Rename TargetWorkerSet enums to make them more explicit about what they
mean. Ideally it would be good to treat everything as a node without the
'worker' concept because it makes things complicated. Another
improvement could be to rename TargetWorkerSet as TargetNodeSet but it
goes to renaming many occurrences of Worker, which is probably too big
for this PR.
Static analysis found some issues where we used the result from
ExtractResultRelationRTE, without checking that it wasn't NULL. It seems
like in all these cases it can never actually be NULL, since we have checked
before that it isn't a SELECT query. So, this PR is mostly to make static
analysis happy (and protect a bit against future changes of the code).
Static analysis found an issue where we could dereference `NULL`, because
`CreateDummyPlacement` could return `NULL` when there were no workers. This
PR changes it so that it never returns `NULL`, which was intended by
@marcocitus when doing this change: https://github.com/citusdata/citus/pull/3887/files#r438136433
While adding tests for citus on a single node I also added some more basic
tests and it turns out we error out on repartition joins. This has been
present since `shouldhaveshards` was introduced and is not trivial to fix.
So I created a separate issue for this: https://github.com/citusdata/citus/issues/3996
We keep accumulating more and more scripts to flag issues in CI. This is
good, but we are currently missing consistent documentation for them.
This commit moves all these scripts to the `ci` directory and adds some
documentation for all of them in the README. It also makes sure that the
last line of output of a failed script points to this documentation.
#3866 removed the shard ID hash in metadata_cache.c to simplify cache management,
but we observed a significant performance regression that was being masked by the
performance improvement provided by #3654 in our benchmarks, but #3654 only
applies to specific workloads.
This PR brings back the shard ID cache as it existed before #3866 with some extra
measures to handle invalidation. When we load a table entry, we overwrite
ShardIdCacheEntry->tableEntry pointers for all the shards in that table, though
it's possible that the table no longer contains the old shard ID or the table
entry is never reloaded, which would leave a dangling pointer once the table
entry is freed. To handle that case, we remove all shard ID cache entries that
point exactly to that table entry when a table is freed (at the end of the
transaction or any call to CitusTableCacheFlushInvalidatedEntries).
Co-authored-by: SaitTalhaNisanci <s.talhanisanci@gmail.com>
Co-authored-by: Marco Slot <marco.slot@gmail.com>
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
It was possible to get an assertion error, if a DML command was
cancelled that opened a connection and then "ROLLBACK TO SAVEPOINT" was
used to continue the transaction. The reason for this was that canceling
the transaction might leave the `claimedExclusively` flag on for (some
of) it's connections.
This caused an assertion failure because `CanUseExistingConnection`
would return false and a new connection would be opened, and then there
would be two connections doing DML for the same placement. Which is
disallowed. That this situation caused an assertion failure instead of
an error, means that without asserts this could possibly result in some
visibility bugs, similar to the ones described
https://github.com/citusdata/citus/issues/3867
This is so we don't need to calculate it twice in
insert_select_executor.c and multi_explain.c, which can
cause discrepancy if an update in one of them is not
reflected in the other site.
* Not set TaskExecution with adaptive executor
Adaptive executor is using a utility method from task tracker for
repartition joins, however adaptive executor doesn't need taskExecution.
It is only used by task tracker. This causes a problem when explain
analyze is used because what taskExecution is pointing to might be
random.
We solve this by not setting taskExecution from adaptive executor. So it
will stay NULL as set by CreateTask.
* use same memory context as task for taskExecution
Co-authored-by: Jelte Fennema <github-tech@jeltef.nl>
As suggested by @marcocitus in https://github.com/citusdata/citus/pull/3911#issuecomment-643978531, there was
a regression in #3893. If another backend would write a file during deletion of
the intermediate results directory, this file would not necessarily be deleted.
The approach used in `CitusRemoveDirectory` is to try recursive removal of the
directory again if it has failed. This does not work here, since when a file
can not be removed for other reasons (e.g. `EPERM`) it will not throw an error
anymore. So then we would get into an infinite removal loop. Instead I now
`rename` the directory before removing it. That way other backends will not
write files to it anymore.
We sort the workerList because adaptive connection management
(e.g., OPTIONAL_CONNECTION) requires any concurrent executions
to wait for the connections in the same order to prevent any
starvation. If we don't sort, we might end up with:
Execution 1: Get connection for worker 1, wait for worker 2
Execution 2: Get connection for worker 2, wait for worker 1
and, none could proceed. Instead, we enforce every execution establish
the required connections to workers in the same order.
In #3901 the "Data received from worker(s)" sections were added to EXPLAIN
ANALYZE. After merging @pykello posted some review comments. This addresses
those comments as well as fixing a other issues that I found while addressing
them. The things this does:
1. Fix `EXPLAIN ANALYZE EXECUTE p1` to not increase received data on every
execution
2. Fix `EXPLAIN ANALYZE EXECUTE p1(1)` to not return 0 bytes as received data
allways.
3. Move `EXPLAIN ANALYZE` specific logic to `multi_explain.c` from
`adaptive_executor.c`
4. Change naming of new explain sections to `Tuple data received from node(s)`.
Firstly because a task can reference the coordinator too, so "worker(s)" was
incorrect. Secondly to indicate that this is tuple data and not all network
traffic that was performed.
5. Rename `totalReceivedData` in our codebase to `totalReceivedTupleData` to
make it clearer that it's a tuple data counter, not all network traffic.
6. Actually add `binary_protocol` test to `multi_schedule` (woops)
7. Fix a randomly failing test in `local_shard_execution.sql`.
Shard id to index mapping stored in cache entry as there may now be multiple entries alive for a given relation
insert_select_executor: revert copying cache entry, which was a hack added to avoid memory safety issues
Sadly this does not actually work yet for binary protocol data, because
when doing EXPLAIN ANALYZE we send two commands at the same time. This
means we cannot use `SendRemoteCommandParams`, and thus cannot use the
binary protocol. This can still be useful though when using the text
protocol, to find out that a lot of data is being sent.
* Insert select with master query
* Use relid to set custom_scan_tlist varno
* Reviews
* Fixes null check
Co-authored-by: Marco Slot <marco.slot@gmail.com>
This can save a lot of data to be sent in some cases, thus improving
performance for which inter query bandwidth is the bottleneck.
There's some issues with enabling this as default, so that's currently not done.
DESCRIPTION: Adds support to partially push down tdigest aggregates
tdigest extensions: https://github.com/tvondra/tdigest
This PR implements the partial pushdown of tdigest calculations when possible. The extension adds a tdigest type which can be combined into the same structure. There are several aggregate functions that can be used to get;
- a quantile
- a list of quantiles
- the quantile of a hypothetical value
- a list of quantiles for a list of hypothetical values
These function can work both on values or tdigest types.
Since we can create tdigest values either by combining them, or based on a group of values we can rewrite the aggregates in such a way that most of the computation gets delegated to the compute on the shards. This both speeds up the percentile calculations because the values don't have to be sorted while at the same time making the transfer size from the shards to the coordinator significantly less.
We still recursively plan some cases, eg:
- INSERTs
- SELECT FOR UPDATE when reference tables in query
- Everything must be same single shard & replication model
We wrap worker tasks in worker_save_query_explain_analyze() so we can fetch
their explain output later by a call worker_last_saved_explain_analyze().
Fixes#3519Fixes#2347Fixes#2613Fixes#621
This code is not needed anymore since #3668 was merged.
It's actually causing some issues when using the binary Postgres
protocol, because postgres thinks it gets a `bigint` from
the worker, but actually gets an normal `int`.
The query in question that fails is this:
```sql
CREATE TABLE test_table_1(id int, val1 int);
CREATE TABLE test_table_2(id int, val1 bigint);
SELECT create_distributed_table('test_table_1', 'id');
SELECT create_distributed_table('test_table_2', 'id');
INSERT INTO test_table_1 VALUES(1,1),(2,2),(3,3);
INSERT INTO test_table_2 VALUES(1,1),(3,3),(4,5);
SELECT val1
FROM test_table_1 LEFT JOIN test_table_2 USING(id, val1)
ORDER BY 1;
```
The difference in queries that is sent to the workers after this change is this, for this query:
```diff
--- query_old.sql 2020-06-09 09:51:21.460000000 +0200
+++ query_new.sql 2020-06-09 09:51:39.500000000 +0200
@@ -1 +1 @@
-SELECT worker_column_1 AS val1 FROM (SELECT test_table_1.val1 AS worker_column_1 FROM (public.test_table_1_102015 test_table_1(id, val1) LEFT JOIN public.test_table_2_102019 test_table_2(id, val1) USING (id, val1))) worker_subquery
+SELECT worker_column_1 AS val1 FROM (SELECT val1 AS worker_column_1 FROM (public.test_table_1_102015 test_table_1(id, val1) LEFT JOIN public.test_table_2_102019 test_table_2(id, val1) USING (id, val1))) worker_subquery
```
This is a different version of #3634. It also removes SwallowErrors, but
instead of modifying our own functions to not throw errors, it uses the
postgres built in `PathNameDeleteTemporaryDir` function. This function
does not throw errors.
Since this change is for a bugfix, I tried to minimize the changes.
PRs with the following changes would be good to do separately from this
PR:
1. Use PathName(Create|Open|Delete)Temporary(File|Dir) to open and
remove all files/dirs instead of our own custom file functions.
2. Prefix our outmost files/directories with `PG_TEMP_FILE_PREFIX` so
that they are identified by Postgres as temporary files, which will be
removed at postmaster start. This way we do not have to do this cleanup
ourselves.
3. Store the files in the temporary table space if it exists.
Fixes#3634Fixes#3618
Implements worker_save_query_explain_analyze and worker_last_saved_explain_analyze.
worker_save_query_explain_analyze executes and returns results of query while
saving its EXPLAIN ANALYZE to be fetched later.
worker_last_saved_explain_analyze returns the saved EXPLAIN ANALYZE result.
If we want to get necessary lockmode for a relation RangeVar within
a query, we can get the lockmode easily from the RangeVar itself (if
pg version >= 12).
However, if we want to decide the lockmode appropriate for the
"query", we can derive this information by using GetQueryLockMode
according to the code comment from RangeTblEntry->rellockmode.
Implements a new `TupleDestination` interface to allow custom tuple processing per task.
This can be specially useful if a task contains multiple queries. An example of this EXPLAIN
ANALYZE, where it needs to add some UDF calls to the query to fetch the explain output
from worker after fetching the actual query results.
We should check the remove type in IsDropCitusStmt because if the remove
type is not OBJECT_EXTENSION then the stored objects in
dropStmt->objects may not be of type Value. This was crashing PG-13.
Also rename the method as IsDropCitusExtensionStmt.
To reduce code duplication, implement function that pushes search_path
to be NIL and sets addCatalog to true so that all objects outside of
pg_catalog will be schema-prefixed.
Append IF NOT EXISTS to CREATE SERVER commands generated by
pg_get_serverdef_string function when deparsing an existing server
object that a foreign table depends.
SELECT_TASK is renamed to READ_TASK as a SELECT with modifying CTEs will be a MODIFYING_TASK
RouterInsertJob: Assert originalQuery->commandType == CMD_INSERT
CreateModifyPlan: Assert originalQuery->commandType != CMD_SELECT
Remove unused function IsModifyDistributedPlan
DistributedExecution, ExecutionParams, DistributedPlan: Rename hasReturning to expectResults
SELECTs set expectResults to true
Rename CreateSingleTaskRouterPlan to CreateSingleTaskRouterSelectPlan
Do not release AccessShareLock when closing pg_constraint to prevent
modifications to be done on pg_constraint to make sure that caller
will process valid foreign key constraints through the transaction.
This PR removes ExecuteUtilityTaskListWithoutResults and uses the same
path for local execution via ExecuteTaskListExtended.
ExecuteUtilityTaskList is added. ExecuteLocalTaskListExtended now has a
parameter for utility commands so that it can call the right method. In
order not to change the existing calls,
ExecuteTaskListExtendedInternal is added, which is the main method that
runs the execution, via local and remote execution.
DESCRIPTION: Ignore pruned target list entries in coordinator plan
The postgres planner has the ability to prune target list entries that are proven not used in the output relation. When this happens at the `CitusCustomScan` boundary we need to _not_ return these pruned columns to not upset the rest of the planner.
By using the target list the planner asks us to return we fix issues that lead to Assertion failures, and potentially could be runtime errors when they hit in a production build.
Fixes#3809
In the code, we had the assumption that if restriction information
is NULL, it means that we cannot have any disributetd tables in
the subquery.
However, for subqueries in WHERE clause, that is not the case when
the subquery is ANDed with FALSE. In that case, Citus operates
on the originalQuery (which doesn't go through the standard_planner()),
and rely on the restriction information generated by standard_plannner().
As Postgres is smart enough to no generate restriction information for
subqueries ANDed with FALSE, we hit the assertion.
The reason is that PQconnectPoll() may change the underlying
socket. If we don't rebuild the wait event set, the low level
APIs (such as epoll_ctl()) may fail due to invalid sockets.
Instead, rebuilding ensures that we'll use accurate/active sockets.
* Not append empty task in ExtractLocalAndRemoteTasks
ExtractLocalAndRemoteTasks extracts the local and remote tasks. If we do
not have a local task the localTaskPlacementList will be NIL, in this
case we should not append anything to local tasks. Previously we would
first check if a task contains a single placement or not, now we first
check if there is any local task before doing anything.
* fix copy of node task
Task node has task query, which might contain a list of strings in its
fields. We were using postgres copyObject for these lists. Postgres
assumes that each element of list will be a node type. If it is not a
node type it will error.
As a solution to that, a new macro is introduced to copy a list of
strings.
The previous default was 5 seconds, and we change it to 30 seconds.
The main motivation for this is that for busy clusters, 5 seconds
can be too aggressive. Especially with connection throttling, the servers
might be kept busy for a really long time, and users may see the
connection errors more frequently.
We've done some sanity checks, for really quick queries (like
`SELECT count(*) from table`), 30 seconds is a decent value even
if users execute 300 distributed queries on the coordinator. We've
verified this on Hyperscale(Citus).
Physical planner doesn't support parameters. If the parameters have already
been resolved when the physical planner handling the queries, mark it.
The reason is that the executor is unaware of this, and sends the parameters
along with the worker queries, which fails for composite types.
(See `DissuadePlannerFromUsingPlan()` for the details of paramater resolving)
We currently put the actual error message to the detail part. However,
many drivers don't show detail part.
As connection errors are somehow common, and hard to trace back, can't
we added the detail to the message itself.
In addition to that, we changed "connection error" message, as it
was confusing to the users who think that the error was happening
while connecting to the coordinator. In fact, this error is showing
up when the coordinator fails to connect remote nodes.
* invalidate plan cache in master_update_node
If a plan is cached by postgres but a user uses master_update_node, then
when the plan cache is used for the updated node, they will get the old
nodename/nodepost in the plan. This is because the plan cache doesn't
know about the master_update_node. This could be a problem in prepared
statements or anything that goes into plancache. As a solution the plan
cache is invalidated inside master_update_node.
* add invalidate_inactive_shared_connections test function
We introduce invalidate_inactive_shared_connections udf to be used in
testing. It is possible that a connection count for an inactive node
will be greater than 0 and in that case it will not be removed at the
time of invalidation. However, later we don't have a mechanism to remove
it, which means that it will stay in the hash. For this not to cause a
problem, we use this udf in testing.
* move invalidate_inactive_shared_connections to udfs from test as it will be used in mx
* remove the test udf
* remove the IsInactive check
This copies over fixes from reference counting branch,
all CitusTableCacheEntry data may be freed when a GetCitusTableCacheEntry call occurs for its relationId
This fix is not complete, but reference counting is being deferred until 9.4
CopyShardInterval: remove dest parameter, always return newly allocated object
We initially considered removing entries just before any change to
pg_dist_node. However, that ended-up being very complex and making
MX even more complex.
Instead, we're switching to a simpler solution, where we remove entries
when the counter gets to 0.
With certain workloads, this may have some performance penalty. But, two
notes on that:
- When counter == 0, it implies that the cluster is not busy
- With cached connections, that's not possible
When we call SetTaskQueryString we would set the task type to
TASK_QUERY_TEXT, and some parts of the codebase rely on the fact that if
TASK_QUERY_TEXT is set, the data can be read safely. However if
SetTaskQueryString is called with a NULL taskQueryString this can cause
crashes. In that case taskQueryType will simply be set to
TASK_QUERY_NULL.
DESCRIPTION: Alter role only works for citus managed roles
Alter role was implemented before we implemented good role management that hooks into the object propagation framework. This is a refactor of all alter role commands that have been implemented to
- be on by default
- only work for supported roles
- make the citus extension owner a supported role
Instead of distributing the alter role commands for roles at the beginning of the node activation role it now _only_ executes the alter role commands for all users in all databases and in the current database.
In preparation of full role support small refactors have been done in the deparser.
Earlier tests targeting other roles than the citus extension owner have been either slightly changed or removed to be put back where we have full role support.
Fixes#2549
We had 9+ parameters in some of the functions related to execution.
Execution params is created to simplify this a bit so that we can set
only the fields that we are interested in and it is easier to read.
With this commit, we're introducing a new infrastructure to throttle
connections to the worker nodes. This infrastructure is useful for
multi-shard queries, router queries are have not been affected by this.
The goal is to prevent establishing more than citus.max_shared_pool_size
number of connections per worker node in total, across sessions.
To do that, we've introduced a new connection flag OPTIONAL_CONNECTION.
The idea is that some connections are optional such as the second
(and further connections) for the adaptive executor. A single connection
is enough to finish the distributed execution, the others are useful to
execute the query faster. Thus, they can be consider as optional connections.
When an optional connection is not allowed to the adaptive executor, it
simply skips it and continues the execution with the already established
connections. However, it'll keep retrying to establish optional
connections, in case some slots are open again.
We currently don't use any cursor flags in local execution, but we can
use CURSOR_OPT_PARALLEL_OK flag to potentially benefit from parallelism
when possible.
This PR:
- Declares variables when they are needed.
- Creates DoCopyFromLocalTableIntoShards for better readability.
- Doesn't use a hardcoded value, instead use a variable for better
readability.
We have two variables that are related to local execution status.
TransactionAccessedLocalPlacement and
TransactionConnectedToLocalGroup. Only one of these fields should be
set, however we didn't have any check for this contraint and it was
error prone.
What those two variables are used is that we are trying to understand if
we should use local execution, the current session, or if we should be
using a connection to execute the current query, therefore the tasks. In
the enum, now it is more clear what these variables mean.
Also, now we have a method to change the local execution status. The
method will error if we are trying to transition from a state to a wrong
state. This will help us avoid problems.
* use local executon when in a transaction block
When we are inside a transaction block, there could be other methods
that need local execution, therefore we will use local execution in a
transaction block.
* update test outputs with transaction block local execution
* add a test to verify we dont leak intermediate schemas
* test that we don't leak intermediate schemas
We have tests to make sure that we don't intermediate any intermediate
files, tables etc but we don't test if we are leaking schemas. It makes
sense to test this as well.
* remove all repartition schemas in case of error
This solution is not an ideal one but it seems to be doing the job.
We should have a more generic solution for the cleanup but it seems that
putting the cleanup in the abort handler is dangerous and it was
crashing.
It is possible to return an error in ExecuteTaskListExtended after
performing local execution with the current structure. However there is
no point in execution the local tasks if we are going to return an error
later. So the local execution is moved after the error check.
When the file does not exist, it could mean two different things.
First -- and a lot more common -- case is that a failure happened
in a concurrent backend on the same distributed transaction. And,
one of the backends in that transaction has already been roll
backed, which has already removed the file. If we throw an error
here, the user might see this error instead of the actual error
message. Instead, we prefer to WARN the user and pretend that the
file has no data in it. In the end, the user would see the actual
error message for the failure.
Second, in case of any bugs in intermediate result broadcasts,
we could try to read a non-existing file. That is most likely
to happen during development. Thus, when asserts enabled, we throw
an error instead of WARNING so that the developers cannot miss.
When we have a query like the following:
```SQL
WITH a AS (SELECT * FROM foo LIMIT 10) SELECT max(x) FROM a JOIN bar 2 USING (y);
```
Citus currently opens side channels for doing the
`COPY "1_1"` FROM STDIN (format 'result')
before starting the execution of
`SELECT * FROM foo LIMIT 10`
Since we need at least 1 connection per worker to do
`SELECT * FROM foo LIMIT 10`
We need to have 2 connections to worker in order to broadcast the results.
However, we don't actually send a single row over the side channel until the
execution of `SELECT * FROM foo LIMIT 10` is completely done (and connections
unclaimed) and the results are written to a tuple store. We could actually
reuse the same connection for doing the `COPY "1_1"` FROM STDIN (format 'result').
This also fixes the issue that Citus doesn't obey `citus.max_adaptive_executor_pool_size`
when the query includes an intermediate result.
We don't need any side channel connections. That is actually
problematic in the sense that it creates extra connections.
Say, citus.max_adaptive_executor_pool_size equals to 1, Citus
ends up using one extra connection for the intermediate results.
Thus, not obeying citus.max_adaptive_executor_pool_size.
In this PR, we remove the following entities from the codebase
to allow further commits to implement not requiring extra connection
for the intermediate results:
- The connection flag REQUIRE_SIDECHANNEL
- The function GivePurposeToConnection
- The ConnectionPurpose struct and related fields
* explicitly return false if transaction connected to local node
* not set TransactionConnectedToLocalGroup if we are writing to a file
We use TransactionConnectedToLocalGroup to prevent local execution from
happening as that might cause visibility problems. As files are visible
to all transactions, we shouldn't set this variable if we are writing to
a file.
In case we don't care about the tupleStoreState in
ExecuteLocalTaskListExtended, it could be passed as null. In that case
we will get a seg error. This changes it so that a dummy tuple store
will be created when it is null.
Do not use local execution in ExecuteTaskListOutsideTransaction.
As we are going to run the tasks outside transaction, we shouldn't use local execution.
However, there is some problem when using local execution related to
repartition joins, when we solve that problem, we can execute the tasks
coming to this path with local execution.
Also logging the local command is simplified.
normalize job id in worker_hash_partition_table in test outputs.
For shardplacements, we were setting nodeid, nodename, nodeport and
nodegroup manually. This makes it very error prone, and it seems that we
already forgot to set some of them. This would mean that they would have
their default values, e.g group id would be 0 when its group id is not
0.
So the implication is that we would have inconsistent worker metadata.
A new method is introduced, and we call the method to set those fields
now, so that as long as we call this method, we won't be setting
inconsistent metadata.
It probably makes sense to have a struct for these fields. We already
have NodeMetadata but it doesn't have nodename or nodeport. So that
could be done over another refactor to make things simpler.
This is possible whenever we aren't pulling up intermediate rows
We want to do this because this was done in 9.2,
some queries rely on the performance of grouping causing distinct values
This change was introduced when implementing window functions on coordinator
ExecuteTaskListExtended is the common method for different codepaths,
and instead of writing separate local execution logics in different
codepaths, it makes more sense to have the logic here. We still need to
do some refactoring, this is an initial step.
After this commit, we can run create shard commands locally. There is a
special case with shard creation commands. A create shard command might
have a concatenated query string, however local execution did not know
how to execute a task with multiple query strings. This is also
implemented in this commit. We go over each query in the concatenated
query string and plan/execute them one by one.
A more clean solution to this would be to make sure that each task has a
single query. We currently cannot do that because we need to ensure the
task dependencies. However, it would make sense to do that at some point
and it would simplify the code a lot.
ExecuteLocalTaskList doesn't need scanState as it only uses
paramListInfo, distributedPlan and tupleStoreState. It is better to pass
only the variables that the function needs, so that we can call this
function from other places when we dont have scanState.
We had many fields in task related to query strings. It was kind of
complex, and only of them could be set at a time. Therefore it makes
more sense to abstract this and use a union so that it is clear that
only of them should be set.
We have three fields that could have query related strings:
- queryForLocation
- queryStringLazy
- perPlacementQueryStrings
Relatively, they can be set with:
- SetTaskQueryString
- SetTaskQueryIfShouldLazyDeparse
- SetTaskPerPlacementQueryStrings
The direct usage of the query related fields are also removed.
Rename queryForLocalExecution
Currently queryForLocalExecution is only used for deparsing purposes,
therefore it makes sense to rename it to what it is doing.
TaskQueryStringForPlacement simplifies how the executor gets the query
string for a given placement. Task will use the necessary fields to
return the correct query placement string. Executor doesn't need to know
the details for this.
rename TaskQueryString as TaskQueryStringAllPlacements
TaskQueryString returns the query string that will be the same for all
the placements. In INSERT..SELECT the query string can be different for
each placement. Adaptive executor uses TaskQueryStringForPlacement,
which returns the query string for a placement. It makes sense to rename
TaskQueryString as TaskQueryStringAllPlacements as it is returning the
query string for all placements.
rename SetTaskQuery as SetTaskQueryIfShouldLazyDeparse
SetTaskQuery does not always sets the task query. It can set the query
string as well. So it is more clear to name it
SetTaskQueryIfShouldLazyDeparse, since it will set the query not query
string only when we should deparse the query in a lazy way.
It is possible that a task will have different query string for each
placement. This is the case in INSERT..SELECT via repartitioning. When
we are setting task->perPlacementQueryString, we should set
queryStringLazy to NULL. Therefore a method for that purpose is created.
In PostgreSQL, user defaults for config parameters can be changed by
ALTER ROLE .. SET statements. We wish to propagate those defaults
accross the Citus cluster so that the behaviour will be similar in
different workers.
The defaults can either be set in a specific database, or the whole
cluster, similarly they can be set for a single role or all roles.
We propagate the ALTER ROLE .. SET if all the conditions below are met:
- The query affects the current database, or all databases
- The user is already created in worker nodes
Sometimes we have concatenated query strings for a task. However,
when we want to find each query string, it is not a trivial task.
Therefore, it makes sense to store this in task so that when we need
each query string we can easily get it.
Some refactoring:
Consolidate expression which decides whether GROUP BY/HAVING are pushed down
Rename early pullUpIntermediateRows to hasNonDistributableAggregates
Create WorkerColumnName to handle formatting WORKER_COLUMN_FORMAT
Ignore NULL StringInfo pointers to SafeToPushdownWindowFunction
Fix bug where SubqueryPushdownMultiNodeTree mutates supplied Query,
SafeToPushdownWindowFunction requires the original query as it relies on rtable
DESCRIPTION: Refactor dependency resolution and resolve from pg_shdepend
This PR refactors how dependencies are resolved by not assuming solely a `pg_depend` record describing the dependency. Instead we keep a definition of the dependency around which records how the dependency is resolved. This can be one of the following ways
- `pg_depend`, data will contain a copy of the `pg_depend` record
- `pg_shdepend`, data will contain a copy of the `pg_shdepend` record
- `ObjectAddress`, data will contain only an `ObjectAddress` describing a dependency
Irregardless of way the dependency was found it will always be able to get to the address of the dependency as that is the most important property.
For some checks we can inspect the source where the dependency was found and perform a deep inspection to decide if we want to follow the dependency. This is important to not distribute dependencies coming from extensions for example.
We cache connections between nodes in our connection management code.
This is good for speed. For security this can be a problem though. If
the user changes settings related to TLS encryption they want those to
be applied to future queries. This is especially important when they did
not have TLS enabled before and now they want to enable it. This can
normally be achieved by changing citus.node_conninfo. However, because
connections are not reopened there will still be old connections that
might not be encrypted at all.
This commit changes that by marking all connections to be shutdown at
the end of their current transaction. This way running transactions will
succeed, even if placement requires connections to be reused for this
transaction. But after this transaction completes any future statements
will use a connection created with the new connection options.
If a connection is requested and a connection is found that is marked
for shutdown, then we don't return this connection. Instead a new one is
created. This is needed to make sure that if there are no running
transactions, then the next statement will not use an old cached
connection, since connections are only actually shutdown at the end of a
transaction.
If two tables have the same distribution column type, we implicitly
colocate them. This is useful since colocation has a big performance
impact in most applications.
When a table is rebalanced, all of the colocated tables are also
rebalanced. If table A and table B are colocated and we want to
rebalance table A, table B will also be rebalanced. We need replica
identity so that logical replication can replicate updates and deletes
during rebalancing. If table B does not have a replica identity we
error out.
A solution to this is to introduce a UDF so that colocation can be
updated. The remaining tables in the colocation group will stay
colocated. For example if table A, B and C are colocated and after
updating table B's colocations, table A and table C stay colocated.
The "updating colocation" step does not move any data around, it only
updated pg_dist_partition and pg_dist_colocation tables. Specifically it
creates a new colocation group for the table and updates the entry in
pg_dist_partition while invalidating any cache.
Citus coordinator (or MX nodes) caches `citus.max_cached_conns_per_worker` connections
per node. This means that, those connections are not terminated after each statement.
Instead, cached to avoid the cost of re-establishment. This is crucial for OLTP performance.
The problem with that approach is that, we never properly handle the termnation of
those cached connections. For instance, when a session on the coordinator disconnects,
you'd see the following logs on the workers:
```
2020-03-20 09:13:39.454 CET [64028] LOG: could not receive data from client: Connection reset by peer
```
With this patch, we're terminating the cached connections properly at the end of the connection.
This is needed to automatically generate .bc (bitcode) files when
postgres is compiled with llvmjit support.
It also has the advantage that cmake is not required for the build
anymore.
As discussed with @JelteF; #3559 caused consistent errors on BSD (OSX). Given a group of people use this environment to develop on it is an undesirable change.
This reverts commit ca8f7119fe.
We have special logic to copy into intermediate results and we use a
custom format for that, "result" copy format. Postgres internally does
not know this format and if we use this locally it will error saying
that it does not know this format.
Files are visible to all transactions, which means that we can use any
connection to access files. In order to use the existing logic, it makes
sense that in case we have intermediate results, which means we will
write the results to a file, we preserve the same behavior, which is
opening connections to localhost. Therefore if we have intermediate
results we return false in ShouldExecuteCopyLocally.
We can use local copy in INSERT..SELECT, so the check that disables
local execution is removed.
Also a test for local copy where the data size >
LOCAL_COPY_FLUSH_THRESHOLD is added.
use local execution with insert..select
If current transaction is connected to local group we should not use
local copy, because we might not see some of the changes that are made
over the connection to the local group.
A copy will be executed locally if
- Local execution is enabled and current transaction accessed a local placement
- Local execution is enabled and we are inside a transaction block.
So even if local execution is enabled but we are not in a transaction block, the copy will not be run locally.
This will not run locally:
```
COPY distributed_table FROM STDIN;
....
```
This will run locally:
```
SET citus.enable_local_execution to 'on';
BEGIN;
COPY distributed_table FROM STDIN;
COMMIT;
....
```
.
There are 3 ways to do a copy in postgres programmatically:
- from a file
- from a program
- from a callback function
I have chosen to implement it with a callback function, which means that we write the rows of copy from a callback function to the output buffer, which is used to insert tuples into the actual table.
For each shard id, we have a buffer that keeps the current rows to be written, we perform the actual copy operation either when:
- copy buffer for the given shard id reaches to a threshold, which is currently 512KB
- we reach to the end of the copy
The buffer size is debatable(512KB). At a given time, we might allocate (local placement * buffer size) memory at most.
The local copy uses the same copy format as remote copy, which means that we serialize the data in the same format as remote copy and send it locally.
There was also the option to use ExecSimpleRelationInsert to insert
slots one by one, which would avoid the extra
serialization/deserialization but doing some benchmarks it seems that
using buffers are significantly better in terms of the performance.
You can see this comment for more details: https://github.com/citusdata/citus/pull/3557#discussion_r389499054
On some distros (e.g. Redhat 7) there is cmake version 2 and cmake version 3,
safestringlib requires cmake version 3. On those distros the binary is called
cmake3, so try to use that one before falling back to regular cmake binary.
DESCRIPTION: Fix left join shard pruning in pushdown planner
Due to #2481 which moves outer join planning through the pushdown planner we caused a regression on the shard pruning behaviour for outer joins.
In the pushdown planner we make a union of the placement groups for all shards accessed by a query based on the filters we see during planning. Unfortunately implicit filters for left joins are not available during this part. This causes the inner part of an outer join to not prune any shards away. When we take the union of the placement groups it shows the behaviour of not having any shards pruned.
Since the inner part of an outer query will not return any rows if the outer part does not contain any rows we have observed we do not have to add the shard intervals of the inner part of an outer query to the list of shard intervals to query.
Fixes: #3512
* reimplement ExecuteUtilityTaskListWithoutResults for local utility command execution
* introduce new functions for local execution of utility commands
* change ErrorIfTransactionAccessedPlacementsLocally logic for local utility command execution
* enable local execution for TRUNCATE command on distributed & reference tables
* update existing tests for local utility command execution
* enable local execution for DDL commands on distributed & reference tables
* enable local execution for DROP command on distributed & reference tables
* add normalization rules for cascaded commands
* add new tests for local utility command execution
In between stat at the start of the loop and unlink/rmdir at the end the
item that the filename references might have changed. In some cases this
can be a security bug, but since we only delete the file/directory it
should not be for us as far as I can tell. It could in theory still
cause errors though if the a file is changed into a directory by some
other process. This commit makes the code robust against that, by not
using stat and only rely on error codes and retries.
This fixes 3 bugs:
1. `strtoul` never underflows, so that branch was useless
2. `strtoul` has ULONG_MAX instead of LONG_MAX when it overflows
3. `long` and `unsigned long` are not necessarily 64bit, they can be
either more or less. So now `strtoll` and `strtoull` are used
and 64 bit bounds are checked.
New stack memory can contain anything including passwords/private keys.
In these functions we return structs that can have their padding
bytes uninitialized. By first zeroing out the struct fully, we try to
ensure that any data that is in these padding bytes is at least
overwritten once. It might not be zero anymore after setting the fields,
but at least it shouldn't be private data anymore.
Calling ErrorIfUnsupportedConstraint was still giving errors on Semmle. This
makes sure that we check for NULL at runtime. This way we can safely ignore all
errors created by this function.
Add failing tests, make changes to avoid crashes at least
Fix HAVING subquery pushdown ignoring reference table only subqueries,
also include HAVING in recursive planning
Given that we have a function IsDistributedTable which includes reference tables,
it seems best to have IsDistributedTableRTE & QueryContainsDistributedTableRTE
reflect that they do not include reference tables in their check
Similarly SublinkList's name should reflect that it only scans WHERE
contain_agg_clause asserts that we don't have SubLinks,
use contain_aggs_of_level as suggested by pg sourcecode
Before this commit, we considered !ContainsRecurringRTE() enough
for NotContainsOnlyRecurringTuples. However, instead, we can check
for existince of any distributed table.
DESCRIPTION: Fixes a bug that causes wrong results with complex outer joins
When ExecutorSlowStartInterval is set to 0, it has a special meaning
that we do not want to use slow start. Therefore, in the code we have
checks such as ExecutorSlowStartInterval > 0 to understand if it is
enabled or not. However, this is kind of subtle, and it creates an extra
mapping in our mind. Therefore, I thought that using a variable for the
special value removes the mapping and makes it easier to understand.
As @onderkalaci suggested removing the definition of GetWorkerNodeCount() that can potentially cause misunderstandings.
I can advise using ActiveReadableWorkerNodeCount() that returns the number of active primaries is a safer alternative than GetWorkerNodeCount() that returns the total number of workers containing inactives, primaries, and unavailable nodes. I introduced a bug #3556 and in the bugfix #3564 removed the single usage of said function
There are 2 problems with our early exit strategy that this commit fixes:
1- When we decide that a subplan results are sent to all worker nodes,
we used to skip traversing the whole distributed plan, instead of
skipping only the subplan.
2- We used to consider all available nodes in the cluster (secondaries
and inactive nodes as well as active primaries) when deciding on early
exit strategy. This resulted in failures to early exit when there are
secondaries or inactive nodes.
DESCRIPTION: satisfy static analysis tool for a nullptr dereference
During the static analysis project on the codebase this code has been flagged as having the potential for a null pointer dereference. Funnily enough the author had already made a comment of it in the code this was not possible due to us setting the schema name before we pass in the statement. If we want to reuse this code in a later setting this comment might not always apply and we could actually run into null pointer dereference.
This patch changes a bit of the code around to first of all make sure there is no NULL pointer dereference in this code anymore.
Secondly we allow for better deparsing by setting and adhering to the `if_not_exists` flag on the statement.
And finally add support for all syntax described in the documentation of postgres (FROM was missing).
Makees VacuumTaskList function even with other TaskList creator functions.
Also, previously we were generating per-shard vacuum command strings via
unconventional usage of StringInfo struct (setting the stringInfo->len field
manually) which could cause unexepected memory errors (that I cannot foresee now).
If the generated column does not come at the end of the column list,
columnNameList doesn't line up with the column indexes. Seek past
CREATE TABLE test_table (
test_id int PRIMARY KEY,
gen_n int GENERATED ALWAYS AS (1) STORED,
created_at TIMESTAMPTZ NOT NULL DEFAULT now()
);
SELECT create_distributed_table('test_table', 'test_id');
Would raise ERROR: cannot cast 23 to 1184
Semmle reported quite some places where we use a value that could be NULL. Most of these are not actually a real issue, but better to be on the safe side with these things and make the static analysis happy.
DESCRIPTION: Replace the query planner for the coordinator part with the postgres planner
Closes#2761
Citus had a simple rule based planner for the query executed on the query coordinator. This planner grew over time with the addigion of SQL support till it was getting close to the functionality of the postgres planner. Except the code was brittle and its complexity rose which made it hard to add new SQL support.
Given its resemblance with the postgres planner it was a long outstanding wish to replace our hand crafted planner with the well supported postgres planner. This patch replaces our planner with a call to postgres' planner.
Due to the functionality of the postgres planner we needed to support both projections and filters/quals on the citus custom scan node. When a sort operation is planned above the custom scan it might require fields to be reordered in the custom scan before returning the tuple (projection). The postgres planner assumes every custom scan node implements projections. Because we controlled the plan that was created we prevented reordering in the custom scan and never had implemented it before.
A same optimisation applies to having clauses that could have been where clauses. Instead of applying the filter as a having on the aggregate it will push it down into the plan which could reach a custom scan node.
For both filters and projections we have implemented them when tuples are read from the tuple store. If no projections or filters are required it will directly return the tuple from the tuple store. Otherwise it will loop tuples from the tuple store through the filter and projection until a tuple is found and returned.
Besides filters being pushed down a side effect of having quals that could have been a where clause is that a call to read intermediate result could be called before the first tuple is fetched from the custom scan. This failed because the intermediate result would only be pulled to the coordinator on the first tuple fetch. To overcome this problem we do run the distributed subplans now before we run the postgres executor. This ensures the intermediate result is present on the coordinator in time. We do account for total time instrumentation by removing the instrumentation before handing control to the psotgres executor and update the timings our self.
For future SQL support it is enough to create a valid query structure for the part of the query to be executed on the query coordinating node. As a utility we do serialise and print the query at debug level4 for engineers to inspect what kind of query is being planned on the query coordinator.
We don't actually use these functions anymore since merging #1477.
Advantages of removing:
1. They add work whenever we add a new node.
2. They contain some usage of stdlib APIs that are banned by Microsoft.
Removing it means we don't have to replace those with safe ones.
- Stop the daemon when citus extension is dropped
- Bail on maintenance daemon startup if myDbData is started with a non-zero pid
- Stop maintenance daemon from spawning itself
- Don't use postgres die, just wrap proc_exit(0)
- Assert(myDbData->workerPid == MyProcPid)
The two issues were that multiple daemons could be running for a database,
or that a daemon would be leftover after DROP EXTENSION citus
Comparison between differently sized integers in loop conditions can cause
infinite loops. This can happen when doing something like this:
```c
int64 very_big = MAX_INT32 + 1;
for (int32 i = 0; i < very_big; i++) {
// do something
}
// never reached because i overflows before it can reach the value of very_big
```
When using --allow-group-access option from initdb our keys and
certificates would be created with 0640 permissions. Which is a pretty
serious security issue: This changes that. This would not be exploitable
though, since postgres would not actually enable SSL and would output
the following message in the logs:
```
DETAIL: File must have permissions u=rw (0600) or less if owned by the database user, or permissions u=rw,g=r (0640) or less if owned by root.
```
Since citus still expected the cluster to have SSL enabled handshakes
between workers and coordinator would fail. So instead of a security
issue the cluster would simply be unusable.
Previously a limitation in the shard pruning logic caused multi distribution value queries to always go into all the shards/workers whenever query also used OR conditions in WHERE clause.
Related to https://github.com/citusdata/citus/issues/2593 and https://github.com/citusdata/citus/issues/1537
There was no good workaround for this limitation. The limitation caused quite a bit of overhead with simple queries being sent to all workers/shards (especially with setups having lot of workers/shards).
An example of a previous plan which was inadequately pruned:
```
EXPLAIN SELECT count(*) FROM orders_hash_partitioned
WHERE (o_orderkey IN (1,2)) AND (o_custkey = 11 OR o_custkey = 22);
QUERY PLAN
---------------------------------------------------------------------
Aggregate (cost=0.00..0.00 rows=0 width=0)
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 4
Tasks Shown: One of 4
-> Task
Node: host=localhost port=xxxxx dbname=regression
-> Aggregate (cost=13.68..13.69 rows=1 width=8)
-> Seq Scan on orders_hash_partitioned_630000 orders_hash_partitioned (cost=0.00..13.68 rows=1 width=0)
Filter: ((o_orderkey = ANY ('{1,2}'::integer[])) AND ((o_custkey = 11) OR (o_custkey = 22)))
(9 rows)
```
After this commit the task count is what one would expect from the query defining multiple distinct values for the distribution column:
```
EXPLAIN SELECT count(*) FROM orders_hash_partitioned
WHERE (o_orderkey IN (1,2)) AND (o_custkey = 11 OR o_custkey = 22);
QUERY PLAN
---------------------------------------------------------------------
Aggregate (cost=0.00..0.00 rows=0 width=0)
-> Custom Scan (Citus Adaptive) (cost=0.00..0.00 rows=0 width=0)
Task Count: 2
Tasks Shown: One of 2
-> Task
Node: host=localhost port=xxxxx dbname=regression
-> Aggregate (cost=13.68..13.69 rows=1 width=8)
-> Seq Scan on orders_hash_partitioned_630000 orders_hash_partitioned (cost=0.00..13.68 rows=1 width=0)
Filter: ((o_orderkey = ANY ('{1,2}'::integer[])) AND ((o_custkey = 11) OR (o_custkey = 22)))
(9 rows)
```
"Core" of the pruning logic works as previously where it uses `PrunableInstances` to queue ORable valid constraints for shard pruning.
The difference is that now we build a compact internal representation of the query expression tree with PruningTreeNodes before actual shard pruning is run.
Pruning tree nodes represent boolean operators and the associated constraints of it. This internal format allows us to have compact representation of the query WHERE clauses which allows "core" pruning logic to work with OR-clauses correctly.
For example query having
`WHERE (o_orderkey IN (1,2)) AND (o_custkey=11 OR (o_shippriority > 1 AND o_shippriority < 10))`
gets transformed into:
1. AND(o_orderkey IN (1,2), OR(X, AND(X, X)))
2. AND(o_orderkey IN (1,2), OR(X, X))
3. AND(o_orderkey IN (1,2), X)
Here X is any set of unknown condition(s) for shard pruning.
This allow the final shard pruning to correctly recognize that shard pruning is done with the valid condition of `o_orderkey IN (1,2)`.
Another example with unprunable condition in query
`WHERE (o_orderkey IN (1,2)) OR (o_custkey=11 AND o_custkey=22)`
gets transformed into:
1. OR(o_orderkey IN (1,2), AND(X, X))
2. OR(o_orderkey IN (1,2), X)
Which is recognized as unprunable due to the OR condition between distribution column and unknown constraint -> goes to all shards.
Issue https://github.com/citusdata/citus/issues/1537 originally suggested transforming the query conditions into a full disjunctive normal form (DNF),
but this process of transforming into DNF is quite a heavy operation. It may "blow up" into a really large DNF form with complex queries having non trivial `WHERE` clauses.
I think the logic for shard pruning could be simplified further but I decided to leave the "core" of the shard pruning untouched.
The root of the problem is that, standard_planner() converts the following qual
```
{OPEXPR
:opno 98
:opfuncid 67
:opresulttype 16
:opretset false
:opcollid 0
:inputcollid 100
:args (
{VAR
:varno 1
:varattno 1
:vartype 25
:vartypmod -1
:varcollid 100
:varlevelsup 0
:varnoold 1
:varoattno 1
:location 45
}
{CONST
:consttype 25
:consttypmod -1
:constcollid 100
:constlen -1
:constbyval false
:constisnull true
:location 51
:constvalue <>
}
)
:location 49
}
```
To
```
(
{CONST
:consttype 16
:consttypmod -1
:constcollid 0
:constlen 1
:constbyval true
:constisnull true
:location -1
:constvalue <>
}
)
```
So, Citus doesn't deal with NULL values in real-time or non-fast path router queries.
And, in the FastPathRouter planner, we check constisnull in DistKeyInSimpleOpExpression().
However, in deferred pruning case, we do not check for isnull for const.
Thus, the fix consists of two parts:
- Let PruneShards() not crash when NULL parameter is passed
- For deferred shard pruning in fast-path queries, explicitly check that we have CONST which is not NULL
Mark existing objects that are not included in distributed object infrastructure
in older versions of Citus (but now should be) as distributed, after updating
Citus successfully.
DESCRIPTION: Fix unnecessary repartition on joins with more than 4 tables
In 9.1 we have introduced support for all CH-benCHmark queries by widening our definitions of joins to include joins with expressions in them. This had the undesired side effect of Q5 regressing on its plan by implementing a repartition join.
It turned out this regression was not directly related to widening of the join clause, nor the schema employed by CH-benCHmark. Instead it had to do with 4 or more tables being joined in a chain. A chain meaning:
```sql
SELECT * FROM a,b,c,d WHERE a.part = b.part AND b.part = c.part AND ....
```
Due to how our join order planner was implemented it would only keep track of 1 of the partition columns when comparing if the join could be executed locally. This manifested in a join chain of 4 tables to _always_ be executed as a repartition join. 3 tables joined in a chain would have the middle table shared by the two outer tables causing the local join possibility to be found.
With this patch we keep a unique list (or set) of all partition columns participating in the join. When a candidate table is checked for a possibility to execute a local join it will check if there is any partition column in that set that matches an equality join clause on the partition column of the candidate table.
By taking into account all partition columns in the left relation it will now find the local join path on >= 4 tables joined in a chain.
fixes: #3276
For example, a PARAM might reside inside a function just because
of a casting of a type such as the follows:
```
{FUNCEXPR
:funcid 1740
:funcresulttype 1700
:funcretset false
:funcvariadic false
:funcformat 2
:funccollid 0
:inputcollid 0
:args (
{PARAM
:paramkind 0
:paramid 15
:paramtype 23
:paramtypmod -1
:paramcollid 0
:location 356
}
)
```
We should recursively check the expression before bailing out.
Sometimes during errors workers will create files while we're deleting intermediate directories
example:
DEBUG: could not remove file "base/pgsql_job_cache/10_0_431": Directory not empty
DETAIL: WARNING from localhost:57637
Previously we only prevented AVG from being pushed down, but this is incorrect:
- array_agg, while somewhat non sensical to order by, will potentially be missing values
- combinefunc aggregation will raise errors about cstrings not being comparable (while we also can't know if the aggregate is commutative)
This commit limits approximating LIMIT pushdown when ordering by aggregates to:
min, max, sum, count, bit_and, bit_or, every, any
Which means of those we previously supported, we now exclude:
avg, array_agg, jsonb_agg, jsonb_object_agg, json_agg, json_object_agg, hll_add, hll_union, topn_add, topn_union
Previously, the logic for evaluting the functions and the parameters
were the same. That ended-up evaluting the functions inaccurately
on the coordinator. Instead, split the function evaluation logic
from parameter evalution logic.
As that is powerful and cause metadata inconsistency. See the following steps:
(Note that we cannot use PGC_SUSET because on Citus MX we need this flag for non-
superusers as well)
```SQL
CREATE TABLE test_ref_table(key int);
SELECT create_reference_table('test_ref_table');
SELECT logicalrelid, logicalrelid::oid FROM pg_dist_partition;
┌────────────────┬──────────────┐
│ logicalrelid │ logicalrelid │
├────────────────┼──────────────┤
│ test_ref_table │ 16831 │
└────────────────┴──────────────┘
(1 row)
Time: 0.929 ms
SELECT relname FROM pg_class WHERE oid = 16831;
┌────────────────┐
│ relname │
├────────────────┤
│ test_ref_table │
└────────────────┘
(1 row)
Time: 0.785 ms
SET citus.enable_ddl_propagation TO off;
DROP TABLE test_ref_table ;
SELECT logicalrelid, logicalrelid::oid FROM pg_dist_partition;
┌──────────────┬──────────────┐
│ logicalrelid │ logicalrelid │
├──────────────┼──────────────┤
│ 16831 │ 16831 │
└──────────────┴──────────────┘
(1 row)
Time: 0.972 ms
SELECT relname FROM pg_class WHERE oid = 16831;
┌─────────┐
│ relname │
├─────────┤
└─────────┘
(0 rows)
Time: 0.908 ms
SELECT master_add_node('localhost', 9703);
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
The connection to the server was lost. Attempting reset: Failed.
Time: 5.028 ms
!>
```
Previously, we've identified the usedSubPlans by only looking
to the subPlanId.
With this commit, we're expanding it to also include information
on the location of the subPlan.
This is useful to distinguish the cases where the subPlan is used
either on only HAVING or both HAVING and any other part of the query.
* Update shardPlacement->nodeId to uint
As the source of the shardPlacement->nodeId is always workerNode->nodeId,
and that is uint32.
We had this hack because of: 0ea4e52df5 (r266421409)
And, that is gone with: 90056f7d3c (diff-c532177d74c72d3f0e7cd10e448ab3c6L1123)
So, we're safe to do it now.
* Relax the restrictions on using the local execution
Previously, whenever any local execution happens, we disabled further
commands to do any remote queries. The basic motivation for doing that
is to prevent any accesses in the same transaction block to access the
same placements over multiple sessions: one is local session the other
is remote session to the same placement.
However, the current implementation does not distinguish local accesses
being to a placement or not. For example, we could have local accesses
that only touches intermediate results. In that case, we should not
implement the same restrictions as they become useless.
So, this is a pre-requisite for executing the intermediate result only
queries locally.
* Update the error messages
As the underlying implementation has changed, reflect it in the error
messages.
* Keep track of connections to local node
With this commit, we're adding infrastructure to track if any connection
to the same local host is done or not.
The main motivation for doing this is that we've previously were more
conservative about not choosing local execution. Simply, we disallowed
local execution if any connection to any remote node is done. However,
if we want to use local execution for intermediate result only queries,
this'd be annoying because we expect all queries to touch remote node
before the final query.
Note that this approach is still limiting in Citus MX case, but for now
we can ignore that.
* Formalize the concept of Local Node
Also some minor refactoring while creating the dummy placement
* Write intermediate results locally when the results are only needed locally
Before this commit, Citus used to always broadcast all the intermediate
results to remote nodes. However, it is possible to skip pushing
the results to remote nodes always.
There are two notable cases for doing that:
(a) When the query consists of only intermediate results
(b) When the query is a zero shard query
In both of the above cases, we don't need to access any data on the shards. So,
it is a valuable optimization to skip pushing the results to remote nodes.
The pattern mentioned in (a) is actually a common patterns that Citus users
use in practice. For example, if you have the following query:
WITH cte_1 AS (...), cte_2 AS (....), ... cte_n (...)
SELECT ... FROM cte_1 JOIN cte_2 .... JOIN cte_n ...;
The final query could be operating only on intermediate results. With this patch,
the intermediate results of the ctes are not unnecessarily pushed to remote
nodes.
* Add specific regression tests
As there are edge cases in Citus MX and with round-robin policy,
use the same queries on those cases as well.
* Fix failure tests
By forcing not to use local execution for intermediate results since
all the tests expects the results to be pushed remotely.
* Fix flaky test
* Apply code-review feedback
Mostly style changes
* Limit the max value of pg_dist_node_seq to reserve for internal use
In #3374 a new way of locking shard distribution metadata was
implemented. However, this was only done in the function
`LockShardDistributionMetadata` and not in
`TryLockShardDistributionMetadata`. This is bad, since it causes these
locks to not block eachother in some cases.
This commit fixes this issue by sharing the code that sets the locktag
between the two function.
When creating a new distributed table. The shards would colocate with shards
with SHARD_STATE_TO_DELETE (shardstate = 4). This means if that state was
because of a shard move the new shard would be created on two nodes and it
would not get deleted since it's shard state would be 1.
adaptive_executor: sort includes, use foreach_ptr, remove lies from FinishDistributedExecution docs
connection_management: rename msecs, which isn't milliseconds
placement_connection: small typos
Comment from code:
/*
* We had to implement this hack because on Postgres11 and below, the originalQuery
* and the query would have significant differences in terms of CTEs where CTEs
* would not be inlined on the query (as standard_planner() wouldn't inline CTEs
* on PG 11 and below).
*
* Instead, we prefer to pass the inlined query to the distributed planning. We rely
* on the fact that the query includes subqueries, and it'd definitely go through
* query pushdown planning. During query pushdown planning, the only relevant query
* tree is the original query.
*/
Deparsing and parsing a query can be heavy on CPU. When locally executing
the query we don't need to do this in theory most of the time.
This PR is the first step in allowing to skip deparsing and parsing
the query in these cases, by lazily creating the query string and
storing the query in the task. Future commits will make use of this and
not deparse and parse the query anymore, but use the one from the task
directly.
This is purely to enable better performance with prepared statements.
Before this commit, the fast path queries with prepared statements
where the distribution key includes a parameter always went through
distributed planning. After this change, we only go through distributed
planning on the first 5 executions.
DESCRIPTION: Fixes a problem when adding a new node due to tables referenced in a functions body
Fixes#3378
It was reported that `master_add_node` would fail if a distributed function has a table name referenced in its declare section of the body. By default postgres validates the body of a function on creation. This is not a problem in the normal case as tables are replicated to the workers when we distribute functions.
However when a new node is added we first create dependencies on the workers before we try to create any tables, and the original tables get created out of bound when the metadata gets synced to the new node. This causes the function body validator to raise an error the table is not on the worker.
To mitigate this issue we set `check_function_bodies` to `off` right before we are creating the function.
The added test shows this does resolve the issue. (issue can be reproduced on the commit without the fix)
In this commit, we're introducing a way to prevent CTE inlining via a GUC.
The GUC is used in all the tests where PG 11 and PG 12 tests would diverge
otherwise.
Note that, in PG 12, the restriction information for CTEs are generated. It
means that for some queries involving CTEs, Citus planner (router planner/
pushdown planner) may behave differently. So, via the GUC, we prevent
tests to diverge on PG 11 vs PG 12.
When we drop PG 11 support, we should get rid of the GUC, and mark
relevant ctes as MATERIALIZED, which does the same thing.
These set of tests has changed in both PG 11 and PG 12.
The changes are only about CTE inlining kicking in both
versions, and yielding the exact same distributed planning.
The idea is simple: Inline CTEs(if any), try distributed planning.
If the planning yields a successful distributed plan, simply return
it.
If the planning fails, fallback to distributed planning on the query
tree where CTEs are not inlined. In that case, if the planning failed
just because of the CTE inlining, via recursive planning, the same
query would yield a successful plan.
A very basic set of examples:
WITH cte_1 AS (SELECT * FROM test_table)
SELECT
*, row_number() OVER ()
FROM
cte_1;
or
WITH a AS (SELECT * FROM test_table),
b AS (SELECT * FROM test_table)
SELECT * FROM a JOIN b ON (a.value> b.value);
With this commit we add the necessary Citus function to inline CTEs
in a queryTree.
You might ask, why do we need to inline CTEs if Postgres is already
going to do it?
Few reasons behind this decision:
- One techinal node here is that Citus does the recursive CTE planning
by checking the originalQuery which is the query that has not gone
through the standard_planner().
CTEs in Citus is super powerful. It is practically key for full SQL
coverage for multi-shard queries. With CTEs, you can always reduce
any query multi-shard query into a router query via recursive
planning (thus full SQL coverage).
We cannot let CTE inlining break that. The main idea is Citus should
be able to retry planning if anything goes after CTE inlining.
So, by taking ownership of CTE inlining on the originalQuery, Citus
can fallback to recursive planning of CTEs if the planning with the
inlined query fails. It could have been a lot harder if we had relied
on standard_planner() to have the inlined CTEs on the original query.
- We want to have this feature in PostgreSQL 11 as well, but Postgres
only inlines in version 12
All the code in this commit is direct copy & paste from Postgres
source code.
We can classify the copy&paste code into two:
- Copy paste from CTE inline patch from postgres
(https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=608b167f9f9c4553c35bb1ec0eab9ddae643989b)
These include the functions inline_cte(), inline_cte_walker(),
contain_dml(), contain_dml_walker().
It also include the code in function PostgreSQLCTEInlineCondition().
We prefer to extract that code into a seperate function, because
(a) we'll re-use the logic later (b) we added one check for PG_11
Finally, the struct "inline_cte_walker_context" is also copied from
the same Postgres commit.
- Copy paste from the other parts of the Postgres code
In order to implement CTE inlining in Postgres 12, the hackers
modified the query_tree_walker()/range_table_walker() with the
18c0da88a5
Since Citus needs to support the same logic in PG 11, we copy & pasted
that functions (and related flags) with the names pg_12_query_tree_walker()
and pg_12_range_table_walker()
In two places I've made code more straight forward by using ROUTINE in our own codegen
Two changes which may seem extraneous:
AppendFunctionName was updated to not use pg_get_function_identity_arguments.
This is because that function includes ORDER BY when printing an aggregate like my_rank.
While ALTER AGGREGATE my_rank(x "any" ORDER BY y "any") is accepted by postgres,
ALTER ROUTINE my_rank(x "any" ORDER BY y "any") is not.
Tests were updated to use macaddr over integer. Using integer is flaky, our logic
could sometimes end up on tables like users_table. I originally wanted to use money,
but money isn't hashable.
We might need to send commands from workers to other workers. In
these cases we shouldn't override the xact id assigned by coordinator,
or otherwise we won't read the consistent set of result files
accross the nodes.
We need to know which placement succeeded in executing the worker_partition_query_result() call. Otherwise we wouldn't know which node to fetch from. This change allows that by introducing Task::perPlacementQueryStrings.
Fixes#3331
In #2389, we've implemented support for partitioned tables with rep > 1.
The implementation is limiting the use of modification queries on the
partitions. In fact, we error out when any partition is modified via
EnsurePartitionTableNotReplicated().
However, we seem to forgot an important case, where the parent table's
partition is marked as INVALID. In that case, at least one of the partition
becomes INVALID. However, we do not mark partitions as INVALID ever.
If the user queries the partition table directly, Citus could happily send
the query to INVALID placements -- which are not marked as INVALID.
This PR fixes it by marking the placements of the partitions as INVALID
as well.
The shard placement repair logic already re-creates all the partitions,
so should be fine in that front.
Different versions of reindent tool reformatted citus_custom_scan.c
and citus_copyfuncs.c differently. So some developers spent some
extra attention not to commit these two files after reindent.
This PR tries to address this.
* WIP
* wip
* add basic logic to run a single job with repartioning joins with adaptive executor
* fix some warnings and return in ExecuteDependedTasks if there is none
* Add the logic to run depended jobs in adaptive executor
The execution of depended tasks logic is changed. With the current
logic:
- All tasks are created from the top level task list.
- At one iteration:
- CurTasks whose dependencies are executed are found.
- CurTasks are executed in parallel with adapter executor main
logic.
- The iteration is repeated until all tasks are completed.
* Separate adaptive executor repartioning logic
* Remove duplicate parts
* cleanup directories and schemas
* add basic repartion tests for adaptive executor
* Use the first placement to fetch data
In task tracker, when there are replicas, we try to fetch from a replica
for which a map task is succeeded. TaskExecution is used for this,
however TaskExecution is not used in adaptive executor. So we cannot use
the same thing as task tracker.
Since adaptive executor fails when a map task fails (There is no retry
logic yet). We know that if we try to execute a fetch task, all of its
map tasks already succeeded, so we can just use the first one to fetch
from.
* fix clean directories logic
* do not change the search path while creating a udf
* Enable repartition joins with adaptive executor with only enable_reparitition_joins guc
* Add comments to adaptive_executor_repartition
* dont run adaptive executor repartition test in paralle with other tests
* execute cleanup only in the top level execution
* do cleanup only in the top level ezecution
* not begin a transaction if repartition query is used
* use new connections for repartititon specific queries
New connections are opened to send repartition specific queries. The
opened connections will be closed at the FinishDistributedExecution.
While sending repartition queries no transaction is begun so that
we can see all changes.
* error if a modification was done prior to repartition execution
* not start a transaction if a repartition query and sql task, and clean temporary files and schemas at each subplan level
* fix cleanup logic
* update tests
* add missing function comments
* add test for transaction with DDL before repartition query
* do not close repartition connections in adaptive executor
* rollback instead of commit in repartition join test
* use close connection instead of shutdown connection
* remove unnecesary connection list, ensure schema owner before removing directory
* rename ExecuteTaskListRepartition
* put fetch query string in planner not executor as we currently support only replication factor = 1 with adaptive executor and repartition query and we know the query string in the planner phase in that case
* split adaptive executor repartition to DAG execution logic and repartition logic
* apply review items
* apply review items
* use an enum for remote transaction state and fix cleanup for repartition
* add outside transaction flag to find connections that are unclaimed instead of always opening a new transaction
* fix style
* wip
* rename removejobdir to partition cleanup
* do not close connections at the end of repartition queries
* do repartition cleanup in pg catch
* apply review items
* decide whether to use transaction or not at execution creation
* rename isOutsideTransaction and add missing comment
* not error in pg catch while doing cleanup
* use replication factor of the creation time, not current time to decide if task tracker should be chosen
* apply review items
* apply review items
* apply review item
DESCRIPTION: Fix counter that keeps track of internal depth in executor
While reviewing #3302 I ran into the `ExecutorLevel` variable which used a variable to keep the original value to restore on successful exit. I haven't explored the full space and if it is possible to get into an inconsistent state. However using `PG_TRY`/`PG_CATCH` seems generally more correct.
Given very bad things will happen if this level is not reset, I kept the failsafe of setting the variiable back to 0 on the `XactCallback` but I did add an assert to treat it as a developer bug.
Use partition column's collation for range distributed tables
Don't allow non deterministic collations for hash distributed tables
CoPartitionedTables: don't compare unequal types
Test ALTER ROLE doesn't deadlock when coordinator added, or propagate from mx workers
Consolidate wait_until_metadata_sync & verify_metadata to multi_test_helpers
Previously,
- we'd push down ORDER BY, but this doesn't order intermediate results between workers
- we'd keep FILTER on master aggregate, which would raise an error about unexpected cstrings
DESCRIPTION: add gitref to the output of citus_version
During debugging of custom builds it is hard to know the exact version of the citus build you are using. This patch will add a human readable/understandable git reference to the build of citus which can be retrieved by calling `citus_version();`.
Support for ARRAY[] expressions is limited to having a consistent shape,
eg ARRAY[(int,text),(int,text)] as opposed to ARRAY[(int,text),(float,text)] or ARRAY[(int,text),(int,text,float)]
Initialization of queryWindowClause and queryOrderByLimit "memset" underflow these variables.
It's possible due to the invalid usage sizeof this part of the program cause buffer overflow and function return data corruption in future changes.
* Improve extension command propagation tests
* patch for hardcoded citus extension name
(cherry picked from commit 0bb3dbac0afabda10e8928f9c17eda048dc4361a)
In plain words, each distributed plan pulls the necessary intermediate
results to the worker nodes that the plan hits. This is primarily useful
in three ways.
(i) If the distributed plan that uses intermediate
result(s) is a router query, then the intermediate results are only
broadcasted to a single node.
(ii) If a distributed plan consists of only intermediate results, which
is not uncommon, the intermediate results are broadcasted to a single
node only.
(iii) If a distributed query hits a sub-set of the shards in multiple
workers, the intermediate results will be broadcasted to the relevant
node(s).
The final item (iii) becomes crucial for append/range distributed
tables where typically the distributed queries hit a small subset of
shards/workers.
To do this, for each query that Citus creates a distributed plan, we keep
track of the subPlans used in the queryTree, and save it in the distributed
plan. Just before Citus executes each subPlan, Citus first keeps track of
every worker node that the distributed plan hits, and marks every subPlan
should be broadcasted to these nodes. Later, for each subPlan which is a
distributed plan, Citus does this operation recursively since these
distributed plans may access to different subPlans, and those have to be
recorded as well.
Prevent Citus extension being distributed
Because that could prevent doing rolling upgrades, where users may
prefer to upgrade the version on the coordinator but not the workers.
There could be some other edge cases, so I'd prefer to keep Citus
extension outside the picture for now.
DESCRIPTION: Expression in reference join
Fixed: #2582
This patch allows arbitrary expressions in the join clause when joining to a reference table. An example of such joins could be found in CHbenCHmark queries 7, 8, 9 and 11; `mod((s_w_id * s_i_id),10000) = su_suppkey` and `ascii(substr(c_state,1,1)) = n2.n_nationkey`. Since the join is on a reference table these queries are able to be pushed down to the workers.
To implement these queries we will widen the `IsJoinClause` predicate to not check if the expressions are a type `Var` after stripping the implicit coerciens. Instead we define a join clause when the `Var`'s in a clause come from more than 1 table.
This allows more clauses to pass into the logical planner's `MultiNodeTree(...)` planning function. To compensate for this we tighten down the `LocalJoin`, `SinglePartitionJoin` and `DualPartitionJoin` to check for direct column references when planning. This allows the planner to work with arbitrary join expressions on reference tables.
With this commit, we're slightly changing the dependency traversal
logic to enable extension propagation.
The main idea is to "follow" the extension dependencies, but do not
"apply" them.
Since some extension dependencies are base types, and base types
could have circular dependencies, we implement a logic to prevent
revisiting an already visited object.
When the user picks "round-robin" policy, the aim is that the load
is distributed across nodes. However, for reference tables on the
coordinator, since local execution kicks in immediately, round-robin
is ignored.
With this change, we're excluding the placement on the coordinator.
Although the approach seems a little bit invasive because of
modifications in the placement list, that sounds acceptable.
We could have done this in some other ways such as:
1) Add a field to "Task->roundRobinPlacement" (or such), which is
updated as the first element after RoundRobinPolicy is applied.
During the execution, if that placement is local to the coordinator,
skip it and try the other remote placements.
2) On TaskAccessesLocalNode()@local_execution.c, check
task_assignment_policy, if round-robin selected and there is local
placement on the coordinator, skip it. However, task assignment is done
on planning, but this decision is happening on the execution, which
could create weird edge cases.
This change was actually already intended in #3124. However, the
postgres Makefile manually enables this warning too. This way we undo
that.
To confirm that it works two functions were changed to make use of not
having the warning anymore.
Phase 1 seeks to implement minimal infrastructure, so does not include:
- dynamic generation of support aggregates to handle multiple arguments
- configuration methods to direct aggregation strategy,
or mark an aggregate's serialize/deserialize as safe to operate across nodes
Aggregates can be distributed when:
- they have a single argument
- they have a combinefunc
- their transition type is not a pseudotype
This is necassery to support Q20 of the CHbenCHmark: #2582.
To summarize the fix: The subquery is converted into an INNER JOIN on a
table. This fixes the issue, since an INNER JOIN on a table is already
supported by the repartion planner.
The way this replacement is happening.:
1. Postgres replaces `col in (subquery)` with a SEMI JOIN (subquery) on col = subquery_result
2. If this subquery is simple enough Postgres will replace it with a
regular read from a table
3. If the subquery returns unique results (e.g. a primary key) Postgres
will convert the SEMI JOIN into an INNER JOIN during the planning. It
will not change this in the rewritten query though.
4. We check if Postgres sends us any SEMI JOINs during its join order
planning, if it doesn't we replace all SEMI JOINs in the rewritten
query with INNER JOIN (which we already support).
Postgres doesn't require you to add all columns that are in the target list to
the GROUP BY when you group by a unique column (or columns). It even actively
removes these group by clauses when you do.
This is normally fine, but for repartition joins it is not. The reason for this
is that the temporary tables don't have these primary key columns. So when the
worker executes the query it will complain that it is missing columns in the
group by.
This PR fixes that by adding an ANY_VALUE aggregate around each variable in
the target list that does is not contained in the group by or in an aggregate.
This is done only for repartition joins.
The ANY_VALUE aggregate chooses the value from an undefined row in the
group.
It looks like the logic to prevent RETURNING in reference tables to
have duplicate entries that comes from local and remote executions
leads to missing some tuples for distributed tables.
With this PR, we're ensuring to kick in the logic for reference tables
only.
* Remove unused executor codes
All of the codes of real-time executor. Some functions
in router executor still remains there because there
are common functions. We'll move them to accurate places
in the follow-up commits.
* Move GUCs to transaction mngnt and remove unused struct
* Update test output
* Get rid of references of real-time executor from code
* Warn if real-time executor is picked
* Remove lots of unused connection codes
* Removed unused code for connection restrictions
Real-time and router executors cannot handle re-using of the existing
connections within a transaction block.
Adaptive executor and COPY can re-use the connections. So, there is no
reason to keep the code around for applying the restrictions in the
placement connection logic.
We've changed the logic for pulling RTE_RELATIONs in #3109 and
non-colocated subquery joins and partitioned tables.
@onurctirtir found this steps where I traced back and found the issues.
While looking into it in more detail, we decided to expand the list in a
way that the callers get all the relevant RTE_RELATIONs RELKIND_RELATION,
RELKIND_PARTITIONED_TABLE, RELKIND_FOREIGN_TABLE and RELKIND_MATVIEW.
These are all relation kinds that Citus planner is aware of.
When citus.enable_repartition_joins guc is set to on, and we have
adaptive executor, there was a typo in the debug message, which was
saying realtime executor no adaptive executor.
See #3125 for details on each item.
* Remove real-time/router executor tests-1
These are the ones which doesn't have '_%d' in the test
output files.
* Remove real-time/router executor tests-2
These are the ones which has in the test
output files.
* Move the tests outputs to correct place
* Make sure that single shard commits use 2PC on adaptive executor
It looks like we've messed the tests in #2891. Fixing back.
* Use adaptive executor for all router queries
This becomes important because when task-tracker is picked, we
used to pick router executor, which doesn't make sense.
* Remove explicit references to real-time/router executors in the tests
* JobExecutorType never picks real-time/router executors
* Make sure to go incremental in test output numbers
* Even users cannot pick real-time anymore
* Do not use real-time/router custom scans
* Get rid of unnecessary normalizations
* Reflect unneeded normalizations
* Get rid of unnecessary test output file
This completely hides `ListCell` to the user of the loop
Example usage:
```c
WorkerNode *workerNode = NULL;
foreach_ptr(workerNode, workerNodeList) {
// Do stuff with workerNode
}
```
Instead of:
```c
ListCell *workerNodeCell = NULL;
foreach(cell, workerNodeList) {
WorkerNode *workerNode = lfirst(workerNodeCell);
// Do stuff with workerNode
}
```
It turns out that TupleDescGetAttInMetadata() allocates quite a lot
of memory. And, if the target list is long and there are too many rows
returning, the leak becomes appereant.
You can reproduce the issue wout the fix with the following commands:
```SQL
CREATE TABLE users_table (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint);
SELECT create_distributed_table('users_table', 'user_id');
insert into users_table SELECT i, now(), i, i, i, i FROM generate_series(0,99999)i;
-- load faster
-- 200,000
INSERT INTO users_table SELECT * FROM users_table;
-- 400,000
INSERT INTO users_table SELECT * FROM users_table;
-- 800,000
INSERT INTO users_table SELECT * FROM users_table;
-- 1,600,000
INSERT INTO users_table SELECT * FROM users_table;
-- 3,200,000
INSERT INTO users_table SELECT * FROM users_table;
-- 6,400,000
INSERT INTO users_table SELECT * FROM users_table;
-- 12,800,000
INSERT INTO users_table SELECT * FROM users_table;
-- making the target list entry wider speeds up the leak to show up
select *,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,* FROM users_table ;
```
This is an improvement over #2512.
This adds the boolean shouldhaveshards column to pg_dist_node. When it's false, create_distributed_table for new collocation groups will not create shards on that node. Reference tables will still be created on nodes where it is false.
Areas for further optimization:
- Don't save subquery results to a local file on the coordinator when the subquery is not in the having clause
- Push the the HAVING with subquery to the workers if there's a group by on the distribution column
- Don't push down the results to the workers when we don't push down the HAVING clause, only the coordinator needs it
Fixes#520Fixes#756Closes#2047
DESCRIPTION: Fix order for enum values and correctly support pg12
PG 12 introduces `ALTER TYPE ... ADD VALUE ...` during transactions. Earlier versions would error out when called in a transaction, hence we connect to workers outside of the transaction which could cause inconsistencies on pg12 now that postgres doesn't error with this syntax anymore.
During the implementation of this fix it became apparent there was an error with the ordering of enum labels when the type was recreated. A patch and test have been included.
Objectives:
(a) both super user and regular user should have the correct owner for the function on the worker
(b) The transactional semantics would work fine for both super user and regular user
(c) non-super-user and non-function owner would get a reasonable error message if tries to distribute the function
Co-authored-by: @serprex
DESCRIPTION: Disallow distributed functions for functions depending on an extension
Functions depending on an extension cannot (yet) be distributed by citus. If we would allow this it would cause issues with our dependency following mechanism as we stop following objects depending on an extension.
By not allowing functions to be distributed when they depend on an extension as well as not allowing to make distributed functions depend on an extension we won't break the ability to add new nodes. Allowing functions depending on extensions to be distributed at the moment could cause problems in that area.
DESCRIPTION: Propagate CREATE OR REPLACE FUNCTION
Distributed functions could be replaced, which should be propagated to the workers to keep the function in sync between all nodes.
Due to the complexity of deparsing the `CreateFunctionStmt` we actually produce the plan during the processing phase of our utilityhook. Since the changes have already been made in the catalog tables we can reuse `pg_get_functiondef` to get us the generated `CREATE OR REPLACE` sql.
DESCRIPTION: Propagate ALTER FUNCTION statements for distributed functions
Using the implemented deparser for function statements to propagate changes to both functions and procedures that are previously distributed.
This PR aims to add all the necessary logic to qualify and deparse all possible `{ALTER|DROP} .. {FUNCTION|PROCEDURE}` queries.
As Procedures are introduced in PG11, the code contains many PG version checks. I tried my best to make it easy to clean up once we drop PG10 support.
Here are some caveats:
- I assumed that the parse tree is a valid one. There are some queries that are not allowed, but still are parsed successfully by postgres planner. Such queries will result in errors in execution time. (e.g. `ALTER PROCEDURE p STRICT` -> `STRICT` action is valid for functions but not procedures. Postgres decides to parse them nevertheless.)
When a function is marked as colocated with a distributed table,
we try delegating queries of kind "SELECT func(...)" to workers.
We currently only support this simple form, and don't delegate
forms like "SELECT f1(...), f2(...)", "SELECT f1(...) FROM ...",
or function calls inside transactions.
As a side effect, we also fix the transactional semantics of DO blocks.
Previously we didn't consider a DO block a multi-statement transaction.
Now we do.
Co-authored-by: Marco Slot <marco@citusdata.com>
Co-authored-by: serprex <serprex@users.noreply.github.com>
Co-authored-by: pykello <hadi.moshayedi@microsoft.com>
In this PR the default `threshold` of `rebalance_table_shards` was set to 0: https://github.com/citusdata/shard_rebalancer/pull/73
However, the default for get_rebalance_table_shards_plan was not updated. This
can cause the confusing situation where the actual steps run by
`rebalance_table_shards` are not the same as the ones returned by
`get_rebalance_table_shards_plan`.
We started copying parse trees by default further on in `multi_ProcessUtility`. That's not a problem for maintenance command, but might register for things like `PREPARE` and `EXECUTE`, which might happen thousands of times per second. Add a few common commands to the check at the start.
Since the distributed functions are useful when the workers have
metadata, we automatically sync it.
Also, after master_add_node(). We do it lazily and let the deamon
sync it. That's mainly because the metadata syncing cannot be done
in transaction blocks, and we don't want to add lots of transactional
limitations to master_add_node() and create_distributed_function().
With this commit, we're changing the API for create_distributed_function()
such that users can provide the distribution argument and the colocation
information.
We've recently merged two commits, db5d03931d
and eccba1d4c3, which actually operates
on the very similar places.
It turns out that we've an integration issue, where master_add_node()
fails to replicate the functions to newly added node.
DESCRIPTION: Provide a GUC to turn of the new dependency propagation functionality
In the case the dependency propagation functionality introduced in 9.0 causes issues to a cluster of a user they can turn it off almost completely. The only dependency that will still be propagated and kept track of is the schema to emulate the old behaviour.
GUC to change is `citus.enable_object_propagation`. When set to `false` the functionality will be mostly turned off. Be aware that objects marked as distributed in `pg_dist_object` will still be kept in the catalog as a distributed object. Alter statements to these objects will not be propagated to workers and may cause desynchronisation.
DESCRIPTION: Rename remote types during type propagation
To prevent data to be destructed when a remote type differs from the type on the coordinator during type propagation we wanted to rename the type instead of `DROP CASCADE`.
This patch removes the `DROP` logic and adds the creation of a rename statement to a free name.
DESCRIPTION: Add feature flag to turn off create type propagation
When `citus.enable_create_type_propagation` is set to `false` citus will not propagate `CREATE TYPE` statements to the workers. Types are still distributed when tables that depend on these types are distributed.
This PR simply adds the columns to pg_dist_object and
implements the necessary metadata changes to keep track of
distribution argument of the functions/procedures.
A better fix for #2975. Apparently for OSX cpp -MF and -MT shouldn't have a
space in between the flag and their value. Without the space it still works for
gcc as well.
This PR aims to add the minimal set of changes required to start
distributing functions. You can use create_distributed_function(regproc)
UDF to distribute a function.
SELECT create_distributed_function('add(int,int)');
The function definition should include the param types to properly
identify the correct function that we wish to distribute
@thanodnl told me it was a bit of a problem that it's impossible to see
the history of a UDF in git. The only way to do so is by reading all the
sql migration files from new to old. Another problem is that it's also
hard to review the changed UDF during code review, because to find out
what changed you have to do the same. I thought of a IMHO better (but
not perfect) way to handle this.
We keep the definition of a UDF in sql/udfs/{name_of_udf}/latest.sql.
That file we change whenever we need to make a change to the the UDF. On
top of that you also make a snapshot of the file in
sql/udfs/{name_of_udf}/{migration-version}.sql (e.g. 9.0-1.sql) by
copying the contents. This way you can easily view what the actual
changes were by looking at the latest.sql file.
There's still the question on how to use these files then. Sadly
postgres doesn't allow inclusion of other sql files in the migration sql
file (it does in psql using \i). So instead I used the C preprocessor+
make to compile a sql/xxx.sql to a build/sql/xxx.sql file. This final
build/sql/xxx.sql file has every occurence of #include "somefile.sql" in
sql/xxx.sql replaced by the contents of somefile.sql.
DESCRIPTION: Distribute Types to worker nodes
When to propagate
==============
There are two logical moments that types could be distributed to the worker nodes
- When they get used ( just in time distribution )
- When they get created ( proactive distribution )
The just in time distribution follows the model used by how schema's get created right before we are going to create a table in that schema, for types this would be when the table uses a type as its column.
The proactive distribution is suitable for situations where it is benificial to have the type on the worker nodes directly. They can later on be used in queries where an intermediate result gets created with a cast to this type.
Just in time creation is always the last resort, you cannot create a distributed table before the type gets created. A good example use case is; you have an existing postgres server that needs to scale out. By adding the citus extension, add some nodes to the cluster, and distribute the table. The type got created before citus existed. There was no moment where citus could have propagated the creation of a type.
Proactive is almost always a good option. Types are not resource intensive objects, there is no performance overhead of having 100's of types. If you want to use them in a query to represent an intermediate result (which happens in our test suite) they just work.
There is however a moment when proactive type distribution is not beneficial; in transactions where the type is used in a distributed table.
Lets assume the following transaction:
```sql
BEGIN;
CREATE TYPE tt1 AS (a int, b int);
CREATE TABLE t1 AS (a int PRIMARY KEY, b tt1);
SELECT create_distributed_table('t1', 'a');
\copy t1 FROM bigdata.csv
```
Types are node scoped objects; meaning the type exists once per worker. Shards however have best performance when they are created over their own connection. For the type to be visible on all connections it needs to be created and committed before we try to create the shards. Here the just in time situation is most beneficial and follows how we create schema's on the workers. Outside of a transaction block we will just use 1 connection to propagate the creation.
How propagation works
=================
Just in time
-----------
Just in time propagation hooks into the infrastructure introduced in #2882. It adds types as a supported object in `SupportedDependencyByCitus`. This will make sure that any object being distributed by citus that depends on types will now cascade into types. When types are depending them self on other objects they will get created first.
Creation later works by getting the ddl commands to create the object by its `ObjectAddress` in `GetDependencyCreateDDLCommands` which will dispatch types to `CreateTypeDDLCommandsIdempotent`.
For the correct walking of the graph we follow array types, when later asked for the ddl commands for array types we return `NIL` (empty list) which makes that the object will not be recorded as distributed, (its an internal type, dependant on the user type).
Proactive distribution
---------------------
When the user creates a type (composite or enum) we will have a hook running in `multi_ProcessUtility` after the command has been applied locally. Running after running locally makes that we already have an `ObjectAddress` for the type. This is required to mark the type as being distributed.
Keeping the type up to date
====================
For types that are recorded in `pg_dist_object` (eg. `IsObjectDistributed` returns true for the `ObjectAddress`) we will intercept the utility commands that alter the type.
- `AlterTableStmt` with `relkind` set to `OBJECT_TYPE` encapsulate changes to the fields of a composite type.
- `DropStmt` with removeType set to `OBJECT_TYPE` encapsulate `DROP TYPE`.
- `AlterEnumStmt` encapsulates changes to enum values.
Enum types can not be changed transactionally. When the execution on a worker fails a warning will be shown to the user the propagation was incomplete due to worker communication failure. An idempotent command is shown for the user to re-execute when the worker communication is fixed.
Keeping types up to date is done via the executor. Before the statement is executed locally we create a plan on how to apply it on the workers. This plan is executed after we have applied the statement locally.
All changes to types need to be done in the same transaction for types that have already been distributed and will fail with an error if parallel queries have already been executed in the same transaction. Much like foreign keys to reference tables.
For another PR I needed to add another column which would require to add
another argument to an already 9 argument function signature. In this
case it would be a boolean flag and there were already two boolean flags
in there. In my experience it becomes really easy to mess up the order
of these flags at that point. Especially because the type system doesn't
distinguish between the 3 different booleans with completely different
meanings.
So I refactored these signatures to receive a struct containing most of
these arguments. Like that you don't mess up orderening, because the
meaning of the boolean is not order dependent but fieldname dependent.
It also makes it possible to set good shared defaults for this struct.