Previously we only prevented AVG from being pushed down, but this is incorrect:
- array_agg, while somewhat non sensical to order by, will potentially be missing values
- combinefunc aggregation will raise errors about cstrings not being comparable (while we also can't know if the aggregate is commutative)
This commit limits approximating LIMIT pushdown when ordering by aggregates to:
min, max, sum, count, bit_and, bit_or, every, any
Which means of those we previously supported, we now exclude:
avg, array_agg, jsonb_agg, jsonb_object_agg, json_agg, json_object_agg, hll_add, hll_union, topn_add, topn_union
Previously, we've identified the usedSubPlans by only looking
to the subPlanId.
With this commit, we're expanding it to also include information
on the location of the subPlan.
This is useful to distinguish the cases where the subPlan is used
either on only HAVING or both HAVING and any other part of the query.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
Comment from code:
/*
* We had to implement this hack because on Postgres11 and below, the originalQuery
* and the query would have significant differences in terms of CTEs where CTEs
* would not be inlined on the query (as standard_planner() wouldn't inline CTEs
* on PG 11 and below).
*
* Instead, we prefer to pass the inlined query to the distributed planning. We rely
* on the fact that the query includes subqueries, and it'd definitely go through
* query pushdown planning. During query pushdown planning, the only relevant query
* tree is the original query.
*/
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
This is purely to enable better performance with prepared statements.
Before this commit, the fast path queries with prepared statements
where the distribution key includes a parameter always went through
distributed planning. After this change, we only go through distributed
planning on the first 5 executions.
In this commit, we're introducing a way to prevent CTE inlining via a GUC.
The GUC is used in all the tests where PG 11 and PG 12 tests would diverge
otherwise.
Note that, in PG 12, the restriction information for CTEs are generated. It
means that for some queries involving CTEs, Citus planner (router planner/
pushdown planner) may behave differently. So, via the GUC, we prevent
tests to diverge on PG 11 vs PG 12.
When we drop PG 11 support, we should get rid of the GUC, and mark
relevant ctes as MATERIALIZED, which does the same thing.
These set of tests has changed in both PG 11 and PG 12.
The changes are only about CTE inlining kicking in both
versions, and yielding the exact same distributed planning.
The idea is simple: Inline CTEs(if any), try distributed planning.
If the planning yields a successful distributed plan, simply return
it.
If the planning fails, fallback to distributed planning on the query
tree where CTEs are not inlined. In that case, if the planning failed
just because of the CTE inlining, via recursive planning, the same
query would yield a successful plan.
A very basic set of examples:
WITH cte_1 AS (SELECT * FROM test_table)
SELECT
*, row_number() OVER ()
FROM
cte_1;
or
WITH a AS (SELECT * FROM test_table),
b AS (SELECT * FROM test_table)
SELECT * FROM a JOIN b ON (a.value> b.value);
With this commit we add the necessary Citus function to inline CTEs
in a queryTree.
You might ask, why do we need to inline CTEs if Postgres is already
going to do it?
Few reasons behind this decision:
- One techinal node here is that Citus does the recursive CTE planning
by checking the originalQuery which is the query that has not gone
through the standard_planner().
CTEs in Citus is super powerful. It is practically key for full SQL
coverage for multi-shard queries. With CTEs, you can always reduce
any query multi-shard query into a router query via recursive
planning (thus full SQL coverage).
We cannot let CTE inlining break that. The main idea is Citus should
be able to retry planning if anything goes after CTE inlining.
So, by taking ownership of CTE inlining on the originalQuery, Citus
can fallback to recursive planning of CTEs if the planning with the
inlined query fails. It could have been a lot harder if we had relied
on standard_planner() to have the inlined CTEs on the original query.
- We want to have this feature in PostgreSQL 11 as well, but Postgres
only inlines in version 12
All the code in this commit is direct copy & paste from Postgres
source code.
We can classify the copy&paste code into two:
- Copy paste from CTE inline patch from postgres
(https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=608b167f9f9c4553c35bb1ec0eab9ddae643989b)
These include the functions inline_cte(), inline_cte_walker(),
contain_dml(), contain_dml_walker().
It also include the code in function PostgreSQLCTEInlineCondition().
We prefer to extract that code into a seperate function, because
(a) we'll re-use the logic later (b) we added one check for PG_11
Finally, the struct "inline_cte_walker_context" is also copied from
the same Postgres commit.
- Copy paste from the other parts of the Postgres code
In order to implement CTE inlining in Postgres 12, the hackers
modified the query_tree_walker()/range_table_walker() with the
18c0da88a5
Since Citus needs to support the same logic in PG 11, we copy & pasted
that functions (and related flags) with the names pg_12_query_tree_walker()
and pg_12_range_table_walker()
* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item