We're relying on multi_shard_modify_mode GUC for real-time SELECTs.
The name of the GUC is unfortunate, but, adding one more GUC
(or renaming the GUC) would make the UX even worse. Given that this
mode is mostly important for transaction blocks that involve modification
/DDL queries along with real-time SELECTs, we can live with the confusion.
After this commit DDL commands honour `citus.multi_shard_modify_mode`.
We preferred using the code-path that executes single task router
queries (e.g., ExecuteSingleModifyTask()) in order not to invent
a new executor that is only applicable for DDL commands that require
sequential execution.
utilityStmt sometimes (such as when it's inside of a plpgsql function)
comes from a cached plan, which is kept in a child of the
CacheMemoryContext. When we naively call copyObject we're copying it into
a statement-local context, which corrupts the cached plan when it's
thrown away.
- changes in ruleutils_11.c is reflected
- vacuum statement api change is handled. We now allow
multi-table vacuum commands.
- some other function header changes are reflected
- api conflicts between PG11 and earlier versions
are handled by adding shims in version_compat.h
- various regression tests are fixed due output and
functionality in PG1
- no change is made to support new features in PG11
they need to be handled by new commit
Without this change multi_real_time_transaction blocks forever (on
Windows) in the block where it repeatedly calls pg_advisory_lock(15).
This happens because the deadlock detector tries to cancel the backend
but the backend never processes that signal.
We recently added partitionin support to Citus MX. We should not execute
DROP table commands from MX workers but at the moment we try to execute
such commands for partitioned tables. This PR fixes that problem by
adding check.
Previously, we prevented creation of partitioned tables on Citus MX.
We decided to not focus on this feature until there is a need. Since
now there are requests for this feature, we are implementing support
for partitioned tables on Citus MX.
After this change all the logic related to shard data fetch logic
will be removed. Planner won't plan any ShardFetchTask anymore.
Shard fetch related steps in real time executor and task-tracker
executor have been removed.
This commit checks the connection status right after any IO happens
on the socket.
This is necessary since before this commit we didn't pass any information
to the higher level functions whether we're done with the connection
(e.g., no IO required anymore) or an errors happened during the IO.
PostgreSQL implements support for several relation kinds in a single
statement, such as in the AlterTableStmt case, which supports both tables
and indexes and more (see ATExecSetRelOptions in PostgreSQL source code file
src/backend/commands/tablecmds.c for an example of that).
As a consequence, this patch implements support for setting and resetting
storage parameters on both relation kinds.
The command is now distributed among the shards when the table is
distributed. To that effect, we fill in the DDLJob's targetRelationId with
the OID of the table for which the index is defined, rather than the OID of
the index itself.
The implementation was already mostly in place, but the code was protected
by a principled check against the operation. Turns out there's a nasty
concurrency bug though with long identifier names, much as in #1664.
To prevent deadlocks from happening, we could either review the DDL
transaction management in shards and placements, or we can simply reject
names with (NAMEDATALEN - 1) chars or more — that's because of the
PostgreSQL array types being created with a one-char prefix: '_'.
This commit introduces a new GUC to limit the intermediate
result size which we handle when we use read_intermediate_result
function for CTEs and complex subqueries.
Postgres provides OS agnosting formatting macros for
formatting 64 bit numbers. Replaced %ld %lu with
INT64_FORMAT and UINT64_FORMAT respectively.
Also found some incorrect usages of formatting
flags and fixed them.
While attaching a partition to a distributed table in schema, we mistakenly
used unqualified name to find partitioned table's oid. This caused problems
while using partitioned tables with schemas. We are fixing this issue in
this PR.
When a NULL connection is provided to PQerrorMessage(), the
returned error message is a static text. Modifying that static
text, which doesn't necessarly be in a writeable memory, is
dangreous and might cause a segfault.
Now that we already have the necessary infrastructure for detecting
distributed deadlocks. Thus, we don't need enable_deadlock_prevention
which is purely intended for preventing some forms of distributed
deadlocks.
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
This is a pretty substantial refactoring of the existing modify path
within the router executor and planner. In particular, we now hunt for
all VALUES range table entries in INSERT statements and group the rows
contained therein by shard identifier. These rows are stashed away for
later in "ModifyRoute" elements. During deparse, the appropriate RTE
is extracted from the Query and its values list is replaced by these
rows before any SQL is generated.
In this way, we can create multiple Tasks, but only one per shard, to
piecemeal execute a multi-row INSERT. The execution of jobs containing
such tasks now exclusively go through the "multi-router executor" which
was previously used for e.g. INSERT INTO ... SELECT.
By piggybacking onto that executor, we participate in ongoing trans-
actions, get rollback-ability, etc. In short order, the only remaining
use of the "single modify" router executor will be for bare single-
row INSERT statements (i.e. those not in a transaction).
This change appropriately handles deferred pruning as well as master-
evaluated functions.
With this PR, Citus starts to support all possible ways to create
distributed partitioned tables. These are;
- Distributing already created partitioning hierarchy
- CREATE TABLE ... PARTITION OF a distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION non_distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION distributed_table
We also support DETACHing partitions from partitioned tables and propogating
TRUNCATE and DDL commands to distributed partitioned tables.
This PR also refactors some parts of distributed table creation logic.
This change removes distributed tables' dependency on distribution key columns. We already check that we cannot drop distribution key columns in ErrorIfUnsupportedAlterTableStmt() at multi_utility.c, so we don't need to have distributed table to distribution key column dependency to avoid dropping of distribution key column.
Furthermore, having this dependency causes some warnings in pg_dump --schema-only (See #866), which are not desirable.
This change also adds check to disallow drop of distribution keys when citus.enable_ddl_propagation is set to false. Regression tests are updated accordingly.
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
Before this change, we used ShareLock to acquire lock on distributed tables while
running VACUUM. This makes VACUUM and INSERT block each other. With this change we
changed lock mode from ShareLock to ShareUpdateExclusiveLock, which does not conflict
with the locks INSERT acquire.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.