE_RELATION follows the above rule, we can conclude that all RTE_RELATIONs are
joined on their partition keys.
In order to do that, we invented a new equivalence class namely:
AttributeEquivalenceClass. In very simple words, a AttributeEquivalenceClass is
identified by an unique id and consists of a list of AttributeEquivalenceMembers.
Each AttributeEquivalenceMember is designed to identify attributes uniquely within the
whole query. The necessity of this arise since varno attributes are defined within
a single level of a query. Instead, here we want to identify each RTE_RELATION uniquely
and try to find equality among each RTE_RELATION's partition key.
Whenever we find an equality clause A = B, where both A and B originates from
relation attributes (i.e., not random expressions), we create an
AttributeEquivalenceClass to record this knowledge. If we later find another
equivalence B = C, we create another AttributeEquivalenceClass. Finally, we can
apply transitity rules and generate a new AttributeEquivalenceClass which includes
A, B and C.
Note that equality among the members are identified by the varattno and rteIdentity.
Each equality among RTE_RELATION is saved using an AttributeEquivalenceClass where
each member attribute is identified by a AttributeEquivalenceMember. In the final
step, we try generate a common attribute equivalence class that holds as much as
AttributeEquivalenceMembers whose attributes are a partition keys.
This was getting pretty long and complex in the context of the main
utility hook. Moved out the checks for what should skip Citus process-
ing and what should have version checks performed.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
Thought this looked slightly nicer than the default behavior.
Changed preventTransaction to concurrent to be clearer that this code
path presently affects CONCURRENTLY code only.
Coordinator code marks index as invalid as a base, set it as valid in a
transactional layer atop that base, then proceeds with worker commands.
If a worker command has problems, the rollback results in an index with
isvalid = false. If everything succeeds, the user sees a valid index.
Before this commit, in certain cases router planner allowed pushing
down JOINs that are not on the partition keys.
With @anarazel's suggestion, we change the logic to use uninstantiated
parameter. Previously, the planner was traversing on the restriction
information and once it finds the parameter, it was replacing it with
the shard range. With this commit, instead of traversing the restrict
infos, the planner explicitly checks for the equivalence of the relation
partition key with the uninstantiated parameter. If finds an equivalence,
it adds the restrictions. In this way, we have more control over the
queries that are pushed down.
Some tests relied on worker errors though local commands were invalid.
Fixed those by ensuring preconditions were met to have command work
correctly. Otherwise most test changes are related to slight changes
in local/remote error ordering.
With this commit, we add the range table list of the original query to our
custom plan. Therefore, PostgreSQL can check relations in the original query
for access permissions and error out if the proper access is not granted.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
Previously we'd segfault in PQisnonblocking() which, contrary to other
libpq calls, doesn't handle a NULL PQconn (because there'd be no
appropriate return value for that).
cr: @jasonmp85