Before this commit, Citus supported INSERT...SELECT queries with
ON CONFLICT or RETURNING clauses only for pushdownable ones, since
queries supported via coordinator were utilizing COPY infrastructure
of PG to send selected tuples to the target worker nodes.
After this PR, INSERT...SELECT queries with ON CONFLICT or RETURNING
clauses will be performed in two phases via coordinator. In the first
phase selected tuples will be saved to the intermediate table which
is colocated with target table of the INSERT...SELECT query. Note that,
a utility function to save results to the colocated intermediate result
also implemented as a part of this commit. In the second phase, INSERT..
SELECT query is directly run on the worker node using the intermediate
table as the source table.
The file handling the utility functions (DDL) for citus organically grew over time and became unreasonably large. This refactor takes that file and refactored the functionality into separate files per command. Initially modeled after the directory and file layout that can be found in postgres.
Although the size of the change is quite big there are barely any code changes. Only one two functions have been added for readability purposes:
- PostProcessIndexStmt which is extracted from PostProcessUtility
- PostProcessAlterTableStmt which is extracted from multi_ProcessUtility
A README.md has been added to `src/backend/distributed/commands` describing the contents of the module and every file in the module.
We need more documentation around the overloading of the COPY command, for now the boilerplate has been added for people with better knowledge to fill out.
Assign the distributed transaction id before trying to acquire the
executor advisory locks. This is useful to show this backend in citus
lock graphs (e.g., dump_global_wait_edges() and citus_lock_waits).
We used to set the execution mode in the truncate trigger. However,
when multiple tables are truncated with a single command, we could
set the execution mode very late. Instead, now set the execution mode
on the utility hook.
With this commit, we all partitioned distributed tables with
replication factor > 1. However, we also have many restrictions.
In summary, we disallow all kinds of modifications (including DDLs)
on the partition tables. Instead, the user is allowed to run the
modifications over the parent table.
The necessity for such a restriction have two aspects:
- We need to acquire shard resource locks appropriately
- We need to handle marking partitions INVALID in case
of any failures. Note that, in theory, the parent table
should also become INVALID, which is too aggressive.
We acquire distributed lock on all mx nodes for truncated
tables before actually doing truncate operation.
This is needed for distributed serialization of the truncate
command without causing a deadlock.
Reason for the failure is that PG11 introduced a new relation kind
RELKIND_PARTITIONED_INDEX to be used for partitioned indices.
We expanded our check to cover that case.
Make sure that the coordinator sends the commands when the search
path synchronised with the coordinator's search_path. This is only
important when Citus sends the commands that are directly relayed
to the worker nodes. For example, the deparsed DLL commands or
queries always adds schema qualifications to the queries. So, they
do not require this change.
When a hash distributed table have a foreign key to a reference
table, there are few restrictions we have to apply in order to
prevent distributed deadlocks or reading wrong results.
The necessity to apply the restrictions arise from cascading
nature of foreign keys. When a foreign key on a reference table
cascades to a distributed table, a single operation over a single
connection can acquire locks on multiple shards of the distributed
table. Thus, any parallel operation on that distributed table, in the
same transaction should not open parallel connections to the shards.
Otherwise, we'd either end-up with a self-distributed deadlock or
read wrong results.
As briefly described above, the restrictions that we apply is done
by tracking the distributed/reference relation accesses inside
transaction blocks, and act accordingly when necessary.
The two main rules are as follows:
- Whenever a parallel distributed relation access conflicts
with a consecutive reference relation access, Citus errors
out
- Whenever a reference relation access is followed by a
conflicting parallel relation access, the execution mode
is switched to sequential mode.
There are also some other notes to mention:
- If the user does SET LOCAL citus.multi_shard_modify_mode
TO 'sequential';, all the queries should simply work with
using one connection per worker and sequentially executing
the commands. That's obviously a slower approach than Citus'
usual parallel execution. However, we've at least have a way
to run all commands successfully.
- If an unrelated parallel query executed on any distributed
table, we cannot switch to sequential mode. Because, the essense
of sequential mode is using one connection per worker. However,
in the presence of a parallel connection, the connection manager
picks those connections to execute the commands. That contradicts
with our purpose, thus we error out.
- COPY to a distributed table cannot be executed in sequential mode.
Thus, if we switch to sequential mode and COPY is executed, the
operation fails and there is currently no way of implementing that.
Note that, when the local table is not empty and create_distributed_table
is used, citus uses COPY internally. Thus, in those cases,
create_distributed_table() will also fail.
- There is a GUC called citus.enforce_foreign_key_restrictions
to disable all the checks. We added that GUC since the restrictions
we apply is sometimes a bit more restrictive than its necessary.
The user might want to relax those. Similarly, if you don't have
CASCADEing reference tables, you might consider disabling all the
checks.
-[x] drop constraint
-[x] drop column
-[x] alter column type
-[x] truncate
are sequentialized if there is a foreign constraint from
a distributed table to a reference table on the affected relations
by the above commands.
Make sure that intermediate results use a connection that is
not associated with any placement. That is useful in two ways:
- More complex queries can be executed with CTEs
- Safely use the same connections when there is a foreign key
to reference table from a distributed table, which needs to
use the same connection for modifications since the reference
table might cascade to the distributed table.