With #4338, the executor is smart enough to failover to
local node if there is not enough space in max_connections
for remote connections.
For COPY, the logic is different. With #4034, we made COPY
work with the adaptive connection management slightly
differently. The cause of the difference is that COPY doesn't
know which placements are going to be accessed hence requires
to get connections up-front.
Similarly, COPY decides to use local execution up-front.
With this commit, we change the logic for COPY on local nodes:
Try to reserve a connection to local host. This logic follows
the same logic (e.g., citus.local_shared_pool_size) as the
executor because COPY also relies on TryToIncrementSharedConnectionCounter().
If reservation to local node fails, switch to local execution
Apart from this, if local execution is disabled, we follow the
exact same logic for multi-node Citus. It means that if we are
out of the connection, we'd give an error.
pg_get_tableschemadef_string doesn't know how to deparse identity
columns so we cannot reflect those columns when creating shell
relation.
For this reason, we don't allow adding local tables -having identity cols-
to metadata.
* Fix partition column index issue
We send column names to worker_hash/range_partition_table methods, and
in these methods we check the column name index from tuple descriptor.
Then this index is used to decide the bucket that the current row will
be sent for the repartition.
This becomes a problem when there are the same column names in the
tupleDescriptor. Then we can choose the wrong index. Hence the
partitioned data will be put to wrong workers. Then the result could
miss some data because workers might contain different range of data.
An example:
TupleDescriptor contains "trip_id", "car_id", "car_id" for one table.
It contains only "car_id" for the other table. And assuming that the
tables will be partitioned by car_id, it is not certain what should be
used for deciding the bucket number for the first table. Assuming value
2 goes to bucket 2 and value 3 goes to bucket 3, it is not certain which
bucket "1 2 3" (trip_id, car_id, car_id) row will go to.
As a solution we send the index of partition column in targetList
instead of the column name.
The old API is kept so that if workers upgrade work, it still works
(though it will have the same bug)
* Use the same method so that backporting is easier
* Make undistribute_table() and citus_create_local_table() work with columnar
* Rename and use LocallyExecuteUtilityTask for UDF check
* Remove 'local' references in ExecuteUtilityCommand
For certaion purposes, we drop and recreate the foreign
keys. As we acquire exclusive locks on the tables in between
drop and re-create, we can safely skip validation phase of
the foreign keys. The reason is purely being performance as
foreign key validation could take a long value.
When enabled any foreign keys between local tables and reference
tables supported by converting the local table to a citus local
table.
When the coordinator is not in the metadata, the logic is disabled
as foreign keys are not allowed in this configuration.
* Stronger check for triggers on columnar tables (#4493).
Previously, we used a simple ProcessUtility_hook. Change to use an
object_access_hook instead.
* Replace alter_table_set_access_method test on partition with foreign key
Co-authored-by: Jeff Davis <jefdavi@microsoft.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
With citus shard helper view, we can easily see:
- where each shard is, which node, which port
- what kind of table it belongs to
- its size
With such a view, we can see shards that have a size bigger than some
value, which could be useful. Also debugging can be easier in production
as well with this view.
Fetch shards in one go per node
The previous implementation was slow because it would do a lot of round
trips, one per shard to be exact. Hence it is improved so that we fetch
all the shard_name, shard-size pairs per node in one go.
Construct shards_names, sizes query on coordinator
* Replace master_add_node with citus_add_node
* Replace master_activate_node with citus_activate_node
* Replace master_add_inactive_node with citus_add_inactive_node
* Use master udfs in old scripts
* Replace master_add_secondary_node with citus_add_secondary_node
* Replace master_disable_node with citus_disable_node
* Replace master_drain_node with citus_drain_node
* Replace master_remove_node with citus_remove_node
* Replace master_set_node_property with citus_set_node_property
* Replace master_unmark_object_distributed with citus_unmark_object_distributed
* Replace master_update_node with citus_update_node
* Replace master_update_shard_statistics with citus_update_shard_statistics
* Replace master_update_table_statistics with citus_update_table_statistics
* Rename master_conninfo_cache_invalidate to citus_conninfo_cache_invalidate
Rename master_dist_local_group_cache_invalidate to citus_dist_local_group_cache_invalidate
* Replace master_copy_shard_placement with citus_copy_shard_placement
* Replace master_move_shard_placement with citus_move_shard_placement
* Rename master_dist_node_cache_invalidate to citus_dist_node_cache_invalidate
* Rename master_dist_object_cache_invalidate to citus_dist_object_cache_invalidate
* Rename master_dist_partition_cache_invalidate to citus_dist_partition_cache_invalidate
* Rename master_dist_placement_cache_invalidate to citus_dist_placement_cache_invalidate
* Rename master_dist_shard_cache_invalidate to citus_dist_shard_cache_invalidate
* Drop master_modify_multiple_shards
* Rename master_drop_all_shards to citus_drop_all_shards
* Drop master_create_distributed_table
* Drop master_create_worker_shards
* Revert old function definitions
* Add missing revoke statement for citus_disable_node
On top of our foreign key graph, implement the infrastructure to get
list of relations that are connected to input relation via a foreign key
graph.
We need this to support cascading create_citus_local_table &
undistribute_table operations.
Also add regression tests to see what our foreign key graph is able to
capture currently.
It seems that there are only very few cases where that is useful, and
for now we prefer not having that check. This means that we might
perform some unnecessary checks, but that should be rare and not
performance critical.
Instead of sending NULL's over a network, we now convert the subqueries
in the form of:
SELECT t.a, NULL, NULL FROM (SELECT a FROM table)t;
And we recursively plan the inner part so that we don't send the NULL's
over network. We still need the NULLs in the outer subquery because we
currently don't have an easy way of updating all the necessary places in
the query.
Add some documentation for how the conversion is done
Baseinfo also has pushed down filters etc, so it makes more sense to use
BaseRestrictInfo to determine what columns have constant equality
filters.
Also RteIdentity is used for removing conversion candidates instead of
rteIndex.
It seems that most of the updates were broken, we weren't aware of it
because there wasn't any data in the tables. They are broken mostly
because local tables do not have a shard id and some code paths should
be updated with that information, currently when there is an invalid
shard id, it is assumed to be pruned.
Consider local tables in router planner
In case there is a local table, the shard id will not be valid and there
are some checks that rely on shard id, we should skip these in case of
local tables, which is handled with a dummy placement.
Add citus local table dist table join tests
add local-dist table mixed joins tests
AllDataLocallyAccessible and ContainsLocalTableSubqueryJoin are removed.
We can possibly remove ModifiesLocalTableWithRemoteCitusLocalTable as
well. Though this removal has a side effect that now when all the data
is locally available, we could still wrap a relation into a subquery, I
guess that should be resolved in the router planner itself.
Add more tests
We should not recursively plan an already routable plannable query. An
example of this is (SELECT * FROM local JOIN (SELECT * FROM dist) d1
USING(a));
So we let the recursive planner do all of its work and at the end we
convert the final query to to handle unsupported joins. While doing each
conversion, we check if it is router plannable, if so we stop.
Only consider range table entries that are in jointree
If a range table is not in jointree then there is no point in
considering that because we are trying to convert range table entries to
subqueries for join use case.
Check equality in quals
We want to recursively plan distributed tables only if they have an
equality filter on a unique column. So '>' and '<' operators will not
trigger recursive planning of distributed tables in local-distributed
table joins.
Recursively plan distributed table only if the filter is constant
If the filter is not a constant then the join might return multiple rows
and there is a chance that the distributed table will return huge data.
Hence if the filter is not constant we choose to recursively plan the
local table.
When doing local-distributed table joins we convert one of them to
subquery. The current policy is that we convert distributed tables to
subquery if it has a unique index on a column that has unique
index(primary key also has a unique index).
The logical planner cannot handle joins between local and distributed table.
Instead, we can recursively plan one side of the join and let the logical
planner handle the rest.
Our algorithm is a little smart, trying not to recursively plan distributed
tables, but favors local tables.
A utility function is added so that each caller can implement a handler
for each index on a given table. This means that the caller doesn't need
to worry about how to access each index, the only thing that it needs to
do each to implement a function to which each index on the table is
passed iteratively.
When Citus needs to parallelize queries on the local node (e.g., the node
executing the distributed query and the shards are the same), we need to
be mindful about the connection management. The reason is that the client
backends that are running distributed queries are competing with the client
backends that Citus initiates to parallelize the queries in order to get
a slot on the max_connections.
In that regard, we implemented a "failover" mechanism where if the distributed
queries cannot get a connection, the execution failovers the tasks to the local
execution.
The failover logic is follows:
- As the connection manager if it is OK to get a connection
- If yes, we are good.
- If no, we fail the workerPool and the failure triggers
the failover of the tasks to local execution queue
The decision of getting a connection is follows:
/*
* For local nodes, solely relying on citus.max_shared_pool_size or
* max_connections might not be sufficient. The former gives us
* a preview of the future (e.g., we let the new connections to establish,
* but they are not established yet). The latter gives us the close to
* precise view of the past (e.g., the active number of client backends).
*
* Overall, we want to limit both of the metrics. The former limit typically
* kics in under regular loads, where the load of the database increases in
* a reasonable pace. The latter limit typically kicks in when the database
* is issued lots of concurrent sessions at the same time, such as benchmarks.
*/
When distributing a columnar table, as well as changing options on a distributed columnar table, this patch will forward the settings from the coordinator to the workers.
For propagating options changes on an already distributed table this change is pretty straight forward. Before applying the change in options locally we will create a `DDLJob` that contains a call to `alter_columnar_table_set(...)` for every shard placement with all settings of the current table. This goes both for setting an option as well as resetting. This will reset the values to the defaults configured on the coordinator. Having the effect that the coordinator is authoritative on the settings and makes sure the shards have the same settings set as the table on the coordinator.
When a columnar table is distributed it is using the `TableDDLCommand` infra structure to create a new kind of `TableDDLCommand`. This new type, called a `TableDDLCommandFunction` contains a context and 2 function pointers to execute. One function returns the command as applied on the table, the second function will return the sql command to apply to a shard with a given shard id. The schema name is ignored as it will use the fully qualified name of the shard in the same schema as the base table.
Multi-row execution already uses sequential execution. When shards
are local, using local execution is profitable as it avoids
an extra connection establishment to the local node.
If MemoryContextAlloc errors out -e.g. during an OOM-, ConnectionHashEntry->connections
stays as NULL.
With this commit, we add isValid flag to ConnectionHashEntry that should be set to true
right after we allocate & initialize ConnectionHashEntry->connections list properly, and we
check it before accesing to ConnectionHashEntry->connections.
Columnar options were by accident linked to the relfilenode instead of the regclass/relation oid. This PR moves everything related to columnar options to their own catalog table.
Refactor internals on how Citus creates the SQL commands it sends to recreate shards.
Before Citus collected solely ddl commands as `char *`'s to recreate a table. If they were used to create a shard they were wrapped with `worker_apply_shard_ddl_command` and send to the workers. On the workers the UDF wrapping the ddl command would rewrite the parsetree to replace tables names with their shard name equivalent.
This worked well, but poses an issue when adding columnar. Due to limitations in Postgres on creating custom options on table access methods we need to fall back on a UDF to set columnar specific options. Now, to recreate the table, we can not longer rely on having solely DDL statements to recreate a table.
A prototype was made to run this UDF wrapped in `worker_apply_shard_ddl_command`. This became pretty messy, hard to understand and subsequently hard to maintain.
This PR proposes a refactor of the internal representation of table ddl commands into a `TableDDLCommand` structure. The current implementation only supports a `char *` as its contents. Based on the use of the DDL statement (eg. creating the table -mx- or creating a shard) one of two different functions can be called to get the statement to send to the worker:
- `GetTableDDLCommand(TableDDLCommand *command)`: This function returns that ddl command to create the table. In this implementation it will just return the `char *`. This has the same functionality as getting the old list and not wrapping it.
- `GetShardedTableDDLCommand(TableDDLCommand *command, uint64 shardId, char *schemaName)`: This function returns the ddl command wrapped in `worker_apply_shard_ddl_command` with the `shardId` as an argument. Due to backwards compatibility it also accepts a. `schemaName`. The exact purpose is not directly clear. Ideally new implementations would work with fully qualified statements and ignore the `schemaName`.
A future implementation could accept 2.function pointers and a `void *` for context to let the two pointers work on. This gives greater flexibility in controlling what commands get send in which situations. Also, in a future, we could implement the intermediate step of creating the `parsetree` datastructure of statements based on the contents in the catalog with a corresponding deparser. For sharded queries a mutator could be ran over the parsetree to rewrite the tablenames to the names with the shard identifier. This will completely omit the requirement for `worker_apply_shard_ddl_command`.
Considering the adaptive connection management
improvements that we plan to roll soon, it makes it
very helpful to know the number of active client
backends.
We are doing this addition to simplify yhe adaptive connection
management for single node Citus. In single node Citus, both the
client backends and Citus parallel queries would compete to get
slots on Postgres' `max_connections` on the same Citus database.
With adaptive connection management, we have the counters for
Citus parallel queries. That helps us to adaptively decide
on the remote executions pool size (e.g., throttle connections
if necessary).
However, we do not have any counters for the total number of
client backends on the database. For single node Citus, we
should consider all the client backends, not only the remote
connections that Citus does.
Of course Postgres internally knows how many client
backends are active. However, to get that number Postgres
iterates over all the backends. For examaple, see [pg_stat_get_db_numbackends](8e90ec5580/src/backend/utils/adt/pgstatfuncs.c (L1240))
where Postgres iterates over all the backends.
For our purpuses, we need this information on every connection
establishment. That's why we cannot affort to do this kind of
iterattion.
Before this commit, we let AdaptiveExecutorPreExecutorRun()
to be effective multiple times on every FETCH on cursors.
That does not affect the correctness of the query results,
but adds significant overhead.
TableAM API doesn't allow us to pass around a state variable along all of the tuple inserts belonging to the same command. We require this in columnar store, since we batch them, and when we have enough rows we flush them as stripes.
To do that, we keep a (relfilenode) -> stack of (subxact id, TableWriteState) global mapping.
**Inserts**
Whenever we want to insert a tuple, we look up for the relation's relfilenode in this mapping. If top of the stack matches current subtransaction, we us the existing TableWriteState. Otherwise, we allocate a new TableWriteState and push it on top of stack.
**(Sub)Transaction Commit/Aborts**
When the subtransaction or transaction is committed, we flush and pop all entries matching current SubTransactionId.
When the subtransaction or transaction is committed, we pop all entries matching current SubTransactionId and discard them without flushing.
**Reads**
Since we might have unwritten rows which needs to be read by a table scan, we flush write states on SELECTs. Since flushing the write state of upper transactions in a subtransaction will cause metadata being written in wrong subtransaction, we ERROR out if any of the upper subtransactions have unflushed rows.
**Table Drops**
We record in which subtransaction the table was dropped. When committing a subtransaction in which table was dropped, we propagate the drop to upper transaction. When aborting a subtransaction in which table was dropped, we mark table as not deleted.
If one wishes to iterate through a List and insert list elements in
PG13, it is not safe to use for_each_ptr as the List representation
in PostgreSQL no longer linked lists, but arrays, and it is possible
that the whole array is repalloc'ed if ther is not sufficient space
available.
See postgres commit 1cff1b95ab6ddae32faa3efe0d95a820dbfdc164 for more
information
When a relation is used on an OUTER JOIN with FALSE filters,
set_rel_pathlist_hook may not be called for the table.
There might be other cases as well, so do not rely on the hook
for classification of the tables.
RemoveDuplicateJoinRestrictions() function was introduced with the aim of decrasing the overall planning times by eliminating the duplicate JOIN restriction entries (#1989). However, it turns out that the function itself is so CPU intensive with a very high algorithmic complexity, it hurts a lot more than it helps. The function is a clear example of premature optimization.
The table below shows the difference clearly:
"distributed query planning
time master" RemoveDuplicateJoinRestrictions() execution time on master "Remove the function RemoveDuplicateJoinRestrictions()
this PR"
5 table INNER JOIN 9 msec 2msec 7 msec
10 table INNER JOIN 227 msec 194 msec 29 msec
20 table INNER JOIN 1 sec 235 msec 1 sec 139 msec 90 msecs
50 table INNER JOIN 24 seconds 21 seconds 1.5 seconds
100 table INNER JOIN 2 minutes 16 secods 1 minute 53 seconds 23 seconds
250 table INNER JOIN Bottleneck on JoinClauseList 18 minutes 52 seconds Bottleneck on JoinClauseList
5 table INNER JOIN in subquery 9 msec 0 msec 6 msec
10 table INNER JOIN subquery 33 msec 10 msec 32 msec
20 table INNER JOIN subquery 132 msec 67 msec 123 msec
50 table INNER JOIN subquery 1.2 seconds 900 msec 500 msec
100 table INNER JOIN subquery 6 seconds 5 seconds 2 seconds
250 table INNER JOIN subquery 54 seconds 37 seconds 20 seconds
5 table LEFT JOIN 5 msec 0 msec 5 msec
10 table LEFT JOIN 11 msec 0 msec 13 msec
20 table LEFT JOIN 26 msec 2 msec 30 msec
50 table LEFT JOIN 150 msec 15 msec 193 msec
100 table LEFT JOIN 757 msec 71 msec 722 msec
250 table LEFT JOIN 8 seconds 600 msec 8 seconds
5 JOINs among 2 table JOINs 37 msec 11 msec 25 msec
10 JOINs among 2 table JOINs 536 msec 306 msec 352 msec
20 JOINs among 2 table JOINs 794 msec 181 msec 640 msec
50 JOINs among 2 table JOINs 25 seconds 2 seconds 22 seconds
100 JOINs among 2 table JOINs Bottleneck on JoinClauseList 9 seconds Bottleneck on JoinClauseList
150 JOINs among 2 table JOINs Bottleneck on JoinClauseList 46 seconds Bottleneck on JoinClauseList
On top of the performance penalty, the function had a critical bug #4255, and with #4254 we hit one more important bug. It should be fixed by adding the followig check to the ContextCoversJoinRestriction():
```
static bool
JoinRelIdsSame(JoinRestriction *leftRestriction, JoinRestriction *rightRestriction)
{
Relids leftInnerRelIds = leftRestriction->innerrel->relids;
Relids rightInnerRelIds = rightRestriction->innerrel->relids;
if (!bms_equal(leftInnerRelIds, rightInnerRelIds))
{
return false;
}
Relids leftOuterRelIds = leftRestriction->outerrel->relids;
Relids rightOuterRelIds = rightRestriction->outerrel->relids;
if (!bms_equal(leftOuterRelIds, rightOuterRelIds))
{
return false;
}
return true;
}
```
However, adding this eliminates all the benefits tha RemoveDuplicateJoinRestrictions() brings.
I've used the commands here to generate the JOINs mentioned in the PR: https://gist.github.com/onderkalaci/fe8654f9df5916c7af4c7c5eb892561e#file-gistfile1-txt
Inner and outer JOINs behave roughly the same, to simplify the table only added INNER joins.
* Fix incorrect join related fields
Ruleutils expect to give the original index of join columns hence we
should consider the dropped columns while setting the fields in
SetJoinRelatedFieldsCompat.
* add some more tests for joins
* Move tests to join.sql and create a utility function
Disallow `ON TRUE` outer joins with reference & distributed tables
when reference table is outer relation by fixing the logic bug made
when calling `LeftListIsSubset` function.
Also, be more defensive when removing duplicate join restrictions
when join clause is empty for non-inner joins as they might still
contain useful information for non-inner joins.
It seems like Postgres could call set_rel_pathlist() for
the same relation multiple times. This breaks the logic
where we assume relationCount eqauls to the number of
entries in relationRestrictionList.
In summary, relationRestrictionList may contain duplicate
entries.
With this commit, we make sure that local execution adds the
intermediate result size as the distributed execution adds. Plus,
it enforces the citus.max_intermediate_result_size value.
We should not access CurrentLocalExecutionStatus directly because that
would mean that we could also set it directly, which we shouldn't
because we have checks to see if the new state is possible, otherwise we
error.
Citus has the logic to truncate the long shard names to prevent
various issues, including self-deadlocks. However, for partitioned
tables, when index is created on the parent table, the index names
on the partitions are auto-generated by Postgres. We use the same
Postgres function to generate the index names on the shards of the
partitions. If the length exceeds the limit, we switch to sequential
execution mode.
After the connection timeout, we fail the session/pool. However, the
underlying connection can still be trying to connect. That is dangerous
because the new placement executions have already been in place. The
executor cannot handle the situation where multiple of
EXECUTION_ORDER_ANY task executions succeeds.
Adding a regression test doesn't seem easily doable. To reproduce the issue
- Add 2 worker nodes
- create a reference table
- set citus.node_connection_timeout to 1ms (requires code change)
- Continiously execute `SELECT count(*) FROM ref_table`
- Sometime later, you hit an out-of-array access in
`ScheduleNextPlacementExecution()` hence crashing.
- The reason for that is sometimes the first connection
successfully established while the executor is already
trying to execute the query on the second node.
Add sort method parameter for regression tests
Fix check-style
Change sorting method parameters to enum
Polish
Add task fields to OutTask
Add test into multi_explain
Fix isolation test
* Not take ShareUpdateExlusiveLock on pg_dist_transaction
We were taking ShareUpdateExlusiveLock on pg_dist_transaction during
recovery to prevent multiple recoveries happening concurrenly. VACUUM(
not FULL) also takes ShareUpdateExclusiveLock, and they can conflict. It
seems that VACUUM will skip the table if there is a conflicting lock
already taken unless it is doing the vacuum to prevent id wraparound, in
which case there can be a deadlock. I guess the deadlock happens if:
- VACUUM takes a lock on pg_dist_transaction and is done for id
wraparound problem
- The transaction in the maintenance tries to take a lock but
cannot as that conflicts with the lock acquired by VACUUM
- The transaction in the maintenance daemon has a very old xid hence
VACUUM cannot proceed.
If we take a row exclusive lock in transaction recovery then it wouldn't
conflict with VACUUM hence it could proceed so the deadlock would be
resolved. To prevent concurrent transaction recoveries happening, an
advisory lock is taken with ShareUpdateExlusiveLock as before.
* Use CITUS_OPERATIONS tag
* Not allow removing a single node with ref tables
We should not allow removing a node if it is the only node in the
cluster and there is a data on it. We have this check for distributed
tables but we didn't have it for reference tables.
* Update src/test/regress/expected/single_node.out
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
* Update src/test/regress/sql/single_node.sql
Co-authored-by: Onur Tirtir <onurcantirtir@gmail.com>
This commit brings following features:
Foreign key support from citus local tables to reference tables
* Foreign key support from reference tables to citus local tables
(only with RESTRICT & NO ACTION behavior)
* ALTER TABLE ENABLE/DISABLE trigger command support
* CREATE/DROP/ALTER trigger command support
and disallows:
* ALTER TABLE ATTACH/DETACH PARTITION commands
* CREATE TABLE <postgres table> ATTACH PARTITION <citus local table>
commands
* Foreign keys from postgres tables to citus local tables
(the other way was already disallowed)
for citus local tables.
Introduce table entry utility functions
Citus table cache entry utilities are introduced so that we can easily
extend existing functionality with minimum changes, specifically changes
to these functions. For example IsNonDistributedTableCacheEntry can be
extended for citus local tables without the need to scan the whole
codebase and update each relevant part.
* Introduce utility functions to find the type of tables
A table type can be a reference table, a hash/range/append distributed
table. Utility methods are created so that we don't have to worry about
how a table is considered as a reference table etc. This also makes it
easy to extend the table types.
* Add IsCitusTableType utilities
* Rename IsCacheEntryCitusTableType -> IsCitusTableTypeCacheEntry
* Change citus table types in some checks
create_distributed_function(function_name,
distribution_arg_name,
colocate_with text)
This UDF did not allow colocate_with parameters when there were no
disttribution_arg_name supplied. This commit changes the behaviour to
allow missing distribution_arg_name parameters when the function should
be colocated with a reference table.
FindNodeCheck is not clear about what the function is doing. They are
renamed to FindNodeMatchingCheckFunctionXXX. Also for choosing elements in these
functions, CheckNodeFunc type is introduced.
It seems that currently we process even postgres tables in explain
commands. This is because we register a hook for explain and we don't
have any check to see if the query has any citus table.
With this commit, we now send the buffer usage as well to the relevant
API. There is some duplicate in the code but it is because of the
existing structure, we can refactor this separately.
The codebase is updated to use varattnosync and varnosyn and we defined
the macros for older versions. This way we can just remove the macros
when we drop an older version.
CMDTAG_SELECT exists in PG12 hence defining a MACRO such as
CMDTAG_SELECT -> "SELECT" is not possible. I chose CMDTAG_SELECT_COMPAT
because with the COMPAT suffix it is explicit that it maps to different
things in different versions and also has a less chance of mapping
something irrevelant. For example if we used SELECT as a macro, then it
would map every SELECT to whatever it is mapping to, which might have
unexpected/undesired behaviour.
The error message when index has opclassopts is improved and the commit
from postgres side is also included for future reference.
Also some minor style related changes are applied.
This commit mostly adds pg_get_triggerdef_command to our ruleutils_13.
This doesn't add anything extra for ruleutils 13 so it is basically a copy
of the change on ruleutils_12
Postgres introduced QueryCompletion struct. Hence a compat utility is
added to finish query completion for older versions and pg >= 13.
The commit on Postgres side:
2f9661311b83dc481fc19f6e3bda015392010a40
addRangeTableEntryXXX methods return a ParseNamespaceItem with pg >= 13.
RangeTableEntryFromNSItem macro is added so that we return the range
table entry from the ParseNamespaceItem in pg>=13 and for pg < 13 rte
would already be returned with addRangeTableEntryXXX methods.
Commit on Postgres side:
5815696bc66b3092f6361f53e0394909647042c8
Since PG13 changed the list, a listcell doesn't contain data anymore.
Therefore Set_ptr_value macro is created, so that depending on the
version it will either use cell->data.ptr_value or cell->ptr_value.
Commit on Postgres side:
1cff1b95ab6ddae32faa3efe0d95a820dbfdc164
With PG13 varoattno and varnoold fields were renamed as varattnosyn and
varnosyn. A macro is defined for these.
Commit on Postgres side:
9ce77d75c5ab094637cc4a446296dc3be6e3c221
Command on Postgres side:
git log --all --grep="varoattno"
Since ExplainOnePlan expects BufferUsage as well with PG >= 13,
ExplainOnePlanCompat is added.
Commit on Postgres side:
ed7a5095716ee498ecc406e1b8d5ab92c7662d10
PortalDefineQuery doesn't accept char* for command tag anymore with PG
>= 13. We are currently only using it with Select, therefore a Portal
define query compat for select is created.
Commit on PG side:
2f9661311b83dc481fc19f6e3bda015392010a40
As the new planner and pg_plan_query_compat methods expect the query
string as well, macros are defined to be compatible in different
versions of postgres.
Relevant commit on Postgres:
6aba63ef3e606db71beb596210dd95fa73c44ce2
Command on Postgres:
git log --all --grep="pg_plan_query"
With PG13 heap_* (heap_open, heap_close etc) are replaced with table_*
(table_open, table_close etc).
It is better to use the new table access methods in the codebase and
define the macros for the previous versions as we can easily remove the
macro without having to change the codebase when we drop the support for
the old version.
Commits that introduced this change on Postgres:
f25968c49697db673f6cd2a07b3f7626779f1827
e0c4ec07284db817e1f8d9adfb3fffc952252db0
4b21acf522d751ba5b6679df391d5121b6c4a35f
Command to see relevant commits on Postgres side:
git log --all --grep="heap_open"
Pass the list to lnext API
lnext API now expects the list as well.
The commit on Postgres that introduced the change: 1cff1b95ab6ddae32faa3efe0d95a820dbfdc164
lnext_compat and list_delete_cell_compat macros are introduced so that
we can use these macros in the codebase without having to use #if
directives in the codebase.
Related commit on postgres:
1cff1b95ab6ddae32faa3efe0d95a820dbfdc164
Command to search in postgres:
git log --all --grep="list_delete_cell"
add ListCellAndListWrapper
When iterating a list in separate function calls, we need both the list
and the current cell starting from PG13, therefore
ListCellAndListWrapper is added to store both as a wrapper.
Use ListCellAndListWrapper in foreign key test udfs
As we iterate a list in these udfs using a functionContext, we need to
use the wrapper to be able to access both the list and the current cell.
With this patch, we introduce `locally_reserved_shared_connections.c/h` files
which are responsible for reserving some space in shared memory counters
upfront.
We sometimes need to reserve connections, but not necessarily
establish them. For example:
- COPY command should reserve connections as it cannot know which
connections it needs in which order. COPY establishes connections
as any input data hits the workers. For example, for router COPY
command, it only establishes 1 connection.
As discussed here (https://github.com/citusdata/citus/pull/3849#pullrequestreview-431792473),
COPY needs to reserve connections up-front, otherwise we can end
up with resource starvation/un-detected deadlocks.
* Use CalculateUniformHashRangeIndex in HashPartitionId
INT32_MIN definition can change among different platforms hence it is
possible to get overflow, we would see crashes because of this in debian
distros. We have already solved a similar problem with introducing
CalculateUniformHashRangeIndex method, hence to solve it we can use the
same method, this also removes some duplication and has a single place
to decide that.
* Use PG_INT32_XX instead of INT32_XX to be safer
1) Rename CONNECTION_PER_PLACEMENT to REQUIRE_CLEAN_CONNECTION. This is
mostly to make things clear as the new name reveals more.
2) We also make sure that mark all the copy connections critical,
even if they are accessed earlier in the transction
The executor relies on WorkerPool, and many other places rely on WorkerNode.
With this commit, we make sure that they are sorted via the same function/logic.
Some GUCs support a list of values which is indicated by GUC_LIST_INPUT flag.
When an ALTER ROLE .. SET statement is executed, the new configuration
default for affected users and databases are stored in the
setconfig(text[]) column in a pg_db_role_setting record.
If a GUC that supports a list of values is used in an ALTER ROLE .. SET
statement, we need to split the text into items delimited by commas.
* use adaptive executor even if task-tracker is set
* Update check-multi-mx tests for adaptive executor
Basically repartition joins are enabled where necessary. For parallel
tests max adaptive executor pool size is decresed to 2, otherwise we
would get too many clients error.
* Update limit_intermediate_size test
It seems that when we use adaptive executor instead of task tracker, we
exceed the intermediate result size less in the test. Therefore updated
the tests accordingly.
* Update multi_router_planner
It seems that there is one problem with multi_router_planner when we use
adaptive executor, we should fix the following error:
+ERROR: relation "authors_range_840010" does not exist
+CONTEXT: while executing command on localhost:57637
* update repartition join tests for check-multi
* update isolation tests for repartitioning
* Error out if shard_replication_factor > 1 with repartitioning
As we are removing the task tracker, we cannot switch to it if
shard_replication_factor > 1. In that case, we simply error out.
* Remove MULTI_EXECUTOR_TASK_TRACKER
* Remove multi_task_tracker_executor
Some utility methods are moved to task_execution_utils.c.
* Remove task tracker protocol methods
* Remove task_tracker.c methods
* remove unused methods from multi_server_executor
* fix style
* remove task tracker specific tests from worker_schedule
* comment out task tracker udf calls in tests
We were using task tracker udfs to test permissions in
multi_multiuser.sql. We should find some other way to test them, then we
should remove the commented out task tracker calls.
* remove task tracker test from follower schedule
* remove task tracker tests from multi mx schedule
* Remove task-tracker specific functions from worker functions
* remove multi task tracker extra schedule
* Remove unused methods from multi physical planner
* remove task_executor_type related things in tests
* remove LoadTuplesIntoTupleStore
* Do initial cleanup for repartition leftovers
During startup, task tracker would call TrackerCleanupJobDirectories and
TrackerCleanupJobSchemas to clean up leftover directories and job
schemas. With adaptive executor, while doing repartitions it is possible
to leak these things as well. We don't retry cleanups, so it is possible
to have leftover in case of errors.
TrackerCleanupJobDirectories is renamed as
RepartitionCleanupJobDirectories since it is repartition specific now,
however TrackerCleanupJobSchemas cannot be used currently because it is
task tracker specific. The thing is that this function is a no-op
currently.
We should add cleaning up intermediate schemas to DoInitialCleanup
method when that problem is solved(We might want to solve it in this PR
as well)
* Revert "remove task tracker tests from multi mx schedule"
This reverts commit 03ecc0a681.
* update multi mx repartition parallel tests
* not error with task_tracker_conninfo_cache_invalidate
* not run 4 repartition queries in parallel
It seems that when we run 4 repartition queries in parallel we get too
many clients error on CI even though we don't get it locally. Our guess
is that, it is because we open/close many connections without doing some
work and postgres has some delay to close the connections. Hence even
though connections are removed from the pg_stat_activity, they might
still not be closed. If the above assumption is correct, it is unlikely
for it to happen in practice because:
- There is some network latency in clusters, so this leaves some times
for connections to be able to close
- Repartition joins return some data and that also leaves some time for
connections to be fully closed.
As we don't get this error in our local, we currently assume that it is
not a bug. Ideally this wouldn't happen when we get rid of the
task-tracker repartition methods because they don't do any pruning and
might be opening more connections than necessary.
If this still gives us "too many clients" error, we can try to increase
the max_connections in our test suite(which is 100 by default).
Also there are different places where this error is given in postgres,
but adding some backtrace it seems that we get this from
ProcessStartupPacket. The backtraces can be found in this link:
https://circleci.com/gh/citusdata/citus/138702
* Set distributePlan->relationIdList when it is needed
It seems that we were setting the distributedPlan->relationIdList after
JobExecutorType is called, which would choose task-tracker if
replication factor > 1 and there is a repartition query. However, it
uses relationIdList to decide if the query has a repartition query, and
since it was not set yet, it would always think it is not a repartition
query and would choose adaptive executor when it should choose
task-tracker.
* use adaptive executor even with shard_replication_factor > 1
It seems that we were already using adaptive executor when
replication_factor > 1. So this commit removes the check.
* remove multi_resowner.c and deprecate some settings
* remove TaskExecution related leftovers
* change deprecated API error message
* not recursively plan single relatition repartition subquery
* recursively plan single relation repartition subquery
* test depreceated task tracker functions
* fix overlapping shard intervals in range-distributed test
* fix error message for citus_metadata_container
* drop task-tracker deprecated functions
* put the implemantation back to worker_cleanup_job_schema_cachesince citus cloud uses it
* drop some functions, add downgrade script
Some deprecated functions are dropped.
Downgrade script is added.
Some gucs are deprecated.
A new guc for repartition joins bucket size is added.
* order by a test to fix flappiness
We were using ALL_WORKERS TargetWorkerSet while sending temporary schema
creation and cleanup. We(well mostly I) thought that ALL_WORKERS would also include coordinator when it is added as a worker. It turns out that it was FILTERING OUT the coordinator even if it is added as a worker to the cluster.
So to have some context here, in repartitions, for each jobId we create
(at least we were supposed to) a schema in each worker node in the cluster. Then we partition each shard table into some intermediate files, which is called the PARTITION step. So after this partition step each node has some intermediate files having tuples in those nodes. Then we fetch the partition files to necessary worker nodes, which is called the FETCH step. Then from the files we create intermediate tables in the temporarily created schemas, which is called a MERGE step. Then after evaluating the result, we remove the temporary schemas(one for each job ID in each node) and files.
If node 1 has file1, and node 2 has file2 after PARTITION step, it is
enough to either move file1 from node1 to node2 or vice versa. So we
prune one of them.
In the MERGE step, if the schema for a given jobID doesn't exist, the
node tries to use the `public` schema if it is a superuser, which is
actually added for testing in the past.
So when we were not sending schema creation comands for each job ID to
the coordinator(because we were using ALL_WORKERS flag, and it doesn't
include the coordinator), we would basically not have any schemas for
repartitions in the coordinator. The PARTITION step would be executed on
the coordinator (because the tasks are generated in the planner part)
and it wouldn't give us any error because it doesn't have anything to do
with the temporary schemas(that we didn't create). But later two things
would happen:
- If by chance the fetch is pruned on the coordinator side, we the other
nodes would fetch the partitioned files from the coordinator and execute
the query as expected, because it has all the information.
- If the fetch tasks are not pruned in the coordinator, in the MERGE
step, the coordinator would either error out saying that the necessary
schema doesn't exist, or it would try to create the temporary tables
under public schema ( if it is a superuser). But then if we had the same
task ID with different jobID it would fail saying that the table already
exists, which is an error we were getting.
In the first case, the query would work okay, but it would still not do
the cleanup, hence we would leave the partitioned files from the
PARTITION step there. Hence ensure_no_intermediate_data_leak would fail.
To make things more explicit and prevent such bugs in the future,
ALL_WORKERS is named as ALL_NON_COORD_WORKERS. And a new flag to return
all the active nodes is added as ALL_DATA_NODES. For repartition case,
we don't use the only-reference table nodes but this version makes the
code simpler and there shouldn't be any significant performance issue
with that.
Rename TargetWorkerSet enums to make them more explicit about what they
mean. Ideally it would be good to treat everything as a node without the
'worker' concept because it makes things complicated. Another
improvement could be to rename TargetWorkerSet as TargetNodeSet but it
goes to renaming many occurrences of Worker, which is probably too big
for this PR.
Static analysis found some issues where we used the result from
ExtractResultRelationRTE, without checking that it wasn't NULL. It seems
like in all these cases it can never actually be NULL, since we have checked
before that it isn't a SELECT query. So, this PR is mostly to make static
analysis happy (and protect a bit against future changes of the code).
#3866 removed the shard ID hash in metadata_cache.c to simplify cache management,
but we observed a significant performance regression that was being masked by the
performance improvement provided by #3654 in our benchmarks, but #3654 only
applies to specific workloads.
This PR brings back the shard ID cache as it existed before #3866 with some extra
measures to handle invalidation. When we load a table entry, we overwrite
ShardIdCacheEntry->tableEntry pointers for all the shards in that table, though
it's possible that the table no longer contains the old shard ID or the table
entry is never reloaded, which would leave a dangling pointer once the table
entry is freed. To handle that case, we remove all shard ID cache entries that
point exactly to that table entry when a table is freed (at the end of the
transaction or any call to CitusTableCacheFlushInvalidatedEntries).
Co-authored-by: SaitTalhaNisanci <s.talhanisanci@gmail.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
* Not set TaskExecution with adaptive executor
Adaptive executor is using a utility method from task tracker for
repartition joins, however adaptive executor doesn't need taskExecution.
It is only used by task tracker. This causes a problem when explain
analyze is used because what taskExecution is pointing to might be
random.
We solve this by not setting taskExecution from adaptive executor. So it
will stay NULL as set by CreateTask.
* use same memory context as task for taskExecution
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Shard id to index mapping stored in cache entry as there may now be multiple entries alive for a given relation
insert_select_executor: revert copying cache entry, which was a hack added to avoid memory safety issues
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
This can save a lot of data to be sent in some cases, thus improving
performance for which inter query bandwidth is the bottleneck.
There's some issues with enabling this as default, so that's currently not done.
DESCRIPTION: Adds support to partially push down tdigest aggregates
tdigest extensions: https://github.com/tvondra/tdigest
This PR implements the partial pushdown of tdigest calculations when possible. The extension adds a tdigest type which can be combined into the same structure. There are several aggregate functions that can be used to get;
- a quantile
- a list of quantiles
- the quantile of a hypothetical value
- a list of quantiles for a list of hypothetical values
These function can work both on values or tdigest types.
Since we can create tdigest values either by combining them, or based on a group of values we can rewrite the aggregates in such a way that most of the computation gets delegated to the compute on the shards. This both speeds up the percentile calculations because the values don't have to be sorted while at the same time making the transfer size from the shards to the coordinator significantly less.
We still recursively plan some cases, eg:
- INSERTs
- SELECT FOR UPDATE when reference tables in query
- Everything must be same single shard & replication model
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
Implements worker_save_query_explain_analyze and worker_last_saved_explain_analyze.
worker_save_query_explain_analyze executes and returns results of query while
saving its EXPLAIN ANALYZE to be fetched later.
worker_last_saved_explain_analyze returns the saved EXPLAIN ANALYZE result.
If we want to get necessary lockmode for a relation RangeVar within
a query, we can get the lockmode easily from the RangeVar itself (if
pg version >= 12).
However, if we want to decide the lockmode appropriate for the
"query", we can derive this information by using GetQueryLockMode
according to the code comment from RangeTblEntry->rellockmode.
Implements a new `TupleDestination` interface to allow custom tuple processing per task.
This can be specially useful if a task contains multiple queries. An example of this EXPLAIN
ANALYZE, where it needs to add some UDF calls to the query to fetch the explain output
from worker after fetching the actual query results.
We should check the remove type in IsDropCitusStmt because if the remove
type is not OBJECT_EXTENSION then the stored objects in
dropStmt->objects may not be of type Value. This was crashing PG-13.
Also rename the method as IsDropCitusExtensionStmt.
To reduce code duplication, implement function that pushes search_path
to be NIL and sets addCatalog to true so that all objects outside of
pg_catalog will be schema-prefixed.
SELECT_TASK is renamed to READ_TASK as a SELECT with modifying CTEs will be a MODIFYING_TASK
RouterInsertJob: Assert originalQuery->commandType == CMD_INSERT
CreateModifyPlan: Assert originalQuery->commandType != CMD_SELECT
Remove unused function IsModifyDistributedPlan
DistributedExecution, ExecutionParams, DistributedPlan: Rename hasReturning to expectResults
SELECTs set expectResults to true
Rename CreateSingleTaskRouterPlan to CreateSingleTaskRouterSelectPlan
This PR removes ExecuteUtilityTaskListWithoutResults and uses the same
path for local execution via ExecuteTaskListExtended.
ExecuteUtilityTaskList is added. ExecuteLocalTaskListExtended now has a
parameter for utility commands so that it can call the right method. In
order not to change the existing calls,
ExecuteTaskListExtendedInternal is added, which is the main method that
runs the execution, via local and remote execution.
Physical planner doesn't support parameters. If the parameters have already
been resolved when the physical planner handling the queries, mark it.
The reason is that the executor is unaware of this, and sends the parameters
along with the worker queries, which fails for composite types.
(See `DissuadePlannerFromUsingPlan()` for the details of paramater resolving)
As reported in #3787, we were having issues while building citus with "GCC Red Hat 10" (maybe in some other versions of gcc as well).
Fixes "multiple definition of 'CitusNodeTagNames'" error by explicitly specifying storage of CitusNodeTagNames to be extern.
This copies over fixes from reference counting branch,
all CitusTableCacheEntry data may be freed when a GetCitusTableCacheEntry call occurs for its relationId
This fix is not complete, but reference counting is being deferred until 9.4
CopyShardInterval: remove dest parameter, always return newly allocated object
We initially considered removing entries just before any change to
pg_dist_node. However, that ended-up being very complex and making
MX even more complex.
Instead, we're switching to a simpler solution, where we remove entries
when the counter gets to 0.
With certain workloads, this may have some performance penalty. But, two
notes on that:
- When counter == 0, it implies that the cluster is not busy
- With cached connections, that's not possible
When we call SetTaskQueryString we would set the task type to
TASK_QUERY_TEXT, and some parts of the codebase rely on the fact that if
TASK_QUERY_TEXT is set, the data can be read safely. However if
SetTaskQueryString is called with a NULL taskQueryString this can cause
crashes. In that case taskQueryType will simply be set to
TASK_QUERY_NULL.
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
We had 9+ parameters in some of the functions related to execution.
Execution params is created to simplify this a bit so that we can set
only the fields that we are interested in and it is easier to read.
With this commit, we're introducing a new infrastructure to throttle
connections to the worker nodes. This infrastructure is useful for
multi-shard queries, router queries are have not been affected by this.
The goal is to prevent establishing more than citus.max_shared_pool_size
number of connections per worker node in total, across sessions.
To do that, we've introduced a new connection flag OPTIONAL_CONNECTION.
The idea is that some connections are optional such as the second
(and further connections) for the adaptive executor. A single connection
is enough to finish the distributed execution, the others are useful to
execute the query faster. Thus, they can be consider as optional connections.
When an optional connection is not allowed to the adaptive executor, it
simply skips it and continues the execution with the already established
connections. However, it'll keep retrying to establish optional
connections, in case some slots are open again.
We have two variables that are related to local execution status.
TransactionAccessedLocalPlacement and
TransactionConnectedToLocalGroup. Only one of these fields should be
set, however we didn't have any check for this contraint and it was
error prone.
What those two variables are used is that we are trying to understand if
we should use local execution, the current session, or if we should be
using a connection to execute the current query, therefore the tasks. In
the enum, now it is more clear what these variables mean.
Also, now we have a method to change the local execution status. The
method will error if we are trying to transition from a state to a wrong
state. This will help us avoid problems.
We don't need any side channel connections. That is actually
problematic in the sense that it creates extra connections.
Say, citus.max_adaptive_executor_pool_size equals to 1, Citus
ends up using one extra connection for the intermediate results.
Thus, not obeying citus.max_adaptive_executor_pool_size.
In this PR, we remove the following entities from the codebase
to allow further commits to implement not requiring extra connection
for the intermediate results:
- The connection flag REQUIRE_SIDECHANNEL
- The function GivePurposeToConnection
- The ConnectionPurpose struct and related fields
For shardplacements, we were setting nodeid, nodename, nodeport and
nodegroup manually. This makes it very error prone, and it seems that we
already forgot to set some of them. This would mean that they would have
their default values, e.g group id would be 0 when its group id is not
0.
So the implication is that we would have inconsistent worker metadata.
A new method is introduced, and we call the method to set those fields
now, so that as long as we call this method, we won't be setting
inconsistent metadata.
It probably makes sense to have a struct for these fields. We already
have NodeMetadata but it doesn't have nodename or nodeport. So that
could be done over another refactor to make things simpler.
ExecuteTaskListExtended is the common method for different codepaths,
and instead of writing separate local execution logics in different
codepaths, it makes more sense to have the logic here. We still need to
do some refactoring, this is an initial step.
After this commit, we can run create shard commands locally. There is a
special case with shard creation commands. A create shard command might
have a concatenated query string, however local execution did not know
how to execute a task with multiple query strings. This is also
implemented in this commit. We go over each query in the concatenated
query string and plan/execute them one by one.
A more clean solution to this would be to make sure that each task has a
single query. We currently cannot do that because we need to ensure the
task dependencies. However, it would make sense to do that at some point
and it would simplify the code a lot.
ExecuteLocalTaskList doesn't need scanState as it only uses
paramListInfo, distributedPlan and tupleStoreState. It is better to pass
only the variables that the function needs, so that we can call this
function from other places when we dont have scanState.
We had many fields in task related to query strings. It was kind of
complex, and only of them could be set at a time. Therefore it makes
more sense to abstract this and use a union so that it is clear that
only of them should be set.
We have three fields that could have query related strings:
- queryForLocation
- queryStringLazy
- perPlacementQueryStrings
Relatively, they can be set with:
- SetTaskQueryString
- SetTaskQueryIfShouldLazyDeparse
- SetTaskPerPlacementQueryStrings
The direct usage of the query related fields are also removed.
Rename queryForLocalExecution
Currently queryForLocalExecution is only used for deparsing purposes,
therefore it makes sense to rename it to what it is doing.
TaskQueryStringForPlacement simplifies how the executor gets the query
string for a given placement. Task will use the necessary fields to
return the correct query placement string. Executor doesn't need to know
the details for this.
rename TaskQueryString as TaskQueryStringAllPlacements
TaskQueryString returns the query string that will be the same for all
the placements. In INSERT..SELECT the query string can be different for
each placement. Adaptive executor uses TaskQueryStringForPlacement,
which returns the query string for a placement. It makes sense to rename
TaskQueryString as TaskQueryStringAllPlacements as it is returning the
query string for all placements.
rename SetTaskQuery as SetTaskQueryIfShouldLazyDeparse
SetTaskQuery does not always sets the task query. It can set the query
string as well. So it is more clear to name it
SetTaskQueryIfShouldLazyDeparse, since it will set the query not query
string only when we should deparse the query in a lazy way.
It is possible that a task will have different query string for each
placement. This is the case in INSERT..SELECT via repartitioning. When
we are setting task->perPlacementQueryString, we should set
queryStringLazy to NULL. Therefore a method for that purpose is created.
In PostgreSQL, user defaults for config parameters can be changed by
ALTER ROLE .. SET statements. We wish to propagate those defaults
accross the Citus cluster so that the behaviour will be similar in
different workers.
The defaults can either be set in a specific database, or the whole
cluster, similarly they can be set for a single role or all roles.
We propagate the ALTER ROLE .. SET if all the conditions below are met:
- The query affects the current database, or all databases
- The user is already created in worker nodes
Sometimes we have concatenated query strings for a task. However,
when we want to find each query string, it is not a trivial task.
Therefore, it makes sense to store this in task so that when we need
each query string we can easily get it.
Some refactoring:
Consolidate expression which decides whether GROUP BY/HAVING are pushed down
Rename early pullUpIntermediateRows to hasNonDistributableAggregates
Create WorkerColumnName to handle formatting WORKER_COLUMN_FORMAT
Ignore NULL StringInfo pointers to SafeToPushdownWindowFunction
Fix bug where SubqueryPushdownMultiNodeTree mutates supplied Query,
SafeToPushdownWindowFunction requires the original query as it relies on rtable
We cache connections between nodes in our connection management code.
This is good for speed. For security this can be a problem though. If
the user changes settings related to TLS encryption they want those to
be applied to future queries. This is especially important when they did
not have TLS enabled before and now they want to enable it. This can
normally be achieved by changing citus.node_conninfo. However, because
connections are not reopened there will still be old connections that
might not be encrypted at all.
This commit changes that by marking all connections to be shutdown at
the end of their current transaction. This way running transactions will
succeed, even if placement requires connections to be reused for this
transaction. But after this transaction completes any future statements
will use a connection created with the new connection options.
If a connection is requested and a connection is found that is marked
for shutdown, then we don't return this connection. Instead a new one is
created. This is needed to make sure that if there are no running
transactions, then the next statement will not use an old cached
connection, since connections are only actually shutdown at the end of a
transaction.
If two tables have the same distribution column type, we implicitly
colocate them. This is useful since colocation has a big performance
impact in most applications.
When a table is rebalanced, all of the colocated tables are also
rebalanced. If table A and table B are colocated and we want to
rebalance table A, table B will also be rebalanced. We need replica
identity so that logical replication can replicate updates and deletes
during rebalancing. If table B does not have a replica identity we
error out.
A solution to this is to introduce a UDF so that colocation can be
updated. The remaining tables in the colocation group will stay
colocated. For example if table A, B and C are colocated and after
updating table B's colocations, table A and table C stay colocated.
The "updating colocation" step does not move any data around, it only
updated pg_dist_partition and pg_dist_colocation tables. Specifically it
creates a new colocation group for the table and updates the entry in
pg_dist_partition while invalidating any cache.
Citus coordinator (or MX nodes) caches `citus.max_cached_conns_per_worker` connections
per node. This means that, those connections are not terminated after each statement.
Instead, cached to avoid the cost of re-establishment. This is crucial for OLTP performance.
The problem with that approach is that, we never properly handle the termnation of
those cached connections. For instance, when a session on the coordinator disconnects,
you'd see the following logs on the workers:
```
2020-03-20 09:13:39.454 CET [64028] LOG: could not receive data from client: Connection reset by peer
```
With this patch, we're terminating the cached connections properly at the end of the connection.
We can use local copy in INSERT..SELECT, so the check that disables
local execution is removed.
Also a test for local copy where the data size >
LOCAL_COPY_FLUSH_THRESHOLD is added.
use local execution with insert..select
If current transaction is connected to local group we should not use
local copy, because we might not see some of the changes that are made
over the connection to the local group.
A copy will be executed locally if
- Local execution is enabled and current transaction accessed a local placement
- Local execution is enabled and we are inside a transaction block.
So even if local execution is enabled but we are not in a transaction block, the copy will not be run locally.
This will not run locally:
```
COPY distributed_table FROM STDIN;
....
```
This will run locally:
```
SET citus.enable_local_execution to 'on';
BEGIN;
COPY distributed_table FROM STDIN;
COMMIT;
....
```
.
There are 3 ways to do a copy in postgres programmatically:
- from a file
- from a program
- from a callback function
I have chosen to implement it with a callback function, which means that we write the rows of copy from a callback function to the output buffer, which is used to insert tuples into the actual table.
For each shard id, we have a buffer that keeps the current rows to be written, we perform the actual copy operation either when:
- copy buffer for the given shard id reaches to a threshold, which is currently 512KB
- we reach to the end of the copy
The buffer size is debatable(512KB). At a given time, we might allocate (local placement * buffer size) memory at most.
The local copy uses the same copy format as remote copy, which means that we serialize the data in the same format as remote copy and send it locally.
There was also the option to use ExecSimpleRelationInsert to insert
slots one by one, which would avoid the extra
serialization/deserialization but doing some benchmarks it seems that
using buffers are significantly better in terms of the performance.
You can see this comment for more details: https://github.com/citusdata/citus/pull/3557#discussion_r389499054
* reimplement ExecuteUtilityTaskListWithoutResults for local utility command execution
* introduce new functions for local execution of utility commands
* change ErrorIfTransactionAccessedPlacementsLocally logic for local utility command execution
* enable local execution for TRUNCATE command on distributed & reference tables
* update existing tests for local utility command execution
* enable local execution for DDL commands on distributed & reference tables
* enable local execution for DROP command on distributed & reference tables
* add normalization rules for cascaded commands
* add new tests for local utility command execution
New stack memory can contain anything including passwords/private keys.
In these functions we return structs that can have their padding
bytes uninitialized. By first zeroing out the struct fully, we try to
ensure that any data that is in these padding bytes is at least
overwritten once. It might not be zero anymore after setting the fields,
but at least it shouldn't be private data anymore.
Add failing tests, make changes to avoid crashes at least
Fix HAVING subquery pushdown ignoring reference table only subqueries,
also include HAVING in recursive planning
Given that we have a function IsDistributedTable which includes reference tables,
it seems best to have IsDistributedTableRTE & QueryContainsDistributedTableRTE
reflect that they do not include reference tables in their check
Similarly SublinkList's name should reflect that it only scans WHERE
contain_agg_clause asserts that we don't have SubLinks,
use contain_aggs_of_level as suggested by pg sourcecode
As @onderkalaci suggested removing the definition of GetWorkerNodeCount() that can potentially cause misunderstandings.
I can advise using ActiveReadableWorkerNodeCount() that returns the number of active primaries is a safer alternative than GetWorkerNodeCount() that returns the total number of workers containing inactives, primaries, and unavailable nodes. I introduced a bug #3556 and in the bugfix #3564 removed the single usage of said function
DESCRIPTION: satisfy static analysis tool for a nullptr dereference
During the static analysis project on the codebase this code has been flagged as having the potential for a null pointer dereference. Funnily enough the author had already made a comment of it in the code this was not possible due to us setting the schema name before we pass in the statement. If we want to reuse this code in a later setting this comment might not always apply and we could actually run into null pointer dereference.
This patch changes a bit of the code around to first of all make sure there is no NULL pointer dereference in this code anymore.
Secondly we allow for better deparsing by setting and adhering to the `if_not_exists` flag on the statement.
And finally add support for all syntax described in the documentation of postgres (FROM was missing).
Without this commit you could still use varCell in the body of loop.
This makes it easy for bad refactors that still use the ListCell to slip
through unnoticed, because the new ListCell will be named the same as the
one used in the old code. By renaming the ListCell to varCellDoNotUse
this will not happen.
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
We don't actually use these functions anymore since merging #1477.
Advantages of removing:
1. They add work whenever we add a new node.
2. They contain some usage of stdlib APIs that are banned by Microsoft.
Removing it means we don't have to replace those with safe ones.
- Stop the daemon when citus extension is dropped
- Bail on maintenance daemon startup if myDbData is started with a non-zero pid
- Stop maintenance daemon from spawning itself
- Don't use postgres die, just wrap proc_exit(0)
- Assert(myDbData->workerPid == MyProcPid)
The two issues were that multiple daemons could be running for a database,
or that a daemon would be leftover after DROP EXTENSION citus
The root of the problem is that, standard_planner() converts the following qual
```
{OPEXPR
:opno 98
:opfuncid 67
:opresulttype 16
:opretset false
:opcollid 0
:inputcollid 100
:args (
{VAR
:varno 1
:varattno 1
:vartype 25
:vartypmod -1
:varcollid 100
:varlevelsup 0
:varnoold 1
:varoattno 1
:location 45
}
{CONST
:consttype 25
:consttypmod -1
:constcollid 100
:constlen -1
:constbyval false
:constisnull true
:location 51
:constvalue <>
}
)
:location 49
}
```
To
```
(
{CONST
:consttype 16
:consttypmod -1
:constcollid 0
:constlen 1
:constbyval true
:constisnull true
:location -1
:constvalue <>
}
)
```
So, Citus doesn't deal with NULL values in real-time or non-fast path router queries.
And, in the FastPathRouter planner, we check constisnull in DistKeyInSimpleOpExpression().
However, in deferred pruning case, we do not check for isnull for const.
Thus, the fix consists of two parts:
- Let PruneShards() not crash when NULL parameter is passed
- For deferred shard pruning in fast-path queries, explicitly check that we have CONST which is not NULL
Mark existing objects that are not included in distributed object infrastructure
in older versions of Citus (but now should be) as distributed, after updating
Citus successfully.
DESCRIPTION: Fix unnecessary repartition on joins with more than 4 tables
In 9.1 we have introduced support for all CH-benCHmark queries by widening our definitions of joins to include joins with expressions in them. This had the undesired side effect of Q5 regressing on its plan by implementing a repartition join.
It turned out this regression was not directly related to widening of the join clause, nor the schema employed by CH-benCHmark. Instead it had to do with 4 or more tables being joined in a chain. A chain meaning:
```sql
SELECT * FROM a,b,c,d WHERE a.part = b.part AND b.part = c.part AND ....
```
Due to how our join order planner was implemented it would only keep track of 1 of the partition columns when comparing if the join could be executed locally. This manifested in a join chain of 4 tables to _always_ be executed as a repartition join. 3 tables joined in a chain would have the middle table shared by the two outer tables causing the local join possibility to be found.
With this patch we keep a unique list (or set) of all partition columns participating in the join. When a candidate table is checked for a possibility to execute a local join it will check if there is any partition column in that set that matches an equality join clause on the partition column of the candidate table.
By taking into account all partition columns in the left relation it will now find the local join path on >= 4 tables joined in a chain.
fixes: #3276
For example, a PARAM might reside inside a function just because
of a casting of a type such as the follows:
```
{FUNCEXPR
:funcid 1740
:funcresulttype 1700
:funcretset false
:funcvariadic false
:funcformat 2
:funccollid 0
:inputcollid 0
:args (
{PARAM
:paramkind 0
:paramid 15
:paramtype 23
:paramtypmod -1
:paramcollid 0
:location 356
}
)
```
We should recursively check the expression before bailing out.
Sometimes during errors workers will create files while we're deleting intermediate directories
example:
DEBUG: could not remove file "base/pgsql_job_cache/10_0_431": Directory not empty
DETAIL: WARNING from localhost:57637
Previously, the logic for evaluting the functions and the parameters
were the same. That ended-up evaluting the functions inaccurately
on the coordinator. Instead, split the function evaluation logic
from parameter evalution logic.
Previously, we've identified the usedSubPlans by only looking
to the subPlanId.
With this commit, we're expanding it to also include information
on the location of the subPlan.
This is useful to distinguish the cases where the subPlan is used
either on only HAVING or both HAVING and any other part of the query.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
This is purely to enable better performance with prepared statements.
Before this commit, the fast path queries with prepared statements
where the distribution key includes a parameter always went through
distributed planning. After this change, we only go through distributed
planning on the first 5 executions.
In this commit, we're introducing a way to prevent CTE inlining via a GUC.
The GUC is used in all the tests where PG 11 and PG 12 tests would diverge
otherwise.
Note that, in PG 12, the restriction information for CTEs are generated. It
means that for some queries involving CTEs, Citus planner (router planner/
pushdown planner) may behave differently. So, via the GUC, we prevent
tests to diverge on PG 11 vs PG 12.
When we drop PG 11 support, we should get rid of the GUC, and mark
relevant ctes as MATERIALIZED, which does the same thing.
With this commit we add the necessary Citus function to inline CTEs
in a queryTree.
You might ask, why do we need to inline CTEs if Postgres is already
going to do it?
Few reasons behind this decision:
- One techinal node here is that Citus does the recursive CTE planning
by checking the originalQuery which is the query that has not gone
through the standard_planner().
CTEs in Citus is super powerful. It is practically key for full SQL
coverage for multi-shard queries. With CTEs, you can always reduce
any query multi-shard query into a router query via recursive
planning (thus full SQL coverage).
We cannot let CTE inlining break that. The main idea is Citus should
be able to retry planning if anything goes after CTE inlining.
So, by taking ownership of CTE inlining on the originalQuery, Citus
can fallback to recursive planning of CTEs if the planning with the
inlined query fails. It could have been a lot harder if we had relied
on standard_planner() to have the inlined CTEs on the original query.
- We want to have this feature in PostgreSQL 11 as well, but Postgres
only inlines in version 12
We might need to send commands from workers to other workers. In
these cases we shouldn't override the xact id assigned by coordinator,
or otherwise we won't read the consistent set of result files
accross the nodes.
We need to know which placement succeeded in executing the worker_partition_query_result() call. Otherwise we wouldn't know which node to fetch from. This change allows that by introducing Task::perPlacementQueryStrings.
Fixes#3331
In #2389, we've implemented support for partitioned tables with rep > 1.
The implementation is limiting the use of modification queries on the
partitions. In fact, we error out when any partition is modified via
EnsurePartitionTableNotReplicated().
However, we seem to forgot an important case, where the parent table's
partition is marked as INVALID. In that case, at least one of the partition
becomes INVALID. However, we do not mark partitions as INVALID ever.
If the user queries the partition table directly, Citus could happily send
the query to INVALID placements -- which are not marked as INVALID.
This PR fixes it by marking the placements of the partitions as INVALID
as well.
The shard placement repair logic already re-creates all the partitions,
so should be fine in that front.
* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item
Use partition column's collation for range distributed tables
Don't allow non deterministic collations for hash distributed tables
CoPartitionedTables: don't compare unequal types
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
Prevent Citus extension being distributed
Because that could prevent doing rolling upgrades, where users may
prefer to upgrade the version on the coordinator but not the workers.
There could be some other edge cases, so I'd prefer to keep Citus
extension outside the picture for now.
DESCRIPTION: Expression in reference join
Fixed: #2582
This patch allows arbitrary expressions in the join clause when joining to a reference table. An example of such joins could be found in CHbenCHmark queries 7, 8, 9 and 11; `mod((s_w_id * s_i_id),10000) = su_suppkey` and `ascii(substr(c_state,1,1)) = n2.n_nationkey`. Since the join is on a reference table these queries are able to be pushed down to the workers.
To implement these queries we will widen the `IsJoinClause` predicate to not check if the expressions are a type `Var` after stripping the implicit coerciens. Instead we define a join clause when the `Var`'s in a clause come from more than 1 table.
This allows more clauses to pass into the logical planner's `MultiNodeTree(...)` planning function. To compensate for this we tighten down the `LocalJoin`, `SinglePartitionJoin` and `DualPartitionJoin` to check for direct column references when planning. This allows the planner to work with arbitrary join expressions on reference tables.
When the user picks "round-robin" policy, the aim is that the load
is distributed across nodes. However, for reference tables on the
coordinator, since local execution kicks in immediately, round-robin
is ignored.
With this change, we're excluding the placement on the coordinator.
Although the approach seems a little bit invasive because of
modifications in the placement list, that sounds acceptable.
We could have done this in some other ways such as:
1) Add a field to "Task->roundRobinPlacement" (or such), which is
updated as the first element after RoundRobinPolicy is applied.
During the execution, if that placement is local to the coordinator,
skip it and try the other remote placements.
2) On TaskAccessesLocalNode()@local_execution.c, check
task_assignment_policy, if round-robin selected and there is local
placement on the coordinator, skip it. However, task assignment is done
on planning, but this decision is happening on the execution, which
could create weird edge cases.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
This is necassery to support Q20 of the CHbenCHmark: #2582.
To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.
The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
will convert the SEMI JOIN into an INNER JOIN during the planning. It
will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
planning, if it doesn't we replace all SEMI JOINs in the rewritten
query with INNER JOIN (which we already support).
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
It looks like the logic to prevent RETURNING in reference tables to
have duplicate entries that comes from local and remote executions
leads to missing some tuples for distributed tables.
With this PR, we're ensuring to kick in the logic for reference tables
only.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
We've changed the logic for pulling RTE_RELATIONs in #3109 and
non-colocated subquery joins and partitioned tables.
@onurctirtir found this steps where I traced back and found the issues.
While looking into it in more detail, we decided to expand the list in a
way that the callers get all the relevant RTE_RELATIONs RELKIND_RELATION,
RELKIND_PARTITIONED_TABLE, RELKIND_FOREIGN_TABLE and RELKIND_MATVIEW.
These are all relation kinds that Citus planner is aware of.
This completely hides `ListCell` to the user of the loop
Example usage:
```c
WorkerNode *workerNode = NULL;
foreach_ptr(workerNode, workerNodeList) {
// Do stuff with workerNode
}
```
Instead of:
```c
ListCell *workerNodeCell = NULL;
foreach(cell, workerNodeList) {
WorkerNode *workerNode = lfirst(workerNodeCell);
// Do stuff with workerNode
}
```
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
Objectives:
(a) both super user and regular user should have the correct owner for the function on the worker
(b) The transactional semantics would work fine for both super user and regular user
(c) non-super-user and non-function owner would get a reasonable error message if tries to distribute the function
Co-authored-by: @serprex
DESCRIPTION: Disallow distributed functions for functions depending on an extension
Functions depending on an extension cannot (yet) be distributed by citus. If we would allow this it would cause issues with our dependency following mechanism as we stop following objects depending on an extension.
By not allowing functions to be distributed when they depend on an extension as well as not allowing to make distributed functions depend on an extension we won't break the ability to add new nodes. Allowing functions depending on extensions to be distributed at the moment could cause problems in that area.
DESCRIPTION: Propagate CREATE OR REPLACE FUNCTION
Distributed functions could be replaced, which should be propagated to the workers to keep the function in sync between all nodes.
Due to the complexity of deparsing the `CreateFunctionStmt` we actually produce the plan during the processing phase of our utilityhook. Since the changes have already been made in the catalog tables we can reuse `pg_get_functiondef` to get us the generated `CREATE OR REPLACE` sql.
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions
Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
This PR aims to add all the necessary logic to qualify and deparse all possible `{ALTER|DROP} .. {FUNCTION|PROCEDURE}` queries.
As Procedures are introduced in PG11, the code contains many PG version checks. I tried my best to make it easy to clean up once we drop PG10 support.
Here are some caveats:
- I assumed that the parse tree is a valid one. There are some queries that are not allowed, but still are parsed successfully by postgres planner. Such queries will result in errors in execution time. (e.g. `ALTER PROCEDURE p STRICT` -> `STRICT` action is valid for functions but not procedures. Postgres decides to parse them nevertheless.)
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
Since the distributed functions are useful when the workers have
metadata, we automatically sync it.
Also, after master_add_node(). We do it lazily and let the deamon
sync it. That's mainly because the metadata syncing cannot be done
in transaction blocks, and we don't want to add lots of transactional
limitations to master_add_node() and create_distributed_function().
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality
In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.
GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
DESCRIPTION: Rename remote types during type propagation
To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.
This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
DESCRIPTION: Add feature flag to turn off create type propagation
When `citus.enable_create_type_propagation` is set to `false` citus will not propagate `CREATE TYPE` statements to the workers. Types are still distributed when tables that depend on these types are distributed.
This PR simply adds the columns to pg_dist_object and
implements the necessary metadata changes to keep track of
distribution argument of the functions/procedures.
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
/*
* local_executor.c
*
* The scope of the local execution is locally executing the queries on the
* shards. In other words, local execution does not deal with any local tables
* that are not shards on the node that the query is being executed. In that sense,
* the local executor is only triggered if the node has both the metadata and the
* shards (e.g., only Citus MX worker nodes).
*
* The goal of the local execution is to skip the unnecessary network round-trip
* happening on the node itself. Instead, identify the locally executable tasks and
* simply call PostgreSQL's planner and executor.
*
* The local executor is an extension of the adaptive executor. So, the executor uses
* adaptive executor's custom scan nodes.
*
* One thing to note that Citus MX is only supported with replication factor = 1, so
* keep that in mind while continuing the comments below.
*
* On the high level, there are 3 slightly different ways of utilizing local execution:
*
* (1) Execution of local single shard queries of a distributed table
*
* This is the simplest case. The executor kicks at the start of the adaptive
* executor, and since the query is only a single task the execution finishes
* without going to the network at all.
*
* Even if there is a transaction block (or recursively planned CTEs), as long
* as the queries hit the shards on the same, the local execution will kick in.
*
* (2) Execution of local single queries and remote multi-shard queries
*
* The rule is simple. If a transaction block starts with a local query execution,
* all the other queries in the same transaction block that touch any local shard
* have to use the local execution. Although this sounds restrictive, we prefer to
* implement in this way, otherwise we'd end-up with as complex scenarious as we
* have in the connection managements due to foreign keys.
*
* See the following example:
* BEGIN;
* -- assume that the query is executed locally
* SELECT count(*) FROM test WHERE key = 1;
*
* -- at this point, all the shards that reside on the
* -- node is executed locally one-by-one. After those finishes
* -- the remaining tasks are handled by adaptive executor
* SELECT count(*) FROM test;
*
*
* (3) Modifications of reference tables
*
* Modifications to reference tables have to be executed on all nodes. So, after the
* local execution, the adaptive executor keeps continuing the execution on the other
* nodes.
*
* Note that for read-only queries, after the local execution, there is no need to
* kick in adaptive executor.
*
* There are also few limitations/trade-offs that is worth mentioning. First, the
* local execution on multiple shards might be slow because the execution has to
* happen one task at a time (e.g., no parallelism). Second, if a transaction
* block/CTE starts with a multi-shard command, we do not use local query execution
* since local execution is sequential. Basically, we do not want to lose parallelism
* across local tasks by switching to local execution. Third, the local execution
* currently only supports queries. In other words, any utility commands like TRUNCATE,
* fails if the command is executed after a local execution inside a transaction block.
* Forth, the local execution cannot be mixed with the executors other than adaptive,
* namely task-tracker, real-time and router executors. Finally, related with the
* previous item, COPY command cannot be mixed with local execution in a transaction.
* The implication of that any part of INSERT..SELECT via coordinator cannot happen
* via the local execution.
*/
DESCRIPTION: Refactor ensure schema exists to dependency exists
Historically we only supported schema's as table dependencies to be created on the workers before a table gets distributed. This PR puts infrastructure in place to walk pg_depend to figure out which dependencies to create on the workers. Currently only schema's are supported as objects to create before creating a table.
We also keep track of dependencies that have been created in the cluster. When we add a new node to the cluster we use this catalog to know which objects need to be created on the worker.
Side effect of knowing which objects are already distributed is that we don't have debug messages anymore when creating schema's that are already created on the workers.
* Add tuplestore helpers
* More detailed error messages in tuplestore
* Add CreateTupleDescCopy to SetupTuplestore
* Use new SetupTuplestore helper function
* Remove unnecessary copy
* Remove comment about undefined behaviour
See a9c35cf85c
clang raises a warning due to FunctionCall2InfoData technically being variable sized
This is fine, as the struct is the size we want it to be. So silence the warning
master_deactivate_node is updated to decrement the replication factor
Otherwise deactivation could have create_reference_table produce a second record
UpdateColocationGroupReplicationFactor is renamed UpdateColocationGroupReplicationFactorForReferenceTables
& the implementation looks up the record based on distributioncolumntype == InvalidOid, rather than by id
Otherwise the record's replication factor fails to be maintained when there are no reference tables
Before this commit, we've recorded the relation accesses in 3 different
places
- FindPlacementListConnection -- applies all executor in tx block
- StartPlacementExecutionOnSession() -- adaptive executor only
- StartPlacementListConnection() -- router/real-time only
This is different than Citus 8.2, and could lead to query execution times
increase considerably on multi-shard commands in transaction block
that are on partitioned tables.
Benchmarks:
```
1+8 c5.4xlarge cluster
Empty distributed partitioned table with 365 partitions: https://gist.github.com/onderkalaci/1edace4ed6bd6f061c8a15594865bb51#file-partitions_365-sql
./pgbench -f /tmp/multi_shard.sql -c10 -j10 -P 1 -T 120 postgres://citus:w3r6KLJpv3mxe9E-NIUeJw@c.fy5fkjcv45vcepaogqcaskmmkee.db.citusdata.com:5432/citus?sslmode=require
cat /tmp/multi_shard.sql
BEGIN;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
cat /tmp/single_shard.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
COMMIT;
cat /tmp/mix.sql
BEGIN;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list WHERE key = :aid;
DELETE FROM collections_list;
DELETE FROM collections_list;
DELETE FROM collections_list;
COMMIT;
```
The table shows `latency average` of pgbench runs explained above, so we have a pretty solid improvement even over 8.2.2.
| Test | Citus 8.2.2 | Citus 8.3.1 | Citus 8.3.2 (this branch) | Citus 8.3.1 (FKEYs disabled via GUC) |
| ------------- | ------------- | ------------- |------------- | ------------- |
|multi_shard | 2370.083 ms |3605.040 ms |1324.094 ms |1247.255 ms |
| single_shard | 85.338 ms |120.934 ms |73.216 ms | 78.765 ms |
| mix | 2434.459 ms | 3727.080 ms |1306.456 ms | 1280.326 ms |
This causes no behaviorial changes, only organizes better to implement modifying CTEs
Also rename ExtactInsertRangeTableEntry to ExtractResultRelationRTE,
as the source of this function didn't match the documentation
Remove Task's upsertQuery in favor of ROW_MODIFY_NONCOMMUTATIVE
Split up AcquireExecutorShardLock into more internal functions
Tests: Normalize multi_reference_table multi_create_table_constraints
With this commit, we're introducing the Adaptive Executor.
The commit message consists of two distinct sections. The first part explains
how the executor works. The second part consists of the commit messages of
the individual smaller commits that resulted in this commit. The readers
can search for the each of the smaller commit messages on
https://github.com/citusdata/citus and can learn more about the history
of the change.
/*-------------------------------------------------------------------------
*
* adaptive_executor.c
*
* The adaptive executor executes a list of tasks (queries on shards) over
* a connection pool per worker node. The results of the queries, if any,
* are written to a tuple store.
*
* The concepts in the executor are modelled in a set of structs:
*
* - DistributedExecution:
* Execution of a Task list over a set of WorkerPools.
* - WorkerPool
* Pool of WorkerSessions for the same worker which opportunistically
* executes "unassigned" tasks from a queue.
* - WorkerSession:
* Connection to a worker that is used to execute "assigned" tasks
* from a queue and may execute unasssigned tasks from the WorkerPool.
* - ShardCommandExecution:
* Execution of a Task across a list of placements.
* - TaskPlacementExecution:
* Execution of a Task on a specific placement.
* Used in the WorkerPool and WorkerSession queues.
*
* Every connection pool (WorkerPool) and every connection (WorkerSession)
* have a queue of tasks that are ready to execute (readyTaskQueue) and a
* queue/set of pending tasks that may become ready later in the execution
* (pendingTaskQueue). The tasks are wrapped in a ShardCommandExecution,
* which keeps track of the state of execution and is referenced from a
* TaskPlacementExecution, which is the data structure that is actually
* added to the queues and describes the state of the execution of a task
* on a particular worker node.
*
* When the task list is part of a bigger distributed transaction, the
* shards that are accessed or modified by the task may have already been
* accessed earlier in the transaction. We need to make sure we use the
* same connection since it may hold relevant locks or have uncommitted
* writes. In that case we "assign" the task to a connection by adding
* it to the task queue of specific connection (in
* AssignTasksToConnections). Otherwise we consider the task unassigned
* and add it to the task queue of a worker pool, which means that it
* can be executed over any connection in the pool.
*
* A task may be executed on multiple placements in case of a reference
* table or a replicated distributed table. Depending on the type of
* task, it may not be ready to be executed on a worker node immediately.
* For instance, INSERTs on a reference table are executed serially across
* placements to avoid deadlocks when concurrent INSERTs take conflicting
* locks. At the beginning, only the "first" placement is ready to execute
* and therefore added to the readyTaskQueue in the pool or connection.
* The remaining placements are added to the pendingTaskQueue. Once
* execution on the first placement is done the second placement moves
* from pendingTaskQueue to readyTaskQueue. The same approach is used to
* fail over read-only tasks to another placement.
*
* Once all the tasks are added to a queue, the main loop in
* RunDistributedExecution repeatedly does the following:
*
* For each pool:
* - ManageWorkPool evaluates whether to open additional connections
* based on the number unassigned tasks that are ready to execute
* and the targetPoolSize of the execution.
*
* Poll all connections:
* - We use a WaitEventSet that contains all (non-failed) connections
* and is rebuilt whenever the set of active connections or any of
* their wait flags change.
*
* We almost always check for WL_SOCKET_READABLE because a session
* can emit notices at any time during execution, but it will only
* wake up WaitEventSetWait when there are actual bytes to read.
*
* We check for WL_SOCKET_WRITEABLE just after sending bytes in case
* there is not enough space in the TCP buffer. Since a socket is
* almost always writable we also use WL_SOCKET_WRITEABLE as a
* mechanism to wake up WaitEventSetWait for non-I/O events, e.g.
* when a task moves from pending to ready.
*
* For each connection that is ready:
* - ConnectionStateMachine handles connection establishment and failure
* as well as command execution via TransactionStateMachine.
*
* When a connection is ready to execute a new task, it first checks its
* own readyTaskQueue and otherwise takes a task from the worker pool's
* readyTaskQueue (on a first-come-first-serve basis).
*
* In cases where the tasks finish quickly (e.g. <1ms), a single
* connection will often be sufficient to finish all tasks. It is
* therefore not necessary that all connections are established
* successfully or open a transaction (which may be blocked by an
* intermediate pgbouncer in transaction pooling mode). It is therefore
* essential that we take a task from the queue only after opening a
* transaction block.
*
* When a command on a worker finishes or the connection is lost, we call
* PlacementExecutionDone, which then updates the state of the task
* based on whether we need to run it on other placements. When a
* connection fails or all connections to a worker fail, we also call
* PlacementExecutionDone for all queued tasks to try the next placement
* and, if necessary, mark shard placements as inactive. If a task fails
* to execute on all placements, the execution fails and the distributed
* transaction rolls back.
*
* For multi-row INSERTs, tasks are executed sequentially by
* SequentialRunDistributedExecution instead of in parallel, which allows
* a high degree of concurrency without high risk of deadlocks.
* Conversely, multi-row UPDATE/DELETE/DDL commands take aggressive locks
* which forbids concurrency, but allows parallelism without high risk
* of deadlocks. Note that this is unrelated to SEQUENTIAL_CONNECTION,
* which indicates that we should use at most one connection per node, but
* can run tasks in parallel across nodes. This is used when there are
* writes to a reference table that has foreign keys from a distributed
* table.
*
* Execution finishes when all tasks are done, the query errors out, or
* the user cancels the query.
*
*-------------------------------------------------------------------------
*/
All the commits involved here:
* Initial unified executor prototype
* Latest changes
* Fix rebase conflicts to master branch
* Add missing variable for assertion
* Ensure that master_modify_multiple_shards() returns the affectedTupleCount
* Adjust intermediate result sizes
The real-time executor uses COPY command to get the results
from the worker nodes. Unified executor avoids that which
results in less data transfer. Simply adjust the tests to lower
sizes.
* Force one connection per placement (or co-located placements) when requested
The existing executors (real-time and router) always open 1 connection per
placement when parallel execution is requested.
That might be useful under certain circumstances:
(a) User wants to utilize as much as CPUs on the workers per
distributed query
(b) User has a transaction block which involves COPY command
Also, lots of regression tests rely on this execution semantics.
So, we'd enable few of the tests with this change as well.
* For parameters to be resolved before using them
For the details, see PostgreSQL's copyParamList()
* Unified executor sorts the returning output
* Ensure that unified executor doesn't ignore sequential execution of DDLJob's
Certain DDL commands, mainly creating foreign keys to reference tables,
should be executed sequentially. Otherwise, we'd end up with a self
distributed deadlock.
To overcome this situaiton, we set a flag `DDLJob->executeSequentially`
and execute it sequentially. Note that we have to do this because
the command might not be called within a transaction block, and
we cannot call `SetLocalMultiShardModifyModeToSequential()`.
This fixes at least two test: multi_insert_select_on_conflit.sql and
multi_foreign_key.sql
Also, I wouldn't mind scattering local `targetPoolSize` variables within
the code. The reason is that we'll soon have a GUC (or a global
variable based on a GUC) that'd set the pool size. In that case, we'd
simply replace `targetPoolSize` with the global variables.
* Fix 2PC conditions for DDL tasks
* Improve closing connections that are not fully established in unified execution
* Support foreign keys to reference tables in unified executor
The idea for supporting foreign keys to reference tables is simple:
Keep track of the relation accesses within a transaction block.
- If a parallel access happens on a distributed table which
has a foreign key to a reference table, one cannot modify
the reference table in the same transaction. Otherwise,
we're very likely to end-up with a self-distributed deadlock.
- If an access to a reference table happens, and then a parallel
access to a distributed table (which has a fkey to the reference
table) happens, we switch to sequential mode.
Unified executor misses the function calls that marks the relation
accesses during the execution. Thus, simply add the necessary calls
and let the logic kick in.
* Make sure to close the failed connections after the execution
* Improve comments
* Fix savepoints in unified executor.
* Rebuild the WaitEventSet only when necessary
* Unclaim connections on all errors.
* Improve failure handling for unified executor
- Implement the notion of errorOnAnyFailure. This is similar to
Critical Connections that the connection managament APIs provide
- If the nodes inside a modifying transaction expand, activate 2PC
- Fix few bugs related to wait event sets
- Mark placement INACTIVE during the execution as much as possible
as opposed to we do in the COMMIT handler
- Fix few bugs related to scheduling next placement executions
- Improve decision on when to use 2PC
Improve the logic to start a transaction block for distributed transactions
- Make sure that only reference table modifications are always
executed with distributed transactions
- Make sure that stored procedures and functions are executed
with distributed transactions
* Move waitEventSet to DistributedExecution
This could also be local to RunDistributedExecution(), but in that case
we had to mark it as "volatile" to avoid PG_TRY()/PG_CATCH() issues, and
cast it to non-volatile when doing WaitEventSetFree(). We thought that
would make code a bit harder to read than making this non-local, so we
move it here. See comments for PG_TRY() in postgres/src/include/elog.h
and "man 3 siglongjmp" for more context.
* Fix multi_insert_select test outputs
Two things:
1) One complex transaction block is now supported. Simply update
the test output
2) Due to dynamic nature of the unified executor, the orders of
the errors coming from the shards might change (e.g., all of
the queries on the shards would fail, but which one appears
on the error message?). To fix that, we simply added it to
our shardId normalization tool which happens just before diff.
* Fix subeury_and_cte test
The error message is updated from:
failed to execute task
To:
more than one row returned by a subquery or an expression
which is a lot clearer to the user.
* Fix intermediate_results test outputs
Simply update the error message from:
could not receive query results
to
result "squares" does not exist
which makes a lot more sense.
* Fix multi_function_in_join test
The error messages update from:
Failed to execute task XXX
To:
function f(..) does not exist
* Fix multi_query_directory_cleanup test
The unified executor does not create any intermediate files.
* Fix with_transactions test
A test case that just started to work fine
* Fix multi_router_planner test outputs
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix multi_router_planner_fast_path test
The error message is update from:
Could not receive query results
To:
Relation does not exists
which is a lot more clearer for the users
* Fix isolation_copy_placement_vs_modification by disabling select_opens_transaction_block
* Fix ordering in isolation_multi_shard_modify_vs_all
* Add executor locks to unified executor
* Make sure to allocate enought WaitEvents
The previous code was missing the waitEvents for the latch and
postmaster death.
* Fix rebase conflicts for master rebase
* Make sure that TRUNCATE relies on unified executor
* Implement true sequential execution for multi-row INSERTS
Execute the individual tasks executed one by one. Note that this is different than
MultiShardConnectionType == SEQUENTIAL_CONNECTION case (e.g., sequential execution
mode). In that case, running the tasks across the nodes in parallel is acceptable
and implemented in that way.
However, the executions that are qualified here would perform poorly if the
tasks across the workers are executed in parallel. We currently qualify only
one class of distributed queries here, multi-row INSERTs. If we do not enforce
true sequential execution, concurrent multi-row upserts could easily form
a distributed deadlock when the upserts touch the same rows.
* Remove SESSION_LIFESPAN flag in unified_executor
* Apply failure test updates
We've changed the failure behaviour a bit, and also the error messages
that show up to the user. This PR covers majority of the updates.
* Unified executor honors citus.node_connection_timeout
With this commit, unified executor errors out if even
a single connection cannot be established within
citus.node_connection_timeout.
And, as a side effect this fixes failure_connection_establishment
test.
* Properly increment/decrement pool size variables
Before this commit, the idle and active connection
counts were not properly calculated.
* insert_select_executor goes through unified executor.
* Add missing file for task tracker
* Modify ExecuteTaskListExtended()'s signature
* Sort output of INSERT ... SELECT ... RETURNING
* Take partition locks correctly in unified executor
* Alternative implementation for force_max_query_parallelization
* Fix compile warnings in unified executor
* Fix style issues
* Decrement idleConnectionCount when idle connection is lost
* Always rebuild the wait event sets
In the previous implementation, on waitFlag changes, we were only
modifying the wait events. However, we've realized that it might
be an over optimization since (a) we couldn't see any performance
benefits (b) we see some errors on failures and because of (a)
we prefer to disable it now.
* Make sure to allocate enough sized waitEventSet
With multi-row INSERTs, we might have more sessions than
task*workerCount after few calls of RunDistributedExecution()
because the previous sessions would also be alive.
Instead, re-allocate events when the connectino set changes.
* Implement SELECT FOR UPDATE on reference tables
On master branch, we do two extra things on SELECT FOR UPDATE
queries on reference tables:
- Acquire executor locks
- Execute the query on all replicas
With this commit, we're implementing the same logic on the
new executor.
* SELECT FOR UPDATE opens transaction block even if SelectOpensTransactionBlock disabled
Otherwise, users would be very confused and their logic is very likely
to break.
* Fix build error
* Fix the newConnectionCount calculation in ManageWorkerPool
* Fix rebase conflicts
* Fix minor test output differences
* Fix citus indent
* Remove duplicate sorts that is added with rebase
* Create distributed table via executor
* Fix wait flags in CheckConnectionReady
* failure_savepoints output for unified executor.
* failure_vacuum output (pg 10) for unified executor.
* Fix WaitEventSetWait timeout in unified executor
* Stabilize failure_truncate test output
* Add an ORDER BY to multi_upsert
* Fix regression test outputs after rebase to master
* Add executor.c comment
* Rename executor.c to adaptive_executor.c
* Do not schedule tasks if the failed placement is not ready to execute
Before the commit, we were blindly scheduling the next placement executions
even if the failed placement is not on the ready queue. Now, we're ensuring
that if failed placement execution is on a failed pool or session where the
execution is on the pendingQueue, we do not schedule the next task. Because
the other placement execution should be already running.
* Implement a proper custom scan node for adaptive executor
- Switch between the executors, add GUC to set the pool size
- Add non-adaptive regression test suites
- Enable CIRCLE CI for non-adaptive tests
- Adjust test output files
* Add slow start interval to the executor
* Expose max_cached_connection_per_worker to user
* Do not start slow when there are cached connections
* Consider ExecutorSlowStartInterval in NextEventTimeout
* Fix memory issues with ReceiveResults().
* Disable executor via TaskExecutorType
* Make sure to execute the tests with the other executor
* Use task_executor_type to enable-disable adaptive executor
* Remove useless code
* Adjust the regression tests
* Add slow start regression test
* Rebase to master
* Fix test failures in adaptive executor.
* Rebase to master - 2
* Improve comments & debug messages
* Set force_max_query_parallelization in isolation_citus_dist_activity
* Force max parallelization for creating shards when asked to use exclusive connection.
* Adjust the default pool size
* Expand description of max_adaptive_executor_pool_size GUC
* Update warnings in FinishRemoteTransactionCommit()
* Improve session clean up at the end of execution
Explicitly list all the states that the execution might end,
otherwise warn.
* Remove MULTI_CONNECTION_WAIT_RETRY which is not used at all
* Add more ORDER BYs to multi_mx_partitioning
- All the schema creations on the workers will now be via superuser connections
- If a shard is being repaired or a shard is replicated, we will create the
schema only in the relevant worker; and in all the other cases where a schema
creation is needed, we will block operations until we ensure the schema exists
in all the workers
When `master_update_node` is called to update a node's location it waits for appropriate locks to become available. This is useful during normal operation as new operations will be blocked till after the metadata update while running operations have time to finish.
When `master_update_node` is called after a node failure it is less useful to wait for running operations to finish as they can't. The lock being held indicates an operation that once attempted to commit will fail as the machine already failed. Now the downside is the failover is postponed till the termination point of the operation. This has been observed by users to take a significant amount of time causing the rest of the system to be observed unavailable.
With this patch it is possible in such situations to invoke `master_update_node` with 2 optional arguments:
- `force` (bool defaults to `false`): When called with true the update of the metadata will be forced to proceed by terminating conflicting backends. A cancel is not enough as the backend might be in idle time (eg. an interactive session, or going back and forth between an appliaction), therefore a more intrusive solution of termination is used here.
- `lock_cooldown` (int defaults to `10000`): This is the time in milliseconds before conflicting backends are terminated. This is to allow the backends to finish cleanly before terminating them. This allows the user to set an upperbound to the expected time to complete the metadata update, eg. performing the failover.
The functionality is implemented by spawning a background worker that has the task of helping a certain backend in acquiring its locks. The backend is either terminated on successful execution of the metadata update, or once the memory context of the expression gets reset, eg. on a cancel of the statement.
Adds support for propagation of SET LOCAL commands to all workers
involved in a query. For now, SET SESSION (i.e. plain SET) is not
supported whatsoever, though this code is intended as somewhat of a
base for implementing such support in the future.
As SET LOCAL modifications are scoped to the body of a BEGIN/END xact
block, queries wishing to use SET LOCAL propagation must be within such
a block. In addition, subsequent modifications after e.g. any SAVEPOINT
or ROLLBACK statements will correspondingly push or pop variable mod-
ifications onto an internal stack such that the behavior of changed
values across the cluster will be identical to such behavior on e.g.
single-node PostgreSQL (or equivalently, what values are visible to
the end user by running SHOW on such variables on the coordinator).
If nodes enter the set of participants at some point after SET LOCAL
modifications (or SAVEPOINT, ROLLBACK, etc.) have occurred, the SET
variable state is eagerly propagated to them upon their entrance (this
is identical to, and indeed just augments, the existing logic for the
propagation of the SAVEPOINT "stack").
A new GUC (citus.propagate_set_commands) has been added to control this
behavior. Though the code suggests the valid settings are 'none', 'local',
'session', and 'all', only 'none' (the default) and 'local' are presently
implemented: attempting to use other values will result in an error.
This is a preperation for the new executor, where creating shards
would go through the executor. So, explicitly generate the commands
for further processing.
If a query is router executable, it hits a single shard and therefore has a
single task associated with it. Therefore there is no need to sort the task list
that has a single element.
Also we already have a list of active shard placements, sending it in param
and reuse it.
Instead of scattering the code around, we move all the
logic into a single function.
This will help supporting foreign keys to reference tables
in the unified executor with a single line of change, just
calling this function.
The feature is only intended for getting consistent outputs for the regression tests.
RETURNING does not have any ordering gurantees and with unified executor, the ordering
of query executions on the shards are also becoming unpredictable. Thus, we're enforcing
ordering when a GUC is set.
We implicitly add an `ORDER BY` something equivalent of
`
RETURNING expr1, expr2, .. ,exprN
ORDER BY expr1, expr2, .. ,exprN
`
As described in the code comments as well, this is probably not the most
performant approach we could implement. However, since we're only
targeting regression tests, I don't see any issues with that. If we
decide to expand this to a feature to users, we should revisit the
implementation and improve the performance.
Having DATA-segment string literals made blindly freeing the keywords/
values difficult, so I've switched to allocating all in the provided
context; because of this (and with the knowledge of the end point of
the global parameters), we can safely pfree non-global parameters when
we come across an invalid connection parameter entry.
Do it in two ways (a) re-use the rte list as much as possible instead of
re-calculating over and over again (b) Limit the recursion to the relevant
parts of the query tree
Before this commit, shardPlacements were identified with shardId, nodeName
and nodeport. Instead of using nodeName and nodePort, we now use nodeId
since it apparently has performance benefits in several places in the
code.
Before this commit, round-robin task assignment policy was relying
on the taskId. Thus, even inside a transaction, the tasks were
assigned to different nodes. This was especially problematic
while reading from reference tables within transaction blocks.
Because, we had to expand the distributed transaction to many
nodes that are not necessarily already in the distributed transaction.
In this context, we define "Fast Path Planning for SELECT" as trivial
queries where Citus can skip relying on the standard_planner() and
handle all the planning.
For router planner, standard_planner() is mostly important to generate
the necessary restriction information. Later, the restriction information
generated by the standard_planner is used to decide whether all the shards
that a distributed query touches reside on a single worker node. However,
standard_planner() does a lot of extra things such as cost estimation and
execution path generations which are completely unnecessary in the context
of distributed planning.
There are certain types of queries where Citus could skip relying on
standard_planner() to generate the restriction information. For queries
in the following format, Citus does not need any information that the
standard_planner() generates:
SELECT ... FROM single_table WHERE distribution_key = X; or
DELETE FROM single_table WHERE distribution_key = X; or
UPDATE single_table SET value_1 = value_2 + 1 WHERE distribution_key = X;
Note that the queries might not be as simple as the above such that
GROUP BY, WINDOW FUNCIONS, ORDER BY or HAVING etc. are all acceptable. The
only rule is that the query is on a single distributed (or reference) table
and there is a "distribution_key = X;" in the WHERE clause. With that, we
could use to decide the shard that a distributed query touches reside on
a worker node.
Postgresql loads shared libraries before calculating MaxBackends.
However, Citus relies on MaxBackends being set. Thus, with this
commit we use the same steps to calculate MaxBackends while
Citus is being loaded (e.g., PG_Init is called).
Note that this is safe since all the elements that are used to
calculate MaxBackends are PGC_POSTMASTER gucs and a constant
value.