Join test gets too many clients error too frequently hence we should
not run anything concurrently with that. Hopefully this will fix the
flakiness of test.
If MemoryContextAlloc errors out -e.g. during an OOM-, ConnectionHashEntry->connections
stays as NULL.
With this commit, we add isValid flag to ConnectionHashEntry that should be set to true
right after we allocate & initialize ConnectionHashEntry->connections list properly, and we
check it before accesing to ConnectionHashEntry->connections.
This is to avoid flaky changes like the following in test outputs:
-CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.
+CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.02 s.
Columnar options were by accident linked to the relfilenode instead of the regclass/relation oid. This PR moves everything related to columnar options to their own catalog table.
The name of the function is different than the implemantation. Because
the function is designed to only consider SELECT queries. Also this
changes the assert with an error.
Refactor internals on how Citus creates the SQL commands it sends to recreate shards.
Before Citus collected solely ddl commands as `char *`'s to recreate a table. If they were used to create a shard they were wrapped with `worker_apply_shard_ddl_command` and send to the workers. On the workers the UDF wrapping the ddl command would rewrite the parsetree to replace tables names with their shard name equivalent.
This worked well, but poses an issue when adding columnar. Due to limitations in Postgres on creating custom options on table access methods we need to fall back on a UDF to set columnar specific options. Now, to recreate the table, we can not longer rely on having solely DDL statements to recreate a table.
A prototype was made to run this UDF wrapped in `worker_apply_shard_ddl_command`. This became pretty messy, hard to understand and subsequently hard to maintain.
This PR proposes a refactor of the internal representation of table ddl commands into a `TableDDLCommand` structure. The current implementation only supports a `char *` as its contents. Based on the use of the DDL statement (eg. creating the table -mx- or creating a shard) one of two different functions can be called to get the statement to send to the worker:
- `GetTableDDLCommand(TableDDLCommand *command)`: This function returns that ddl command to create the table. In this implementation it will just return the `char *`. This has the same functionality as getting the old list and not wrapping it.
- `GetShardedTableDDLCommand(TableDDLCommand *command, uint64 shardId, char *schemaName)`: This function returns the ddl command wrapped in `worker_apply_shard_ddl_command` with the `shardId` as an argument. Due to backwards compatibility it also accepts a. `schemaName`. The exact purpose is not directly clear. Ideally new implementations would work with fully qualified statements and ignore the `schemaName`.
A future implementation could accept 2.function pointers and a `void *` for context to let the two pointers work on. This gives greater flexibility in controlling what commands get send in which situations. Also, in a future, we could implement the intermediate step of creating the `parsetree` datastructure of statements based on the contents in the catalog with a corresponding deparser. For sharded queries a mutator could be ran over the parsetree to rewrite the tablenames to the names with the shard identifier. This will completely omit the requirement for `worker_apply_shard_ddl_command`.
Considering the adaptive connection management
improvements that we plan to roll soon, it makes it
very helpful to know the number of active client
backends.
We are doing this addition to simplify yhe adaptive connection
management for single node Citus. In single node Citus, both the
client backends and Citus parallel queries would compete to get
slots on Postgres' `max_connections` on the same Citus database.
With adaptive connection management, we have the counters for
Citus parallel queries. That helps us to adaptively decide
on the remote executions pool size (e.g., throttle connections
if necessary).
However, we do not have any counters for the total number of
client backends on the database. For single node Citus, we
should consider all the client backends, not only the remote
connections that Citus does.
Of course Postgres internally knows how many client
backends are active. However, to get that number Postgres
iterates over all the backends. For examaple, see [pg_stat_get_db_numbackends](8e90ec5580/src/backend/utils/adt/pgstatfuncs.c (L1240))
where Postgres iterates over all the backends.
For our purpuses, we need this information on every connection
establishment. That's why we cannot affort to do this kind of
iterattion.
CitusTableTypeIdList() function iterates on all the entries of pg_dist_partition
and loads all the metadata in to the cache. This can be quite memory intensive
especially when there are lots of distributed tables.
When partitioned tables are used, it is common to have many distributed tables
given that each partition also becomes a distributed table.
CitusTableTypeIdList() is used on every CREATE TABLE .. PARTITION OF.. command
as well. It means that, anytime a partition is created, Citus loads all the
metadata to the cache. Note that Citus typically only loads the accessed table's
metadata to the cache.
* Move local execution after the remote execution
Before this commit, when both local and remote tasks
exist, the executor was starting the execution with
local execution. There is no strict requirements on
this.
Especially considering the adaptive connection management
improvements that we plan to roll soon, moving the local
execution after to the remote execution makes more sense.
The adaptive connection management for single node Citus
would look roughly as follows:
- Try to connect back to the coordinator for running
parallel queries.
- If succeeds, go on and execute tasks in parallel
- If fails, fallback to the local execution
So, we'll use local execution as a fallback mechanism. And,
moving it after to the remote execution allows us to implement
such further scenarios.
The adaptive executor emulates the TCP's slow start algorithm.
Whenever the executor needs new connections, it doubles the number
of connections established in the previous iteration.
This approach is powerful. When the remote queries are very short
(like index lookup with < 1ms), even a single connection is sufficent
most of the time. When the remote queries are long, the executor
can quickly establish necessary number of connections.
One missing piece on our implementation seems that the executor
keeps doubling the number of connections even if the previous
connection attempts have been finalized. Instead, we should
wait until all the attempts are finalized. This is how TCP's
slow-start works. Plus, it decreases the unnecessary pressure
on the remote nodes.
I got this warning when compiling citus:
```
../columnar/write_state_management.c: In function ‘PendingWritesInUpperTransactions’:
../columnar/write_state_management.c:364:20: warning: ‘entry’ may be used uninitialized in this function [-Wmaybe-uninitialized]
if (found && entry->writeStateStack != NULL)
~~~~~^~~~~~~~~~~~~~~~
```
I fixed this by checking by always initializing entry, by using an early
return if `WriteStateMap` didn't exist. Instead of using the `found`
variable to check for existence of the key, I now simply check the
`entry` variable itself.
To quote the postgres comment on the hash_enter function:
> If foundPtr isn't NULL, then *foundPtr is set true if we found an
> existing entry in the table, false otherwise. This is needed in the
> HASH_ENTER case, but is redundant with the return value otherwise.
Before this commit, we let AdaptiveExecutorPreExecutorRun()
to be effective multiple times on every FETCH on cursors.
That does not affect the correctness of the query results,
but adds significant overhead.
It seems that we forgot to pass the revelant
flag to enable Postgres' parallel query
capabilities on the shards when user does
EXPLAIN ANALYZE on a distributed table.