While attaching a partition to a distributed table in schema, we mistakenly
used unqualified name to find partitioned table's oid. This caused problems
while using partitioned tables with schemas. We are fixing this issue in
this PR.
When a NULL connection is provided to PQerrorMessage(), the
returned error message is a static text. Modifying that static
text, which doesn't necessarly be in a writeable memory, is
dangreous and might cause a segfault.
Now that we already have the necessary infrastructure for detecting
distributed deadlocks. Thus, we don't need enable_deadlock_prevention
which is purely intended for preventing some forms of distributed
deadlocks.
This GUC has two settings, 'always' and 'never'. When it's set to
'never' all behavior stays exactly as it was prior to this commit. When
it's set to 'always' only SELECT queries are allowed to run, and only
secondary nodes are used when processing those queries.
Add some helper functions:
- WorkerNodeIsSecondary(), checks the noderole of the worker node
- WorkerNodeIsReadable(), returns whether we're currently allowed to
read from this node
- ActiveReadableNodeList(), some functions (namely, the ones on the
SELECT path) don't require working with Primary Nodes. They should call
this function instead of ActivePrimaryNodeList(), because the latter
will error out in contexts where we're not allowed to write to nodes.
- ActiveReadableNodeCount(), like the above, replaces
ActivePrimaryNodeCount().
- EnsureModificationsCanRun(), error out if we're not currently allowed
to run queries which modify data. (Either we're in read-only mode or
use_secondary_nodes is set)
Some parts of the code were switched over to use readable nodes instead
of primary nodes:
- Deadlock detection
- DistributedTableSize,
- the router, real-time, and task tracker executors
- ShardPlacement resolution
This is a pretty substantial refactoring of the existing modify path
within the router executor and planner. In particular, we now hunt for
all VALUES range table entries in INSERT statements and group the rows
contained therein by shard identifier. These rows are stashed away for
later in "ModifyRoute" elements. During deparse, the appropriate RTE
is extracted from the Query and its values list is replaced by these
rows before any SQL is generated.
In this way, we can create multiple Tasks, but only one per shard, to
piecemeal execute a multi-row INSERT. The execution of jobs containing
such tasks now exclusively go through the "multi-router executor" which
was previously used for e.g. INSERT INTO ... SELECT.
By piggybacking onto that executor, we participate in ongoing trans-
actions, get rollback-ability, etc. In short order, the only remaining
use of the "single modify" router executor will be for bare single-
row INSERT statements (i.e. those not in a transaction).
This change appropriately handles deferred pruning as well as master-
evaluated functions.
With this PR, Citus starts to support all possible ways to create
distributed partitioned tables. These are;
- Distributing already created partitioning hierarchy
- CREATE TABLE ... PARTITION OF a distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION non_distributed_table
- ALTER TABLE distributed_table ATTACH PARTITION distributed_table
We also support DETACHing partitions from partitioned tables and propogating
TRUNCATE and DDL commands to distributed partitioned tables.
This PR also refactors some parts of distributed table creation logic.
This change removes distributed tables' dependency on distribution key columns. We already check that we cannot drop distribution key columns in ErrorIfUnsupportedAlterTableStmt() at multi_utility.c, so we don't need to have distributed table to distribution key column dependency to avoid dropping of distribution key column.
Furthermore, having this dependency causes some warnings in pg_dump --schema-only (See #866), which are not desirable.
This change also adds check to disallow drop of distribution keys when citus.enable_ddl_propagation is set to false. Regression tests are updated accordingly.
- master_add_node enforces that there is only one primary per group
- there's also a trigger on pg_dist_node to prevent multiple primaries
per group
- functions in metadata cache only return primary nodes
- Rename ActiveWorkerNodeList -> ActivePrimaryNodeList
- Rename WorkerGetLive{Node->Group}Count()
- Refactor WorkerGetRandomCandidateNode
- master_remove_node only complains about active shard placements if the
node being removed is a primary.
- master_remove_node only deletes all reference table placements in the
group if the node being removed is the primary.
- Rename {Node->NodeGroup}HasShardPlacements, this reflects the behavior it
already had.
- Rename DeleteAllReferenceTablePlacementsFrom{Node->NodeGroup}. This also
reflects the behavior it already had, but the new signature forces the
caller to pass in a groupId
- Rename {WorkerGetLiveGroup->ActivePrimaryNode}Count
Comes with a few changes:
- Change the signature of some functions to accept groupid
- InsertShardPlacementRow
- DeleteShardPlacementRow
- UpdateShardPlacementState
- NodeHasActiveShardPlacements returns true if the group the node is a
part of has any active shard placements
- TupleToShardPlacement now returns ShardPlacements which have NULL
nodeName and nodePort.
- Populate (nodeName, nodePort) when creating ShardPlacements
- Disallow removing a node if it contains any shard placements
- DeleteAllReferenceTablePlacementsFromNode matches based on group. This
doesn't change behavior for now (while there is only one node per
group), but means in the future callers should be careful about
calling it on a secondary node, it'll delete placements on the primary.
- Create concept of a GroupShardPlacement, which represents an actual
tuple in pg_dist_placement and is distinct from a ShardPlacement,
which has been resolved to a specific node. In the future
ShardPlacement should be renamed to NodeShardPlacement.
- Create some triggers which allow existing code to continue to insert
into and update pg_dist_shard_placement as if it still existed.
Before this change, we used ShareLock to acquire lock on distributed tables while
running VACUUM. This makes VACUUM and INSERT block each other. With this change we
changed lock mode from ShareLock to ShareUpdateExclusiveLock, which does not conflict
with the locks INSERT acquire.
Adds support for PostgreSQL 10 by copying in the requisite ruleutils
and updating all API usages to conform with changes in PostgreSQL 10.
Most changes are fairly minor but they are numerous. One particular
obstacle was the change in \d behavior in PostgreSQL 10's psql; I had
to add SQL implementations (views, mostly) to mimic the pre-10 output.
Add a second implementation of INSERT INTO distributed_table SELECT ... that is used if
the query cannot be pushed down. The basic idea is to execute the SELECT query separately
and pass the results into the distributed table using a CopyDestReceiver, which is also
used for COPY and create_distributed_table. When planning the SELECT, we go through
planner hooks again, which means the SELECT can also be a distributed query.
EXPLAIN is supported, but EXPLAIN ANALYZE is not because preventing double execution was
a lot more complicated in this case.
During version update, we indirectly calld CheckInstalledVersion via
ChackCitusVersions. This obviously fails because during version update it is
expected to have version mismatch between installed version and binary version.
Thus, we remove that ChackCitusVersions. We now only call ChackAvailableVersion.
Before this commit, we were erroring out at almost all queries if there is a
version mismatch. With this commit, we started to error out only requested
operation touches distributed tables.
Normally we would need to use distributed cache to understand whether a table
is distributed or not. However, it is not safe to read our metadata tables when
there is a version mismatch, thus it is not safe to create distributed cache.
Therefore for this specific occasion, we directly read from pg_dist_partition
table. However; reading from catalog is costly and we should not use this
method in other places as much as possible.
Pretty straightforward. Had some concerns about locking, but due to the
fact that all distributed operations use either some level of deparsing
or need to enumerate column names, they all block during any concurrent
column renames (due to the AccessExclusive lock).
In addition, I had some misgivings about permitting renames of the dis-
tribution column, but nothing bad comes from just allowing them.
Finally, I tried to trigger any sort of error using prepared statements
and could not trigger any errors not also exhibited by plain PostgreSQL
tables.
With this change we add an option to add a node without replicating all reference
tables to that node. If a node is added with this option, we mark the node as
inactive and no queries will sent to that node.
We also added two new UDFs;
- master_activate_node(host, port):
- marks node as active and replicates all reference tables to that node
- master_add_inactive_node(host, port):
- only adds node to pg_dist_node
This was getting pretty long and complex in the context of the main
utility hook. Moved out the checks for what should skip Citus process-
ing and what should have version checks performed.
With this change, we start to error out if loaded citus binaries does not match
the available major version or installed citus extension version. In this case
we force user to restart the server or run ALTER EXTENSION depending on the
situation
Thought this looked slightly nicer than the default behavior.
Changed preventTransaction to concurrent to be clearer that this code
path presently affects CONCURRENTLY code only.
Coordinator code marks index as invalid as a base, set it as valid in a
transactional layer atop that base, then proceeds with worker commands.
If a worker command has problems, the rollback results in an index with
isvalid = false. If everything succeeds, the user sees a valid index.
Some tests relied on worker errors though local commands were invalid.
Fixed those by ensuring preconditions were met to have command work
correctly. Otherwise most test changes are related to slight changes
in local/remote error ordering.
Custom Scan is a node in the planned statement which helps external providers
to abstract data scan not just for foreign data wrappers but also for regular
relations so you can benefit your version of caching or hardware optimizations.
This sounds like only an abstraction on the data scan layer, but we can use it
as an abstraction for our distributed queries. The only thing we need to do is
to find distributable parts of the query, plan for them and replace them with
a Citus Custom Scan. Then, whenever PostgreSQL hits this custom scan node in
its Vulcano style execution, it will call our callback functions which run
distributed plan and provides tuples to the upper node as it scans a regular
relation. This means fewer code changes, fewer bugs and more supported features
for us!
First, in the distributed query planner phase, we create a Custom Scan which
wraps the distributed plan. For real-time and task-tracker executors, we add
this custom plan under the master query plan. For router executor, we directly
pass the custom plan because there is not any master query. Then, we simply let
the PostgreSQL executor run this plan. When it hits the custom scan node, we
call the related executor parts for distributed plan, fill the tuple store in
the custom scan and return results to PostgreSQL executor in Vulcano style,
a tuple per XXX_ExecScan() call.
* Modify planner to utilize Custom Scan node.
* Create different scan methods for different executors.
* Use native PostgreSQL Explain for master part of queries.
- Break CheckShardPlacements into multiple functions (The most important
is MarkFailedShardPlacements), so that we can get rid of the global
CoordinatedTransactionUses2PC.
- Call MarkFailedShardPlacements in the router executor, so we mark
shards as invalid and stop using them while inside transaction blocks.
All router, real-time, task-tracker plannable queries should now have
full prepared statement support (and even use router when possible),
unless they don't go through the custom plan interface (which
basically just affects LANGUAGE SQL (not plpgsql) functions).
This is achieved by forcing postgres' planner to always choose a
custom plan, by assigning very low costs to plans with bound
parameters (i.e. ones were the postgres planner replanned the query
upon EXECUTE with all parameter values provided), instead of the
generic one.
This requires some trickery, because for custom plans to work the
costs for a non-custom plan have to be known, which means we can't
error out when planning the generic plan. Instead we have to return a
"faux" plan, that'd trigger an error message if executed. But due to
the custom plan logic that plan will likely (unless called by an SQL
function, or because we can't support that query for some reason) not
be executed; instead the custom plan will be chosen.
Remove the router specific transaction and shard management, and
replace it with the new placement connection API. This mostly leaves
behaviour alone, except that it is now, inside a transaction, legal to
select from a shard to which no pre-existing connection exists.
To simplify code the code handling task executions for select and
modify has been split into two - the previous coding was starting to
get confusing due to the amount of only conditionally applicable code.
Modification connections & transactions are now always established in
parallel, not just for reference tables.
We have one replication of reference table for each node. Therefore all problems with
replication factor > 1 also applies to reference table. As a solution we will not allow
foreign keys on reference tables. It is not possible to define foreign key from, to or
between reference tables.
With this commit, we implemented some basic features of reference tables.
To start with, a reference table is
* a distributed table whithout a distribution column defined on it
* the distributed table is single sharded
* and the shard is replicated to all nodes
Reference tables follows the same code-path with a single sharded
tables. Thus, broadcast JOINs are applicable to reference tables.
But, since the table is replicated to all nodes, table fetching is
not required any more.
Reference tables support the uniqueness constraints for any column.
Reference tables can be used in INSERT INTO .. SELECT queries with
the following rules:
* If a reference table is in the SELECT part of the query, it is
safe join with another reference table and/or hash partitioned
tables.
* If a reference table is in the INSERT part of the query, all
other participating tables should be reference tables.
Reference tables follow the regular co-location structure. Since
all reference tables are single sharded and replicated to all nodes,
they are always co-located with each other.
Queries involving only reference tables always follows router planner
and executor.
Reference tables can have composite typed columns and there is no need
to create/define the necessary support functions.
All modification queries, master_* UDFs, EXPLAIN, DDLs, TRUNCATE,
sequences, transactions, COPY, schema support works on reference
tables as expected. Plus, all the pre-requisites associated with
distribution columns are dismissed.
Adds support for VACUUM and ANALYZE commands which target a specific
distributed table. After grabbing the appropriate locks, this imple-
mentation sends VACUUM commands to each placement (using one connec-
tion per placement). These commands are sent in parallel, so users
with large tables will benefit from sharding. Except for VERBOSE, all
VACUUM and ANALYZE options are supported, including the explicit
column list used by ANALYZE.
As with many of our utility commands, the local command also runs. In
the VACUUM/ANALYZE case, the local command is executed before any re-
mote propagation. Because error handling is managed after local proc-
essing, this can result in a VACUUM completing locally but erroring
out when distributed processing commences: a minor technicality in all
cases, as there isn't really much reason to ever roll back a VACUUM (an
impossibility in any case, as VACUUM cannot run within a transaction).
Remote propagation of targeted VACUUM/ANALYZE is controlled by the
enable_ddl_propagation setting; warnings are emitted if such a command
is attempted when DDL propagation is disabled. Unqualified VACUUM or
ANALYZE is not handled, but a warning message informs the user of this.
Implementation note: this commit adds a "BARE" value to MultiShard-
CommitProtocol. When active, no BEGIN command is ever sent to remote
nodes, useful for commands such as VACUUM/ANALYZE which must not run in
a transaction block. This value is not user-facing and is reset at
transaction end.
One less place managing remote transactions. It also makes it fairly
easy to use 2PC for certain modifications (e.g. reference tables). Just
issue a CoordinatedTransactionUse2PC(). If every placement failure
should cause the whole transaction to abort, additionally mark the
relevant transactions as critical.
With this PR, we add foreign key support to ALTER TABLE commands. For now,
we only support foreign constraint creation via ALTER TABLE query, if it
is only subcommand in ALTER TABLE subcommand list.
We also only allow foreign key creation if replication factor is 1.
That way connections can be automatically closed after errors and such,
and the connection management infrastructure gets wider testing. It
also fixes a few issues around connection string building.
Connections are tracked and released by integrating into postgres'
transaction handling. That allows to to use connections without having
to resort to having to disable interrupts or using PG_TRY/CATCH blocks
to avoid leaking connections.
This is intended to eventually replace multi_client_executor.c and
connection_cache.c, and to provide the basis of a centralized
transaction management.
The newly introduced transaction hook should, in the future, be the only
one in citus, to allow for proper ordering between operations. For now
this central handler is responsible for releasing connections and
resetting XactModificationLevel after a transaction.
Previously, we threw an error when we ran CREATE INDEX IF NOT EXISTS
with an already existing index. This change enables expected behavior by
checking if the statement has IF NOT EXISTS before throwing the error.
We also ensure that we don't execute the command on the workers, if an
index already exists on the master.
Fixcitusdata/citus#886
The way postgres' explain hook is designed means that our hook is never
called during EXPLAIN EXECUTE. So, we special-case EXPLAIN EXECUTE by
catching it in the utility hook. We then replace the EXECUTE with the
original query and pass it back to Citus.
This commit adds INSERT INTO ... SELECT feature for distributed tables.
We implement INSERT INTO ... SELECT by pushing down the SELECT to
each shard. To compute that we use the router planner, by adding
an "uninstantiated" constraint that the partition column be equal to a
certain value. standard_planner() distributes that constraint to all
the tables where it knows how to push the restriction safely. An example
is that the tables that are connected via equi joins.
The router planner then iterates over the target table's shards,
for each we replace the "uninstantiated" restriction, with one that
PruneShardList() handles. Do so by replacing the partitioning qual
parameter added in multi_planner() with the current shard's
actual boundary values. Also, add the current shard's boundary values to the
top level subquery to ensure that even if the partitioning qual is
not distributed to all the tables, we never run the queries on the shards
that don't match with the current shard boundaries. Finally, perform the
normal shard pruning to decide on whether to push the query to the
current shard or not.
We do not support certain SQLs on the subquery, which are described/commented
on ErrorIfInsertSelectQueryNotSupported().
We also added some locking on the router executor. When an INSERT/SELECT command
runs on a distributed table with replication factor >1, we need to ensure that
it sees the same result on each placement of a shard. So we added the ability
such that router executor takes exclusive locks on shards from which the SELECT
in an INSERT/SELECT reads in order to prevent concurrent changes. This is not a
very optimal solution, but it's simple and correct. The
citus.all_modifications_commutative can be used to avoid aggressive locking.
An INSERT/SELECT whose filters are known to exclude any ongoing writes can be
marked as commutative. See RequiresConsistentSnapshot() for the details.
We also moved the decison of whether the multiPlan should be executed on
the router executor or not to the planning phase. This allowed us to
integrate multi task router executor tasks to the router executor smoothly.
Adds support for PostgreSQL 9.6 by copying in the requisite ruleutils
file and refactoring the out/readfuncs code to flexibly support the
old-style copy/pasted out/readfuncs (prior to 9.6) or use extensible
node APIs (in 9.6 and higher).
Most version-specific code within this change is only needed to set new
fields in the AggRef nodes we build for aggregations. Version-specific
test output files were added in certain cases, though in most they were
not necessary. Each such file begins by e.g. printing the major version
in order to clarify its purpose.
The comment atop citus_nodes.h details how to add support for new nodes
for when that becomes necessary.
So far placements were assigned an Oid, but that was just used to track
insertion order. It also did so incompletely, as it was not preserved
across changes of the shard state. The behaviour around oid wraparound
was also not entirely as intended.
The newly introduced, explicitly assigned, IDs are preserved across
shard-state changes.
The prime goal of this change is not to improve ordering of task
assignment policies, but to make it easier to reference shards. The
newly introduced UpdateShardPlacementState() makes use of that, and so
will the in-progress connection and transaction management changes.
hash_create(), called by TaskHashCreate(), doesn't work correctly for a
zero sized hash table. This triggers valgrind errors, and could
potentially cause crashes even without valgring.
This currently happens for Jobs with 0 tasks. These probably should be
optimized away before reaching TaskHashCreate(), but that's a bigger
change.
This commit enables to create different worker and master temporary folders.
This change is important for citus-mx on task-tracker execution. In simple words,
on citus-mx, the worker could actually be reponsible for the master tasks as well.
Prior to this change, both master and worker logic on task-tracker executor was
accessing and using the same files for different purposes which was dangerous on
certain cases (i.e., when task_tracker_delay is low).
Not entirely sure why we went with the shared memory hook approach, but
it causes problems (multiple registration) during crashes. Changing to
a simple direct registration call from PG_init.
An interaction between ReraiseRemoteError and DML transaction support
causes segfaults:
* ReraiseRemoteError calls PurgeConnection, freeing a connection...
* That connection is still in the xactParticipantHash
At transaction end, the memory in the freed connection might happen to
pass the "is this connection OK?" check, causing us to try to send an
ABORT over that connection. By removing it from the transaction hash
before calling ReraiseRemoteError, we avoid this possibility.
Three changes here to get to true multi-statement, multi-relation DDL
transactions (same functionality pre-5.2, with benefits of atomicity):
1. Changed the multi-shard utility hook to always run (consistency
with router executor hook, removes ad-hoc "installed" boolean)
2. Change the global connection list in multi_shard_transaction to
instead be a hash; update related functions to operate on global
hash instead of local hash/global list
3. Remove check within DDL code to prevent subsequent DDL commands;
place unset/reset guard around call to ConnectToNode to permit
connecting to additional nodes after DDL transaction has begun
In addition, code has been added to raise an error if a ROLLBACK TO
SAVEPOINT is attempted (similar to router executor), and comprehensive
tests execute all multi-DDL scenarios (full success, user ROLLBACK, any
actual errors (say, duplicate index), partial failure (duplicate index
on one node but not others), partial COMMIT (one node fails), and 2PC
partial PREPARE (one node fails)). Interleavings with other commands
(DML, \copy) are similarly all covered.
Recent changes to DDL and transaction logic resulted in a "regression"
from the viewpoint of users. Previously, DDL commands were allowed in
multi-command transaction blocks, though they were not processed in any
actual transactional manner. We improved the atomicity of our DDL code,
but added a restriction that DDL commands themselves must not occur in
any BEGIN/END transaction block.
To give users back the original functionality (and improved atomicity)
we now keep track of whether a multi-command transaction has modified
data (DML) or schema (DDL). Interleaving the two modification types in
a single transaction is disallowed.
This first step simply permits a single DDL command in such a block,
admittedly an incomplete solution, but one which will permit us to add
full multi-DDL command support in a subsequent commit.
When an unreferenced prepared statement parameter does not explicitly
have a type assigned, we cannot deserialize it, to send to the remote
side. That commonly happens inside plpgsql functions, where local
variables are passed in as unused prepared statement parameters.
A recent change generates a "dummy" shard placement with its identifier
set to INVALID_SHARD_ID for SELECT queries against distributed tables
with no shards. Normally, no lock is acquired for SELECT statements,
but if all_modifications_commutative is set to true, we will acquire a
shared lock, triggering an assertion failure within LockShardResource
in the above case.
The "dummy" shard placement is actually necessary to ensure such empty
queries have somewhere to execute, and INVALID_SHARD_ID seems the most
appropriate value for the dummy's shard identifier field, so the most
straightforward fix is to just avoid locking invalid shard identifiers.
Fixes#679
This change sets the default commit protocol for distributed DDL
commands to '1pc'. If the user issues a distributed DDL command with
this default setting, then once in a session, a NOTICE message is
shown about using '2pc' being extra safe.
This adds support for SERIAL/BIGSERIAL column types. Because we now can
evaluate functions on the master (during execution), adding this is a
matter of ensuring the table creation step works properly.
To accomplish this, I've added some logic to detect sequences owned by
a table (i.e. those related to its columns). Simply creating a sequence
and using it in a default value is insufficient; users who do so must
ensure the sequence is owned by the column using it.
Fortunately, this is exactly what SERIAL and BIGSERIAL do, which is the
use case we're targeting with this feature. While testing this, I found
that worker_apply_shard_ddl_command actually adds shard identifiers to
sequence names, though I found no places that use or test this path. I
removed that code so that sequence names are not mutated and will match
those used by a SERIAL default value expression.
Our use of the new-to-9.5 CREATE SEQUENCE IF NOT EXISTS syntax means we
are dropping support for 9.4 (which is being done regardless, but makes
this change simpler). I've removed 9.4 from the Travis build matrix.
Some edge cases are possible in ALTER SEQUENCE, COPY FROM (on workers),
and CREATE SEQUENCE OWNED BY. I've added errors for each so that users
understand when and why certain operations are prohibited.
We remove schema name parameter from worker_fetch_foreign_file and
worker_fetch_regular_table functions. We now send schema name
concatanated with table name.
This change removes AllFinalizedPlacementsAccessible function since,
we open connections to all shard placements before any command is
sent so we immediately error out if a shard placement is not accessible.